c7dd803e61
PR tree-optimization/46494 * loop-unroll.c (split_edge_and_insert): Adjust comment. * loop-init.c (loop_optimizer_finalize): Do not call verify_flow_info. (pass_rtl_loop_done): Add TODO_verify_flow. * fwprop.c (pass_rtl_fwprop): Likewise. * modulo-sched.c (pass_sms): Likewise. * tree-ssa-dom.c (pass_dominator): Likewise. * tree-ssa-loop-ch.c (pass_ch): Likewise. * tree-ssa-loop.c (pass_complete_unrolli): Likewise. (pass_tree_loop_done): Likewise. * tree-ssa-pre.c (execute_pre): Likewise. * tree-ssa-reassoc.c (pass_reassoc): Likewise. * tree-ssa-sink.c (pass_sink_code): Likewise. * tree-vrp.c (pass_vrp): Likewise. From-SVN: r170141
1528 lines
45 KiB
C
1528 lines
45 KiB
C
/* RTL-based forward propagation pass for GNU compiler.
|
||
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
||
Free Software Foundation, Inc.
|
||
Contributed by Paolo Bonzini and Steven Bosscher.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "diagnostic-core.h"
|
||
|
||
#include "sparseset.h"
|
||
#include "timevar.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "flags.h"
|
||
#include "obstack.h"
|
||
#include "basic-block.h"
|
||
#include "output.h"
|
||
#include "df.h"
|
||
#include "target.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-pass.h"
|
||
#include "domwalk.h"
|
||
#include "emit-rtl.h"
|
||
|
||
|
||
/* This pass does simple forward propagation and simplification when an
|
||
operand of an insn can only come from a single def. This pass uses
|
||
df.c, so it is global. However, we only do limited analysis of
|
||
available expressions.
|
||
|
||
1) The pass tries to propagate the source of the def into the use,
|
||
and checks if the result is independent of the substituted value.
|
||
For example, the high word of a (zero_extend:DI (reg:SI M)) is always
|
||
zero, independent of the source register.
|
||
|
||
In particular, we propagate constants into the use site. Sometimes
|
||
RTL expansion did not put the constant in the same insn on purpose,
|
||
to satisfy a predicate, and the result will fail to be recognized;
|
||
but this happens rarely and in this case we can still create a
|
||
REG_EQUAL note. For multi-word operations, this
|
||
|
||
(set (subreg:SI (reg:DI 120) 0) (const_int 0))
|
||
(set (subreg:SI (reg:DI 120) 4) (const_int -1))
|
||
(set (subreg:SI (reg:DI 122) 0)
|
||
(ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
|
||
(set (subreg:SI (reg:DI 122) 4)
|
||
(ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
|
||
|
||
can be simplified to the much simpler
|
||
|
||
(set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
|
||
(set (subreg:SI (reg:DI 122) 4) (const_int -1))
|
||
|
||
This particular propagation is also effective at putting together
|
||
complex addressing modes. We are more aggressive inside MEMs, in
|
||
that all definitions are propagated if the use is in a MEM; if the
|
||
result is a valid memory address we check address_cost to decide
|
||
whether the substitution is worthwhile.
|
||
|
||
2) The pass propagates register copies. This is not as effective as
|
||
the copy propagation done by CSE's canon_reg, which works by walking
|
||
the instruction chain, it can help the other transformations.
|
||
|
||
We should consider removing this optimization, and instead reorder the
|
||
RTL passes, because GCSE does this transformation too. With some luck,
|
||
the CSE pass at the end of rest_of_handle_gcse could also go away.
|
||
|
||
3) The pass looks for paradoxical subregs that are actually unnecessary.
|
||
Things like this:
|
||
|
||
(set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
|
||
(set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
|
||
(set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
|
||
(subreg:SI (reg:QI 121) 0)))
|
||
|
||
are very common on machines that can only do word-sized operations.
|
||
For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
|
||
if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
|
||
we can replace the paradoxical subreg with simply (reg:WIDE M). The
|
||
above will simplify this to
|
||
|
||
(set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
|
||
(set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
|
||
(set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
|
||
|
||
where the first two insns are now dead.
|
||
|
||
We used to use reaching definitions to find which uses have a
|
||
single reaching definition (sounds obvious...), but this is too
|
||
complex a problem in nasty testcases like PR33928. Now we use the
|
||
multiple definitions problem in df-problems.c. The similarity
|
||
between that problem and SSA form creation is taken further, in
|
||
that fwprop does a dominator walk to create its chains; however,
|
||
instead of creating a PHI function where multiple definitions meet
|
||
I just punt and record only singleton use-def chains, which is
|
||
all that is needed by fwprop. */
|
||
|
||
|
||
static int num_changes;
|
||
|
||
DEF_VEC_P(df_ref);
|
||
DEF_VEC_ALLOC_P(df_ref,heap);
|
||
static VEC(df_ref,heap) *use_def_ref;
|
||
static VEC(df_ref,heap) *reg_defs;
|
||
static VEC(df_ref,heap) *reg_defs_stack;
|
||
|
||
/* The MD bitmaps are trimmed to include only live registers to cut
|
||
memory usage on testcases like insn-recog.c. Track live registers
|
||
in the basic block and do not perform forward propagation if the
|
||
destination is a dead pseudo occurring in a note. */
|
||
static bitmap local_md;
|
||
static bitmap local_lr;
|
||
|
||
/* Return the only def in USE's use-def chain, or NULL if there is
|
||
more than one def in the chain. */
|
||
|
||
static inline df_ref
|
||
get_def_for_use (df_ref use)
|
||
{
|
||
return VEC_index (df_ref, use_def_ref, DF_REF_ID (use));
|
||
}
|
||
|
||
|
||
/* Update the reg_defs vector with non-partial definitions in DEF_REC.
