09e18274fd
gcc/ * regs.h (end_hard_regno): New function. (END_HARD_REGNO, END_REGNO): New macros. (add_to_hard_reg_set): New function. (remove_from_hard_reg_set): Likewise. (in_hard_reg_set_p): Likewise. (overlaps_hard_reg_set_p): Likewise. * bt-load.c (find_btr_reference): Use overlaps_hard_reg_set_p. (note_btr_set): Use END_HARD_REGNO. * caller-save.c (setup_save_areas): Use end_hard_regno. (mark_set_regs): Use END_HARD_REGNO. (add_stored_regs): Use end_hard_regno. (mark_referenced_regs): Use add_to_hard_reg_set. * combine.c (update_table_tick): Use END_REGNO. (record_value_for_reg): Likewise. (record_dead_and_set_regs): Likewise. (get_last_value_validate): Likewise. (use_crosses_set_p): Likewise. (reg_dead_at_p_1): Likewise. (reg_dead_at_p): Likewise. (mark_used_regs_combine): Use add_to_hard_reg_set. (move_deaths): Use END_HARD_REGNO. (reg_bitfield_target_p): Use end_hard_regno. (distribute_notes): Use END_HARD_REGNO. * cse.c (mention_regs): Use END_REGNO. (insert): Use add_to_hard_reg_set. (invalidate): Use END_HARD_REGNO. (invalidate_for_call): Likewise. (exp_equiv_p): Use END_REGNO. (cse_insn): Likewise. * cselib.c (cselib_invalidate_regno): Use end_hard_regno. * df-problems.c (df_urec_mark_reg_change): Use END_HARD_REGNO. * df-scan.c (df_ref_record): Use END_HARD_REGNO. * function.c (keep_stack_depressed): Use end_hard_regno. * global.c (global_alloc): Use end_hard_regno. (global_conflicts): Use add_to_hard_reg_set instead of mark_reg_live_nc. (find_reg): Likewise. (mark_reg_store): Likewise. (mark_reg_conflicts): Likewise. (mark_reg_death): Use remove_from_hard_reg_set. (mark_reg_live_nc): Delete. (set_preference): Use end_hard_regno. * local-alloc.c (mark_life): Use add_to_hard_reg_set and remove_from_hard_reg_set. (post_mark_life): Use add_to_hard_reg_set. * mode-switching.c (reg_dies): Use remove_from_hard_reg_set. (reg_becomes_live): Use add_to_hard_reg_set. * recog.c (reg_fits_class_p): Use in_hard_reg_set_p. (peep2_find_free_register): Use add_to_hard_reg_set. * reg-stack.c (convert_regs_exit): Use END_HARD_REGNO. * regclass.c (record_reg_classes): Use in_hard_reg_set_p. * regrename.c (note_sets): Use add_to_hard_reg_set. (clear_dead_regs): Use remove_from_hard_reg_set. (regrename_optimize): Use add_to_hard_reg_set. (find_oldest_value_reg): Use in_hard_reg_set_p. * reload.c (push_reload): Use in_hard_reg_set_p and end_hard_regno. (hard_reg_set_here_p): Use end_hard_regno. (decompose): Likewise. (reg_overlap_mentioned_for_reload_p): Use END_HARD_REGNO. (find_equiv_reg): Use in_hard_reg_set_p and end_hard_regno. * reload1.c (compute_use_by_pseudos): Use add_to_hard_reg_set. (mark_home_live): Use end_hard_regno. (spill_hard_reg): Likewise. (clear_reload_reg_in_use): Likewise. * reorg.c (delete_prior_computation): Use END_REGNO. * resource.c (update_live_status): Use END_HARD_REGNO. (mark_referenced_resources): Use add_to_hard_reg_set. (mark_set_resources): Likewise. (mark_target_live_regs): Likewise. Use remove_from_hard_reg_set. * rtlanal.c (refers_to_regno_p): Use END_REGNO. (reg_overlap_mentioned_p): Likewise. (dead_or_set_p): Likewise. Use an exclusive upper loop bound. (covers_regno_no_parallel_p): Use END_REGNO. (find_regno_note): Likewise. (find_reg_fusage): Use END_HARD_REGNO. * stmt.c (decl_overlaps_hard_reg_set_p): Use overlaps_hard_reg_set_p. * var-tracking.c (emit_note_insn_var_location): Use end_hard_regno. From-SVN: r124961