|
||
TOP_FLAG says which artificials uses should be used, when DEF_REC
|
||
is an artificial def vector. LOCAL_MD is modified as after a
|
||
df_md_simulate_* function; we do more or less the same processing
|
||
done there, so we do not use those functions. */
|
||
|
||
#define DF_MD_GEN_FLAGS \
|
||
(DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
|
||
|
||
static void
|
||
process_defs (df_ref *def_rec, int top_flag)
|
||
{
|
||
df_ref def;
|
||
while ((def = *def_rec++) != NULL)
|
||
{
|
||
df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def));
|
||
unsigned int dregno;
|
||
|
||
if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
|
||
continue;
|
||
|
||
dregno = DF_REF_REGNO (def);
|
||
if (curr_def)
|
||
VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def);
|
||
else
|
||
{
|
||
/* Do not store anything if "transitioning" from NULL to NULL. But
|
||
otherwise, push a special entry on the stack to tell the
|
||
leave_block callback that the entry in reg_defs was NULL. */
|
||
if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
|
||
;
|
||
else
|
||
VEC_safe_push (df_ref, heap, reg_defs_stack, def);
|
||
}
|
||
|
||
if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
|
||
{
|
||
bitmap_set_bit (local_md, dregno);
|
||
VEC_replace (df_ref, reg_defs, dregno, NULL);
|
||
}
|
||
else
|
||
{
|
||
bitmap_clear_bit (local_md, dregno);
|
||
VEC_replace (df_ref, reg_defs, dregno, def);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Fill the use_def_ref vector with values for the uses in USE_REC,
|
||
taking reaching definitions info from LOCAL_MD and REG_DEFS.
|
||
TOP_FLAG says which artificials uses should be used, when USE_REC
|
||
is an artificial use vector. */
|
||
|
||
static void
|
||
process_uses (df_ref *use_rec, int top_flag)
|
||
{
|
||
df_ref use;
|
||
while ((use = *use_rec++) != NULL)
|
||
if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
|
||
{
|
||
unsigned int uregno = DF_REF_REGNO (use);
|
||
if (VEC_index (df_ref, reg_defs, uregno)
|
||
&& !bitmap_bit_p (local_md, uregno)
|
||
&& bitmap_bit_p (local_lr, uregno))
|
||
VEC_replace (df_ref, use_def_ref, DF_REF_ID (use),
|
||
VEC_index (df_ref, reg_defs, uregno));
|
||
}
|
||
}
|
||
|
||
|
||
static void
|
||
single_def_use_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
|
||
basic_block bb)
|
||
{
|
||
int bb_index = bb->index;
|
||
struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
|
||
struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
|
||
rtx insn;
|
||
|
||
bitmap_copy (local_md, &md_bb_info->in);
|
||
bitmap_copy (local_lr, &lr_bb_info->in);
|
||
|
||
/* Push a marker for the leave_block callback. */
|
||
VEC_safe_push (df_ref, heap, reg_defs_stack, NULL);
|
||
|
||
process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
|
||
process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
|
||
|
||
/* We don't call df_simulate_initialize_forwards, as it may overestimate
|
||
the live registers if there are unused artificial defs. We prefer
|
||
liveness to be underestimated. */
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
if (INSN_P (insn))
|
||
{
|
||
unsigned int uid = INSN_UID (insn);
|
||
process_uses (DF_INSN_UID_USES (uid), 0);
|
||
process_uses (DF_INSN_UID_EQ_USES (uid), 0);
|
||
process_defs (DF_INSN_UID_DEFS (uid), 0);
|
||
df_simulate_one_insn_forwards (bb, insn, local_lr);
|
||
}
|
||
|
||
process_uses (df_get_artificial_uses (bb_index), 0);
|
||
process_defs (df_get_artificial_defs (bb_index), 0);
|
||
}
|
||
|
||
/* Pop the definitions created in this basic block when leaving its
|
||
dominated parts. */
|
||
|
||
static void
|
||
single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
|
||
basic_block bb ATTRIBUTE_UNUSED)
|
||
{
|
||
df_ref saved_def;
|
||
while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL)
|
||
{
|
||
unsigned int dregno = DF_REF_REGNO (saved_def);
|
||
|
||
/* See also process_defs. */
|
||
if (saved_def == VEC_index (df_ref, reg_defs, dregno))
|
||
VEC_replace (df_ref, reg_defs, dregno, NULL);
|
||
else
|
||
VEC_replace (df_ref, reg_defs, dregno, saved_def);
|
||
}
|
||
}
|
||
|
||
|
||
/* Build a vector holding the reaching definitions of uses reached by a
|
||
single dominating definition. */
|
||
|
||
static void
|
||
build_single_def_use_links (void)
|
||
{
|
||
struct dom_walk_data walk_data;
|
||
|
||
/* We use the multiple definitions problem to compute our restricted
|
||
use-def chains. */
|
||
df_set_flags (DF_EQ_NOTES);
|
||
df_md_add_problem ();
|
||
df_note_add_problem ();
|
||
df_analyze ();
|
||
df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
|
||
|
||
use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ());
|
||
VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ());
|
||
|
||
reg_defs = VEC_alloc (df_ref, heap, max_reg_num ());
|
||
VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ());
|
||
|
||
reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10);
|
||
local_md = BITMAP_ALLOC (NULL);
|
||
local_lr = BITMAP_ALLOC (NULL);
|
||
|
||
/* Walk the dominator tree looking for single reaching definitions
|
||
dominating the uses. This is similar to how SSA form is built. */
|
||
walk_data.dom_direction = CDI_DOMINATORS;
|
||
walk_data.initialize_block_local_data = NULL;
|
||
walk_data.before_dom_children = single_def_use_enter_block;
|
||
walk_data.after_dom_children = single_def_use_leave_block;
|
||
|
||
init_walk_dominator_tree (&walk_data);
|
||
walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
|
||
fini_walk_dominator_tree (&walk_data);
|
||
|
||
BITMAP_FREE (local_lr);
|
||
BITMAP_FREE (local_md);
|
||
VEC_free (df_ref, heap, reg_defs);
|
||
VEC_free (df_ref, heap, reg_defs_stack);
|
||
}
|
||
|
||
|
||
/* Do not try to replace constant addresses or addresses of local and
|
||
argument slots. These MEM expressions are made only once and inserted
|
||
in many instructions, as well as being used to control symbol table
|
||
output. It is not safe to clobber them.
|
||
|
||
There are some uncommon cases where the address is already in a register
|
||
for some reason, but we cannot take advantage of that because we have
|
||
no easy way to unshare the MEM. In addition, looking up all stack
|
||
addresses is costly. */
|
||
|
||
static bool
|
||
can_simplify_addr (rtx addr)
|
||
{
|
||
rtx reg;
|
||
|
||
if (CONSTANT_ADDRESS_P (addr))
|
||
return false;
|
||
|
||
if (GET_CODE (addr) == PLUS)
|
||
reg = XEXP (addr, 0);
|
||
else
|
||
reg = addr;
|
||
|
||
return (!REG_P (reg)
|
||
|| (REGNO (reg) != FRAME_POINTER_REGNUM
|
||
&& REGNO (reg) != HARD_FRAME_POINTER_REGNUM
|
||
&& REGNO (reg) != ARG_POINTER_REGNUM));
|
||
}
|
||
|
||
/* Returns a canonical version of X for the address, from the point of view,
|
||
that all multiplications are represented as MULT instead of the multiply
|
||
by a power of 2 being represented as ASHIFT.
|
||
|
||
Every ASHIFT we find has been made by simplify_gen_binary and was not
|
||
there before, so it is not shared. So we can do this in place. */
|
||
|
||
static void
|
||
canonicalize_address (rtx x)
|
||
{
|
||
for (;;)
|
||
switch (GET_CODE (x))
|
||
{
|
||
case ASHIFT:
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
|
||
&& INTVAL (XEXP (x, 1)) >= 0)
|
||
{
|
||
HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
|
||
PUT_CODE (x, MULT);
|
||
XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
|
||
GET_MODE (x));
|
||
}
|
||
|
||
x = XEXP (x, 0);
|
||
break;
|
||
|
||
case PLUS:
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS
|
||
|| GET_CODE (XEXP (x, 0)) == ASHIFT
|
||
|| GET_CODE (XEXP (x, 0)) == CONST)
|
||
canonicalize_address (XEXP (x, 0));
|
||
|
||
x = XEXP (x, 1);
|
||
break;
|
||
|
||
case CONST:
|
||
x = XEXP (x, 0);
|
||
break;
|
||
|
||
default:
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* OLD is a memory address. Return whether it is good to use NEW instead,
|
||
for a memory access in the given MODE. */
|
||
|
||
static bool
|
||
should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
|
||
addr_space_t as, bool speed)
|
||
{
|
||
int gain;
|
||
|
||
if (rtx_equal_p (old_rtx, new_rtx)
|
||
|| !memory_address_addr_space_p (mode, new_rtx, as))
|
||
return false;
|
||
|
||
/* Copy propagation is always ok. */
|
||
if (REG_P (old_rtx) && REG_P (new_rtx))
|
||
return true;
|
||
|
||
/* Prefer the new address if it is less expensive. */
|
||
gain = (address_cost (old_rtx, mode, as, speed)
|
||
- address_cost (new_rtx, mode, as, speed));
|
||
|
||
/* If the addresses have equivalent cost, prefer the new address
|
||
if it has the highest `rtx_cost'. That has the potential of
|
||
eliminating the most insns without additional costs, and it
|
||
is the same that cse.c used to do. */
|
||
if (gain == 0)
|
||
gain = rtx_cost (new_rtx, SET, speed) - rtx_cost (old_rtx, SET, speed);
|
||
|
||
return (gain > 0);
|
||
}
|
||
|
||
|
||
/* Flags for the last parameter of propagate_rtx_1. */
|
||
|
||
enum {
|
||
/* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
|
||
if it is false, propagate_rtx_1 returns false if, for at least
|
||
one occurrence OLD, it failed to collapse the result to a constant.
|
||
For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
|
||
collapse to zero if replacing (reg:M B) with (reg:M A).
|
||
|
||
PR_CAN_APPEAR is disregarded inside MEMs: in that case,
|
||
propagate_rtx_1 just tries to make cheaper and valid memory
|
||
addresses. */
|
||
PR_CAN_APPEAR = 1,
|
||
|
||
/* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
|
||
outside memory addresses. This is needed because propagate_rtx_1 does
|
||
not do any analysis on memory; thus it is very conservative and in general
|
||
it will fail if non-read-only MEMs are found in the source expression.
|
||
|
||
PR_HANDLE_MEM is set when the source of the propagation was not
|
||
another MEM. Then, it is safe not to treat non-read-only MEMs as
|
||
``opaque'' objects. */
|
||
PR_HANDLE_MEM = 2,
|
||
|
||
/* Set when costs should be optimized for speed. */
|
||
PR_OPTIMIZE_FOR_SPEED = 4
|
||
};
|
||
|
||
|
||
/* Replace all occurrences of OLD in *PX with NEW and try to simplify the
|
||
resulting expression. Replace *PX with a new RTL expression if an
|
||
occurrence of OLD was found.
|
||
|
||
This is only a wrapper around simplify-rtx.c: do not add any pattern
|
||
matching code here. (The sole exception is the handling of LO_SUM, but
|
||
that is because there is no simplify_gen_* function for LO_SUM). */
|
||
|
||
static bool
|
||
propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
|
||
{
|
||
rtx x = *px, tem = NULL_RTX, op0, op1, op2;
|
||
enum rtx_code code = GET_CODE (x);
|
||
enum machine_mode mode = GET_MODE (x);
|
||
enum machine_mode op_mode;
|
||
bool can_appear = (flags & PR_CAN_APPEAR) != 0;
|
||
bool valid_ops = true;
|
||
|
||
if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
|
||
{
|
||
/* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
|
||
they have side effects or not). */
|
||
*px = (side_effects_p (x)
|
||
? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
|
||
: gen_rtx_SCRATCH (GET_MODE (x)));
|
||
return false;
|
||
}
|
||
|
||
/* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
|
||
address, and we are *not* inside one. */
|
||
if (x == old_rtx)
|
||
{
|
||
*px = new_rtx;
|
||
return can_appear;
|
||
}
|
||
|
||
/* If this is an expression, try recursive substitution. */
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case RTX_UNARY:
|
||
op0 = XEXP (x, 0);
|
||
op_mode = GET_MODE (op0);
|
||
valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
|
||
if (op0 == XEXP (x, 0))
|
||
return true;
|
||
tem = simplify_gen_unary (code, mode, op0, op_mode);
|
||
break;
|
||
|
||
case RTX_BIN_ARITH:
|
||
case RTX_COMM_ARITH:
|
||
op0 = XEXP (x, 0);
|
||
op1 = XEXP (x, 1);
|
||
valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
|
||
valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
||
return true;
|
||
tem = simplify_gen_binary (code, mode, op0, op1);
|
||
break;
|
||
|
||
case RTX_COMPARE:
|
||
case RTX_COMM_COMPARE:
|
||
op0 = XEXP (x, 0);
|
||
op1 = XEXP (x, 1);
|
||
op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
|
||
valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
|
||
valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
||
return true;
|
||
tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
|
||
break;
|
||
|
||
case RTX_TERNARY:
|
||
case RTX_BITFIELD_OPS:
|
||
op0 = XEXP (x, 0);
|
||
op1 = XEXP (x, 1);
|
||
op2 = XEXP (x, 2);
|
||
op_mode = GET_MODE (op0);
|
||
valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