743 lines
21 KiB
C
743 lines
21 KiB
C
/* CPU mode switching
|
||
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "flags.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "basic-block.h"
|
||
#include "output.h"
|
||
#include "tm_p.h"
|
||
#include "function.h"
|
||
#include "tree-pass.h"
|
||
#include "timevar.h"
|
||
|
||
/* We want target macros for the mode switching code to be able to refer
|
||
to instruction attribute values. */
|
||
#include "insn-attr.h"
|
||
|
||
#ifdef OPTIMIZE_MODE_SWITCHING
|
||
|
||
/* The algorithm for setting the modes consists of scanning the insn list
|
||
and finding all the insns which require a specific mode. Each insn gets
|
||
a unique struct seginfo element. These structures are inserted into a list
|
||
for each basic block. For each entity, there is an array of bb_info over
|
||
the flow graph basic blocks (local var 'bb_info'), and contains a list
|
||
of all insns within that basic block, in the order they are encountered.
|
||
|
||
For each entity, any basic block WITHOUT any insns requiring a specific
|
||
mode are given a single entry, without a mode. (Each basic block
|
||
in the flow graph must have at least one entry in the segment table.)
|
||
|
||
The LCM algorithm is then run over the flow graph to determine where to
|
||
place the sets to the highest-priority value in respect of first the first
|
||
insn in any one block. Any adjustments required to the transparency
|
||
vectors are made, then the next iteration starts for the next-lower
|
||
priority mode, till for each entity all modes are exhausted.
|
||
|
||
More details are located in the code for optimize_mode_switching(). */
|
||
|
||
/* This structure contains the information for each insn which requires
|
||
either single or double mode to be set.
|
||
MODE is the mode this insn must be executed in.
|
||
INSN_PTR is the insn to be executed (may be the note that marks the
|
||
beginning of a basic block).
|
||
BBNUM is the flow graph basic block this insn occurs in.
|
||
NEXT is the next insn in the same basic block. */
|
||
struct seginfo
|
||
{
|
||
int mode;
|
||
rtx insn_ptr;
|
||
int bbnum;
|
||
struct seginfo *next;
|
||
HARD_REG_SET regs_live;
|
||
};
|
||
|
||
struct bb_info
|
||
{
|
||
struct seginfo *seginfo;
|
||
int computing;
|
||
};
|
||
|
||
/* These bitmaps are used for the LCM algorithm. */
|
||
|
||
static sbitmap *antic;
|
||
static sbitmap *transp;
|
||
static sbitmap *comp;
|
||
|
||
static struct seginfo * new_seginfo (int, rtx, int, HARD_REG_SET);
|
||
static void add_seginfo (struct bb_info *, struct seginfo *);
|
||
static void reg_dies (rtx, HARD_REG_SET *);
|
||
static void reg_becomes_live (rtx, rtx, void *);
|
||
static void make_preds_opaque (basic_block, int);
|
||
|
||
|
||
/* This function will allocate a new BBINFO structure, initialized
|
||
with the MODE, INSN, and basic block BB parameters. */
|
||
|
||
static struct seginfo *
|
||
new_seginfo (int mode, rtx insn, int bb, HARD_REG_SET regs_live)
|
||
{
|
||
struct seginfo *ptr;
|
||
ptr = XNEW (struct seginfo);
|
||
ptr->mode = mode;
|
||
ptr->insn_ptr = insn;
|
||
ptr->bbnum = bb;
|
||
ptr->next = NULL;
|
||
COPY_HARD_REG_SET (ptr->regs_live, regs_live);
|
||
return ptr;
|
||
}
|
||
|
||
/* Add a seginfo element to the end of a list.
|
||
HEAD is a pointer to the list beginning.