|
||
valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
|
||
valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
|
||
return true;
|
||
if (op_mode == VOIDmode)
|
||
op_mode = GET_MODE (op0);
|
||
tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
|
||
break;
|
||
|
||
case RTX_EXTRA:
|
||
/* The only case we try to handle is a SUBREG. */
|
||
if (code == SUBREG)
|
||
{
|
||
op0 = XEXP (x, 0);
|
||
valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
|
||
if (op0 == XEXP (x, 0))
|
||
return true;
|
||
tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x));
|
||
}
|
||
break;
|
||
|
||
case RTX_OBJ:
|
||
if (code == MEM && x != new_rtx)
|
||
{
|
||
rtx new_op0;
|
||
op0 = XEXP (x, 0);
|
||
|
||
/* There are some addresses that we cannot work on. */
|
||
if (!can_simplify_addr (op0))
|
||
return true;
|
||
|
||
op0 = new_op0 = targetm.delegitimize_address (op0);
|
||
valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
|
||
flags | PR_CAN_APPEAR);
|
||
|
||
/* Dismiss transformation that we do not want to carry on. */
|
||
if (!valid_ops
|
||
|| new_op0 == op0
|
||
|| !(GET_MODE (new_op0) == GET_MODE (op0)
|
||
|| GET_MODE (new_op0) == VOIDmode))
|
||
return true;
|
||
|
||
canonicalize_address (new_op0);
|
||
|
||
/* Copy propagations are always ok. Otherwise check the costs. */
|
||
if (!(REG_P (old_rtx) && REG_P (new_rtx))
|
||
&& !should_replace_address (op0, new_op0, GET_MODE (x),
|
||
MEM_ADDR_SPACE (x),
|
||
flags & PR_OPTIMIZE_FOR_SPEED))
|
||
return true;
|
||
|
||
tem = replace_equiv_address_nv (x, new_op0);
|
||
}
|
||
|
||
else if (code == LO_SUM)
|
||
{
|
||
op0 = XEXP (x, 0);
|
||
op1 = XEXP (x, 1);
|
||
|
||
/* The only simplification we do attempts to remove references to op0
|
||
or make it constant -- in both cases, op0's invalidity will not
|
||
make the result invalid. */
|
||
propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
|
||
valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
||
return true;
|
||
|
||
/* (lo_sum (high x) x) -> x */
|
||
if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
|
||
tem = op1;
|
||
else
|
||
tem = gen_rtx_LO_SUM (mode, op0, op1);
|
||
|
||
/* OP1 is likely not a legitimate address, otherwise there would have
|
||
been no LO_SUM. We want it to disappear if it is invalid, return
|
||
false in that case. */
|
||
return memory_address_p (mode, tem);
|
||
}
|
||
|
||
else if (code == REG)
|
||
{
|
||
if (rtx_equal_p (x, old_rtx))
|
||
{
|
||
*px = new_rtx;
|
||
return can_appear;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* No change, no trouble. */
|
||
if (tem == NULL_RTX)
|
||
return true;
|
||
|
||
*px = tem;
|
||
|
||
/* The replacement we made so far is valid, if all of the recursive
|
||
replacements were valid, or we could simplify everything to
|
||
a constant. */
|
||
return valid_ops || can_appear || CONSTANT_P (tem);
|
||
}
|
||
|
||
|
||
/* for_each_rtx traversal function that returns 1 if BODY points to
|
||
a non-constant mem. */
|
||
|
||
static int
|
||
varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
rtx x = *body;
|
||
return MEM_P (x) && !MEM_READONLY_P (x);
|
||
}
|
||
|
||
|
||
/* Replace all occurrences of OLD in X with NEW and try to simplify the
|
||
resulting expression (in mode MODE). Return a new expression if it is
|
||
a constant, otherwise X.
|
||
|
||
Simplifications where occurrences of NEW collapse to a constant are always
|
||
accepted. All simplifications are accepted if NEW is a pseudo too.
|
||
Otherwise, we accept simplifications that have a lower or equal cost. */
|
||
|
||
static rtx
|
||
propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
|
||
bool speed)
|
||
{
|
||
rtx tem;
|
||
bool collapsed;
|
||
int flags;
|
||
|
||
if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
|
||
return NULL_RTX;
|
||
|
||
flags = 0;
|
||
if (REG_P (new_rtx) || CONSTANT_P (new_rtx))
|
||
flags |= PR_CAN_APPEAR;
|
||
if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
|
||
flags |= PR_HANDLE_MEM;
|
||
|
||
if (speed)
|
||
flags |= PR_OPTIMIZE_FOR_SPEED;
|
||
|
||
tem = x;
|
||
collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
|
||
if (tem == x || !collapsed)
|
||
return NULL_RTX;
|
||
|
||
/* gen_lowpart_common will not be able to process VOIDmode entities other
|
||
than CONST_INTs. */
|
||
if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
|
||
return NULL_RTX;
|
||
|
||
if (GET_MODE (tem) == VOIDmode)
|
||
tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
|
||
else
|
||
gcc_assert (GET_MODE (tem) == mode);
|
||
|
||
return tem;
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Return true if the register from reference REF is killed
|
||
between FROM to (but not including) TO. */
|
||
|
||
static bool
|
||
local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
|
||
{
|
||
rtx insn;
|
||
|
||
for (insn = from; insn != to; insn = NEXT_INSN (insn))
|
||
{
|
||
df_ref *def_rec;
|
||
if (!INSN_P (insn))
|
||
continue;
|
||
|
||
for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
|
||
{
|
||
df_ref def = *def_rec;
|
||
if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Check if the given DEF is available in INSN. This would require full
|
||
computation of available expressions; we check only restricted conditions:
|
||
- if DEF is the sole definition of its register, go ahead;
|
||
- in the same basic block, we check for no definitions killing the
|
||
definition of DEF_INSN;
|
||
- if USE's basic block has DEF's basic block as the sole predecessor,
|
||
we check if the definition is killed after DEF_INSN or before
|
||
TARGET_INSN insn, in their respective basic blocks. */
|
||
static bool
|
||
use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
|
||
{
|
||
basic_block def_bb = BLOCK_FOR_INSN (def_insn);
|
||
basic_block target_bb = BLOCK_FOR_INSN (target_insn);
|
||
int regno;
|
||
df_ref def;
|
||
|
||
/* We used to have a def reaching a use that is _before_ the def,
|
||
with the def not dominating the use even though the use and def
|
||
are in the same basic block, when a register may be used
|
||
uninitialized in a loop. This should not happen anymore since
|
||
we do not use reaching definitions, but still we test for such
|
||
cases and assume that DEF is not available. */
|
||
if (def_bb == target_bb
|
||
? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
|
||
: !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
|
||
return true;
|
||
|
||
/* Check if the reg in USE has only one definition. We already
|
||
know that this definition reaches use, or we wouldn't be here.
|
||
However, this is invalid for hard registers because if they are
|
||
live at the beginning of the function it does not mean that we
|
||
have an uninitialized access. */
|
||
regno = DF_REF_REGNO (use);
|
||
def = DF_REG_DEF_CHAIN (regno);
|
||
if (def
|
||
&& DF_REF_NEXT_REG (def) == NULL
|
||
&& regno >= FIRST_PSEUDO_REGISTER)
|
||
return false;
|
||
|
||
/* Check locally if we are in the same basic block. */
|
||
if (def_bb == target_bb)
|
||
return local_ref_killed_between_p (use, def_insn, target_insn);
|
||
|
||
/* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
|
||
if (single_pred_p (target_bb)
|
||
&& single_pred (target_bb) == def_bb)
|
||
{
|
||
df_ref x;
|
||
|
||
/* See if USE is killed between DEF_INSN and the last insn in the
|
||
basic block containing DEF_INSN. */
|
||
x = df_bb_regno_last_def_find (def_bb, regno);
|
||
if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
|
||
return true;
|
||
|
||
/* See if USE is killed between TARGET_INSN and the first insn in the
|
||
basic block containing TARGET_INSN. */
|
||
x = df_bb_regno_first_def_find (target_bb, regno);
|
||
if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Otherwise assume the worst case. */
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
|
||
would require full computation of available expressions;
|
||
we check only restricted conditions, see use_killed_between. */
|
||
static bool
|
||
all_uses_available_at (rtx def_insn, rtx target_insn)
|
||
{
|
||
df_ref *use_rec;
|
||
struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
|
||
rtx def_set = single_set (def_insn);
|
||
|
||
gcc_assert (def_set);
|
||
|
||
/* If target_insn comes right after def_insn, which is very common
|
||
for addresses, we can use a quicker test. */
|
||
if (NEXT_INSN (def_insn) == target_insn
|
||
&& REG_P (SET_DEST (def_set)))
|
||
{
|
||
rtx def_reg = SET_DEST (def_set);
|
||
|
||
/* If the insn uses the reg that it defines, the substitution is
|
||
invalid. */
|
||
for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
|
||
{
|
||
df_ref use = *use_rec;
|
||
if (rtx_equal_p (DF_REF_REG (use), def_reg))
|
||
return false;
|
||
}
|
||
for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
|
||
{
|
||
df_ref use = *use_rec;
|
||
if (rtx_equal_p (DF_REF_REG (use), def_reg))
|
||
return false;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
|
||
|
||
/* Look at all the uses of DEF_INSN, and see if they are not
|
||
killed between DEF_INSN and TARGET_INSN. */
|
||
for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
|
||
{
|
||
df_ref use = *use_rec;
|
||
if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
|
||
return false;
|
||
if (use_killed_between (use, def_insn, target_insn))
|
||
return false;
|
||
}
|
||
for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
|
||
{
|
||
df_ref use = *use_rec;
|
||
if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
|
||
return false;
|
||
if (use_killed_between (use, def_insn, target_insn))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
static df_ref *active_defs;
|
||
#ifdef ENABLE_CHECKING
|
||
static sparseset active_defs_check;
|
||
#endif
|
||
|
||
/* Fill the ACTIVE_DEFS array with the use->def link for the registers
|
||
mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
|
||
too, for checking purposes. */
|
||
|
||
static void
|
||
register_active_defs (df_ref *use_rec)
|
||
{
|
||
while (*use_rec)
|
||
{
|
||
df_ref use = *use_rec++;
|
||
df_ref def = get_def_for_use (use);
|
||
int regno = DF_REF_REGNO (use);
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
sparseset_set_bit (active_defs_check, regno);
|
||
#endif
|
||
active_defs[regno] = def;
|
||
}
|
||
}
|
||
|
||
|
||
/* Build the use->def links that we use to update the dataflow info
|
||
for new uses. Note that building the links is very cheap and if
|
||
it were done earlier, they could be used to rule out invalid
|
||
propagations (in addition to what is done in all_uses_available_at).