|
||
INFO is the structure to be linked in. */
|
||
|
||
static void
|
||
add_seginfo (struct bb_info *head, struct seginfo *info)
|
||
{
|
||
struct seginfo *ptr;
|
||
|
||
if (head->seginfo == NULL)
|
||
head->seginfo = info;
|
||
else
|
||
{
|
||
ptr = head->seginfo;
|
||
while (ptr->next != NULL)
|
||
ptr = ptr->next;
|
||
ptr->next = info;
|
||
}
|
||
}
|
||
|
||
/* Make all predecessors of basic block B opaque, recursively, till we hit
|
||
some that are already non-transparent, or an edge where aux is set; that
|
||
denotes that a mode set is to be done on that edge.
|
||
J is the bit number in the bitmaps that corresponds to the entity that
|
||
we are currently handling mode-switching for. */
|
||
|
||
static void
|
||
make_preds_opaque (basic_block b, int j)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, b->preds)
|
||
{
|
||
basic_block pb = e->src;
|
||
|
||
if (e->aux || ! TEST_BIT (transp[pb->index], j))
|
||
continue;
|
||
|
||
RESET_BIT (transp[pb->index], j);
|
||
make_preds_opaque (pb, j);
|
||
}
|
||
}
|
||
|
||
/* Record in LIVE that register REG died. */
|
||
|
||
static void
|
||
reg_dies (rtx reg, HARD_REG_SET *live)
|
||
{
|
||
int regno;
|
||
|
||
if (!REG_P (reg))
|
||
return;
|
||
|
||
regno = REGNO (reg);
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
remove_from_hard_reg_set (live, GET_MODE (reg), regno);
|
||
}
|
||
|
||
/* Record in LIVE that register REG became live.
|
||
This is called via note_stores. */
|
||
|
||
static void
|
||
reg_becomes_live (rtx reg, rtx setter ATTRIBUTE_UNUSED, void *live)
|
||
{
|
||
int regno;
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
|
||
if (!REG_P (reg))
|
||
return;
|
||
|
||
regno = REGNO (reg);
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
|
||
}
|
||
|
||
/* Make sure if MODE_ENTRY is defined the MODE_EXIT is defined
|
||
and vice versa. */
|
||
#if defined (MODE_ENTRY) != defined (MODE_EXIT)
|
||
#error "Both MODE_ENTRY and MODE_EXIT must be defined"
|
||
#endif
|
||
|
||
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
|
||
/* Split the fallthrough edge to the exit block, so that we can note
|
||
that there NORMAL_MODE is required. Return the new block if it's
|
||
inserted before the exit block. Otherwise return null. */
|
||
|
||
static basic_block
|
||
create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
|
||
{
|
||
edge eg;
|
||
edge_iterator ei;
|
||
basic_block pre_exit;
|
||
|
||
/* The only non-call predecessor at this stage is a block with a
|
||
fallthrough edge; there can be at most one, but there could be
|
||
none at all, e.g. when exit is called. */
|
||
pre_exit = 0;
|
||
FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR->preds)
|
||
if (eg->flags & EDGE_FALLTHRU)
|
||
{
|
||
basic_block src_bb = eg->src;
|
||
regset live_at_end = src_bb->il.rtl->global_live_at_end;
|
||
rtx last_insn, ret_reg;
|
||
|
||
gcc_assert (!pre_exit);
|
||
/* If this function returns a value at the end, we have to
|
||
insert the final mode switch before the return value copy
|
||
to its hard register. */
|
||
if (EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 1
|
||
&& NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
|
||
&& GET_CODE (PATTERN (last_insn)) == USE
|
||
&& GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
|
||
{
|
||
int ret_start = REGNO (ret_reg);
|
||
int nregs = hard_regno_nregs[ret_start][GET_MODE (ret_reg)];
|