|
||
I'm not doing this yet, though. */
|
||
|
||
static void
|
||
update_df_init (rtx def_insn, rtx insn)
|
||
{
|
||
#ifdef ENABLE_CHECKING
|
||
sparseset_clear (active_defs_check);
|
||
#endif
|
||
register_active_defs (DF_INSN_USES (def_insn));
|
||
register_active_defs (DF_INSN_USES (insn));
|
||
register_active_defs (DF_INSN_EQ_USES (insn));
|
||
}
|
||
|
||
|
||
/* Update the USE_DEF_REF array for the given use, using the active definitions
|
||
in the ACTIVE_DEFS array to match pseudos to their def. */
|
||
|
||
static inline void
|
||
update_uses (df_ref *use_rec)
|
||
{
|
||
while (*use_rec)
|
||
{
|
||
df_ref use = *use_rec++;
|
||
int regno = DF_REF_REGNO (use);
|
||
|
||
/* Set up the use-def chain. */
|
||
if (DF_REF_ID (use) >= (int) VEC_length (df_ref, use_def_ref))
|
||
VEC_safe_grow_cleared (df_ref, heap, use_def_ref,
|
||
DF_REF_ID (use) + 1);
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
gcc_assert (sparseset_bit_p (active_defs_check, regno));
|
||
#endif
|
||
VEC_replace (df_ref, use_def_ref, DF_REF_ID (use), active_defs[regno]);
|
||
}
|
||
}
|
||
|
||
|
||
/* Update the USE_DEF_REF array for the uses in INSN. Only update note
|
||
uses if NOTES_ONLY is true. */
|
||
|
||
static void
|
||
update_df (rtx insn, rtx note)
|
||
{
|
||
struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
|
||
|
||
if (note)
|
||
{
|
||
df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
|
||
df_notes_rescan (insn);
|
||
}
|
||
else
|
||
{
|
||
df_uses_create (&PATTERN (insn), insn, 0);
|
||
df_insn_rescan (insn);
|
||
update_uses (DF_INSN_INFO_USES (insn_info));
|
||
}
|
||
|
||
update_uses (DF_INSN_INFO_EQ_USES (insn_info));
|
||
}
|
||
|
||
|
||
/* Try substituting NEW into LOC, which originated from forward propagation
|
||
of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
|
||
substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
|
||
new insn is not recognized. Return whether the substitution was
|
||
performed. */
|
||
|
||
static bool
|
||
try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
|
||
{
|
||
rtx insn = DF_REF_INSN (use);
|
||
rtx set = single_set (insn);
|
||
rtx note = NULL_RTX;
|
||
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
|
||
int old_cost = 0;
|
||
bool ok;
|
||
|
||
update_df_init (def_insn, insn);
|
||
|
||
/* forward_propagate_subreg may be operating on an instruction with
|
||
multiple sets. If so, assume the cost of the new instruction is
|
||
not greater than the old one. */
|
||
if (set)
|
||
old_cost = rtx_cost (SET_SRC (set), SET, speed);
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
|
||
print_inline_rtx (dump_file, *loc, 2);
|
||
fprintf (dump_file, "\n with ");
|
||
print_inline_rtx (dump_file, new_rtx, 2);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
validate_unshare_change (insn, loc, new_rtx, true);
|
||
if (!verify_changes (0))
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Changes to insn %d not recognized\n",
|
||
INSN_UID (insn));
|
||
ok = false;
|
||
}
|
||
|
||
else if (DF_REF_TYPE (use) == DF_REF_REG_USE
|
||
&& set
|
||
&& rtx_cost (SET_SRC (set), SET, speed) > old_cost)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Changes to insn %d not profitable\n",
|
||
INSN_UID (insn));
|
||
ok = false;
|
||
}
|
||
|
||
else
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
|
||
ok = true;
|
||
}
|
||
|
||
if (ok)
|
||
{
|
||
confirm_change_group ();
|
||
num_changes++;
|
||
}
|
||
else
|
||
{
|
||
cancel_changes (0);
|
||
|
||
/* Can also record a simplified value in a REG_EQUAL note,
|
||
making a new one if one does not already exist. */
|
||
if (set_reg_equal)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, " Setting REG_EQUAL note\n");
|
||
|
||
note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
|
||
}
|
||
}
|
||
|
||
if ((ok || note) && !CONSTANT_P (new_rtx))
|
||
update_df (insn, note);
|
||
|
||
return ok;
|
||
}
|
||
|
||
/* For the given single_set INSN, containing SRC known to be a
|
||
ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
|
||
is redundant due to the register being set by a LOAD_EXTEND_OP
|
||
load from memory. */
|
||
|
||
static bool
|
||
free_load_extend (rtx src, rtx insn)
|
||
{
|
||
rtx reg;
|
||
df_ref *use_vec;
|
||
df_ref use = 0, def;
|
||
|
||
reg = XEXP (src, 0);
|
||
#ifdef LOAD_EXTEND_OP
|
||
if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
|
||
#endif
|
||
return false;
|
||
|
||
for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
|
||
{
|
||
use = *use_vec;
|
||
|
||
if (!DF_REF_IS_ARTIFICIAL (use)
|
||
&& DF_REF_TYPE (use) == DF_REF_REG_USE
|
||
&& DF_REF_REG (use) == reg)
|
||
break;
|
||
}
|
||
if (!use)
|
||
return false;
|
||
|
||
def = get_def_for_use (use);
|
||
if (!def)
|
||
return false;
|
||
|
||
if (DF_REF_IS_ARTIFICIAL (def))
|
||
return false;
|
||
|
||
if (NONJUMP_INSN_P (DF_REF_INSN (def)))
|
||
{
|
||
rtx patt = PATTERN (DF_REF_INSN (def));
|
||
|
||
if (GET_CODE (patt) == SET
|
||
&& GET_CODE (SET_SRC (patt)) == MEM
|
||
&& rtx_equal_p (SET_DEST (patt), reg))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* If USE is a subreg, see if it can be replaced by a pseudo. */
|
||
|
||
static bool
|
||
forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
|
||
{
|
||
rtx use_reg = DF_REF_REG (use);
|
||
rtx use_insn, src;
|
||
|
||
/* Only consider subregs... */
|
||
enum machine_mode use_mode = GET_MODE (use_reg);
|
||
if (GET_CODE (use_reg) != SUBREG
|
||
|| !REG_P (SET_DEST (def_set)))
|
||
return false;
|
||
|
||
/* If this is a paradoxical SUBREG... */
|
||
if (GET_MODE_SIZE (use_mode)
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
|
||
{
|
||
/* If this is a paradoxical SUBREG, we have no idea what value the
|
||
extra bits would have. However, if the operand is equivalent to
|
||
a SUBREG whose operand is the same as our mode, and all the modes
|
||
are within a word, we can just use the inner operand because
|
||
these SUBREGs just say how to treat the register. */
|
||
use_insn = DF_REF_INSN (use);
|
||
src = SET_SRC (def_set);
|
||
if (GET_CODE (src) == SUBREG
|
||
&& REG_P (SUBREG_REG (src))
|
||
&& GET_MODE (SUBREG_REG (src)) == use_mode
|
||
&& subreg_lowpart_p (src)
|
||
&& all_uses_available_at (def_insn, use_insn))
|
||
return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
|
||
def_insn, false);
|
||
}
|
||
|
||
/* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
|
||
is the low part of the reg being extended then just use the inner
|
||
operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
|
||
be removed due to it matching a LOAD_EXTEND_OP load from memory. */
|
||
else if (subreg_lowpart_p (use_reg))
|
||
{
|
||
use_insn = DF_REF_INSN (use);
|
||
src = SET_SRC (def_set);
|
||
if ((GET_CODE (src) == ZERO_EXTEND
|
||
|| GET_CODE (src) == SIGN_EXTEND)
|
||
&& REG_P (XEXP (src, 0))
|
||
&& GET_MODE (XEXP (src, 0)) == use_mode
|
||
&& !free_load_extend (src, def_insn)
|
||
&& all_uses_available_at (def_insn, use_insn))
|
||
return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
|
||
def_insn, false);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
|
||
|
||
static bool
|
||
forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
|
||
{
|
||
rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
|
||
int speed_p, i;
|
||
df_ref *use_vec;
|
||
|
||
gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
|
||
|
||
src = SET_SRC (def_set);
|
||
use_pat = PATTERN (use_insn);
|
||
|
||
/* In __asm don't replace if src might need more registers than
|
||
reg, as that could increase register pressure on the __asm. */
|
||
use_vec = DF_INSN_USES (def_insn);
|
||
if (use_vec[0] && use_vec[1])
|
||
return false;
|
||
|
||
update_df_init (def_insn, use_insn);
|
||
speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
|
||
asm_operands = NULL_RTX;
|
||
switch (GET_CODE (use_pat))
|
||
{
|
||
case ASM_OPERANDS:
|
||
asm_operands = use_pat;
|
||
break;
|
||
case SET:
|
||
if (MEM_P (SET_DEST (use_pat)))
|
||
{
|
||
loc = &SET_DEST (use_pat);
|
||
new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
|
||
if (new_rtx)
|
||
validate_unshare_change (use_insn, loc, new_rtx, true);
|
||
}
|
||
asm_operands = SET_SRC (use_pat);
|
||
break;
|
||
case PARALLEL:
|
||
for (i = 0; i < XVECLEN (use_pat, 0); i++)
|
||
if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
|
||
{
|
||
if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
|
||
{
|
||
loc = &SET_DEST (XVECEXP (use_pat, 0, i));
|
||
new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
|
||
src, speed_p);
|
||
if (new_rtx)
|
||
validate_unshare_change (use_insn, loc, new_rtx, true);
|
||
}
|
||
asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
|
||
}
|
||
else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
|
||
asm_operands = XVECEXP (use_pat, 0, i);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
|
||
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
|
||
{
|
||
loc = &ASM_OPERANDS_INPUT (asm_operands, i);
|
||
new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
|
||
if (new_rtx)
|
||
validate_unshare_change (use_insn, loc, new_rtx, true);
|
||
}
|
||
|
||
if (num_changes_pending () == 0 || !apply_change_group ())
|
||
return false;
|
||
|
||
update_df (use_insn, NULL);
|
||
num_changes++;
|
||
return true;
|
||
}
|
||
|
||
/* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
|
||
result. */
|
||
|
||
static bool
|
||
forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
|
||
{
|
||
rtx use_insn = DF_REF_INSN (use);
|
||
rtx use_set = single_set (use_insn);
|
||
rtx src, reg, new_rtx, *loc;
|
||
bool set_reg_equal;
|
||
enum machine_mode mode;
|
||
int asm_use = -1;
|
||
|
||
if (INSN_CODE (use_insn) < 0)
|
||
asm_use = asm_noperands (PATTERN (use_insn));
|
||
|
||
if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
|
||
return false;
|
||
|
||
/* Do not propagate into PC, CC0, etc. */
|
||
if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
|
||
return false;
|
||
|
||
/* If def and use are subreg, check if they match. */
|
||
reg = DF_REF_REG (use);
|
||
if (GET_CODE (reg) == SUBREG
|
||
&& GET_CODE (SET_DEST (def_set)) == SUBREG
|
||
&& (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
|
||
|| GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
|
||
return false;
|
||
|
||
/* Check if the def had a subreg, but the use has the whole reg. */
|
||
if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
|
||
return false;
|
||
|
||
/* Check if the use has a subreg, but the def had the whole reg. Unlike the
|
||
previous case, the optimization is possible and often useful indeed. */
|
||
if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
|
||
reg = SUBREG_REG (reg);
|
||
|
||
/* Check if the substitution is valid (last, because it's the most
|
||
expensive check!). */
|
||
src = SET_SRC (def_set);
|
||
if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
|
||
return false;
|
||
|
||
/* Check if the def is loading something from the constant pool; in this
|
||
case we would undo optimization such as compress_float_constant.
|
||
Still, we can set a REG_EQUAL note. */
|
||
if (MEM_P (src) && MEM_READONLY_P (src))
|
||
{
|
||
rtx x = avoid_constant_pool_reference (src);
|
||
if (x != src && use_set)
|
||
{
|
||
rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
|
||
rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
|
||
rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
|
||
if (old_rtx != new_rtx)
|
||
set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
|
||
}
|
||
return false;
|
||
}
|
||
|
||
if (asm_use >= 0)
|
||
return forward_propagate_asm (use, def_insn, def_set, reg);
|
||
|
||
/* Else try simplifying. */
|
||
|
||
if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
|
||
{
|
||
loc = &SET_DEST (use_set);
|
||
set_reg_equal = false;
|
||
}
|
||
else if (!use_set)
|
||
{
|
||
loc = &INSN_VAR_LOCATION_LOC (use_insn);
|
||
set_reg_equal = false;
|
||
}
|
||
else
|
||
{
|
||
rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
|
||
if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
|
||
loc = &XEXP (note, 0);
|
||
else
|
||
loc = &SET_SRC (use_set);
|
||
|
||
/* Do not replace an existing REG_EQUAL note if the insn is not
|
||
recognized. Either we're already replacing in the note, or we'll
|
||
separately try plugging the definition in the note and simplifying.
|
||
And only install a REQ_EQUAL note when the destination is a REG,
|
||
as the note would be invalid otherwise. */
|
||
set_reg_equal = (note == NULL_RTX && REG_P (SET_DEST (use_set)));
|
||
}
|
||
|
||
if (GET_MODE (*loc) == VOIDmode)
|
||
mode = GET_MODE (SET_DEST (use_set));
|
||
else
|
||
mode = GET_MODE (*loc);
|
||
|
||
new_rtx = propagate_rtx (*loc, mode, reg, src,
|
||
optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
|
||
|
||
if (!new_rtx)
|
||
return false;
|
||
|
||
return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
|
||
}
|
||
|
||
|
||
/* Given a use USE of an insn, if it has a single reaching
|
||
definition, try to forward propagate it into that insn.
|
||
Return true if cfg cleanup will be needed. */
|
||
|
||
static bool
|
||
forward_propagate_into (df_ref use)
|
||
{
|
||
df_ref def;
|
||
rtx def_insn, def_set, use_insn;
|
||
rtx parent;
|
||
|
||
if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
|
||
return false;
|
||
if (DF_REF_IS_ARTIFICIAL (use))
|
||
return false;
|
||
|
||
/* Only consider uses that have a single definition. */
|
||
def = get_def_for_use (use);
|
||
if (!def)
|
||
return false;
|
||
if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
|
||
return false;
|
||
if (DF_REF_IS_ARTIFICIAL (def))
|
||
return false;
|
||
|
||
/* Do not propagate loop invariant definitions inside the loop. */
|
||
if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
|
||
return false;
|
||
|
||
/* Check if the use is still present in the insn! */
|
||
use_insn = DF_REF_INSN (use);
|
||
if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
|
||
parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
|
||
else
|
||
parent = PATTERN (use_insn);
|
||
|
||
if (!reg_mentioned_p (DF_REF_REG (use), parent))
|
||
return false;
|
||
|
||
def_insn = DF_REF_INSN (def);
|
||
if (multiple_sets (def_insn))
|
||
return false;
|
||
def_set = single_set (def_insn);
|
||
if (!def_set)
|
||
return false;
|
||
|
||
/* Only try one kind of propagation. If two are possible, we'll
|
||
do it on the following iterations. */
|
||
if (forward_propagate_and_simplify (use, def_insn, def_set)
|
||
|| forward_propagate_subreg (use, def_insn, def_set))
|
||
{
|
||
if (cfun->can_throw_non_call_exceptions
|
||
&& find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
|
||
&& purge_dead_edges (DF_REF_BB (use)))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
static void
|
||
fwprop_init (void)
|
||
{
|
||
num_changes = 0;
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
/* We do not always want to propagate into loops, so we have to find
|
||
loops and be careful about them. But we have to call flow_loops_find
|
||
before df_analyze, because flow_loops_find may introduce new jump
|
||
insns (sadly) if we are not working in cfglayout mode. */
|
||
loop_optimizer_init (0);
|
||
|
||
build_single_def_use_links ();
|
||
df_set_flags (DF_DEFER_INSN_RESCAN);
|
||
|
||
active_defs = XNEWVEC (df_ref, max_reg_num ());
|
||
#ifdef ENABLE_CHECKING
|
||
active_defs_check = sparseset_alloc (max_reg_num ());
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
fwprop_done (void)
|
||
{
|
||
loop_optimizer_finalize ();
|
||
|
||
VEC_free (df_ref, heap, use_def_ref);
|
||
free (active_defs);
|
||
#ifdef ENABLE_CHECKING
|
||
sparseset_free (active_defs_check);
|
||
#endif
|
||
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
cleanup_cfg (0);
|
||
delete_trivially_dead_insns (get_insns (), max_reg_num ());
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"\nNumber of successful forward propagations: %d\n\n",
|
||
num_changes);
|
||
}
|
||
|
||
|
||
/* Main entry point. */
|
||
|
||
static bool
|
||
gate_fwprop (void)
|
||
{
|
||
return optimize > 0 && flag_forward_propagate;
|
||
}
|
||
|
||
static unsigned int
|
||
fwprop (void)
|
||
{
|
||
unsigned i;
|
||
bool need_cleanup = false;
|
||
|
||
fwprop_init ();
|
||
|
||
/* Go through all the uses. df_uses_create will create new ones at the
|
||
end, and we'll go through them as well.
|
||
|
||
Do not forward propagate addresses into loops until after unrolling.
|
||
CSE did so because it was able to fix its own mess, but we are not. */
|
||
|
||
for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
|
||
{
|
||
df_ref use = DF_USES_GET (i);
|
||
if (use)
|
||
if (DF_REF_TYPE (use) == DF_REF_REG_USE
|
||
|| DF_REF_BB (use)->loop_father == NULL
|
||
/* The outer most loop is not really a loop. */
|
||
|| loop_outer (DF_REF_BB (use)->loop_father) == NULL)
|
||
need_cleanup |= forward_propagate_into (use);
|
||
}
|
||
|
||
fwprop_done ();
|
||
if (need_cleanup)
|
||
cleanup_cfg (0);
|
||
return 0;
|
||
}
|
||
|
||
struct rtl_opt_pass pass_rtl_fwprop =
|
||
{
|
||
{
|
||
RTL_PASS,
|
||
"fwprop1", /* name */
|
||
gate_fwprop, /* gate */
|
||
fwprop, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_FWPROP, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish
|
||
| TODO_verify_flow
|
||
| TODO_verify_rtl_sharing
|
||
| TODO_dump_func /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
static unsigned int
|
||
fwprop_addr (void)
|
||
{
|
||
unsigned i;
|
||
bool need_cleanup = false;
|
||
|
||
fwprop_init ();
|
||
|
||
/* Go through all the uses. df_uses_create will create new ones at the
|
||
end, and we'll go through them as well. */
|
||
for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
|
||
{
|
||
df_ref use = DF_USES_GET (i);
|
||
if (use)
|
||
if (DF_REF_TYPE (use) != DF_REF_REG_USE
|
||
&& DF_REF_BB (use)->loop_father != NULL
|
||
/* The outer most loop is not really a loop. */
|
||
&& loop_outer (DF_REF_BB (use)->loop_father) != NULL)
|
||
need_cleanup |= forward_propagate_into (use);
|
||
}
|
||
|
||
fwprop_done ();
|
||
|
||
if (need_cleanup)
|
||
cleanup_cfg (0);
|
||
return 0;
|
||
}
|
||
|
||
struct rtl_opt_pass pass_rtl_fwprop_addr =
|
||
{
|
||
{
|
||
RTL_PASS,
|
||
"fwprop2", /* name */
|
||
gate_fwprop, /* gate */
|
||
fwprop_addr, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_FWPROP, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish | TODO_verify_rtl_sharing |
|
||
TODO_dump_func /* todo_flags_finish */
|
||
}
|
||
};
|