||
int ret_end = ret_start + nregs;
|
||
int short_block = 0;
|
||
int maybe_builtin_apply = 0;
|
||
int forced_late_switch = 0;
|
||
rtx before_return_copy;
|
||
|
||
do
|
||
{
|
||
rtx return_copy = PREV_INSN (last_insn);
|
||
rtx return_copy_pat, copy_reg;
|
||
int copy_start, copy_num;
|
||
int j;
|
||
|
||
if (INSN_P (return_copy))
|
||
{
|
||
if (GET_CODE (PATTERN (return_copy)) == USE
|
||
&& GET_CODE (XEXP (PATTERN (return_copy), 0)) == REG
|
||
&& (FUNCTION_VALUE_REGNO_P
|
||
(REGNO (XEXP (PATTERN (return_copy), 0)))))
|
||
{
|
||
maybe_builtin_apply = 1;
|
||
last_insn = return_copy;
|
||
continue;
|
||
}
|
||
if (GET_CODE (PATTERN (return_copy)) == ASM_INPUT
|
||
&& strcmp (XSTR (PATTERN (return_copy), 0), "") == 0)
|
||
{
|
||
last_insn = return_copy;
|
||
continue;
|
||
}
|
||
/* If the return register is not (in its entirety)
|
||
likely spilled, the return copy might be
|
||
partially or completely optimized away. */
|
||
return_copy_pat = single_set (return_copy);
|
||
if (!return_copy_pat)
|
||
{
|
||
return_copy_pat = PATTERN (return_copy);
|
||
if (GET_CODE (return_copy_pat) != CLOBBER)
|
||
break;
|
||
}
|
||
copy_reg = SET_DEST (return_copy_pat);
|
||
if (GET_CODE (copy_reg) == REG)
|
||
copy_start = REGNO (copy_reg);
|
||
else if (GET_CODE (copy_reg) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (copy_reg)) == REG)
|
||
copy_start = REGNO (SUBREG_REG (copy_reg));
|
||
else
|
||
break;
|
||
if (copy_start >= FIRST_PSEUDO_REGISTER)
|
||
break;
|
||
copy_num
|
||
= hard_regno_nregs[copy_start][GET_MODE (copy_reg)];
|
||
|
||
/* If the return register is not likely spilled, - as is
|
||
the case for floating point on SH4 - then it might
|
||
be set by an arithmetic operation that needs a
|
||
different mode than the exit block. */
|
||
for (j = n_entities - 1; j >= 0; j--)
|
||
{
|
||
int e = entity_map[j];
|
||
int mode = MODE_NEEDED (e, return_copy);
|
||
|
||
if (mode != num_modes[e] && mode != MODE_EXIT (e))
|
||
break;
|
||
}
|
||
if (j >= 0)
|
||
{
|
||
/* For the SH4, floating point loads depend on fpscr,
|
||
thus we might need to put the final mode switch
|
||
after the return value copy. That is still OK,
|
||
because a floating point return value does not
|
||
conflict with address reloads. */
|
||
if (copy_start >= ret_start
|
||
&& copy_start + copy_num <= ret_end
|
||
&& OBJECT_P (SET_SRC (return_copy_pat)))
|
||
forced_late_switch = 1;
|
||
break;
|
||
}
|
||
|
||
if (copy_start >= ret_start
|
||
&& copy_start + copy_num <= ret_end)
|
||
nregs -= copy_num;
|
||
else if (!maybe_builtin_apply
|
||
|| !FUNCTION_VALUE_REGNO_P (copy_start))
|
||
break;
|
||
last_insn = return_copy;
|
||
}
|
||
/* ??? Exception handling can lead to the return value
|
||
copy being already separated from the return value use,
|
||
as in unwind-dw2.c .
|
||
Similarly, conditionally returning without a value,
|
||
and conditionally using builtin_return can lead to an
|
||
isolated use. */
|
||
if (return_copy == BB_HEAD (src_bb))
|
||
{
|
||
short_block = 1;
|
||
break;
|
||
}
|
||
last_insn = return_copy;
|
||
}
|
||
while (nregs);
|
||
|
||
/* If we didn't see a full return value copy, verify that there
|
||
is a plausible reason for this. If some, but not all of the
|
||
return register is likely spilled, we can expect that there
|
||
is a copy for the likely spilled part. */
|
||
gcc_assert (!nregs
|
||
|| forced_late_switch
|
||
|| short_block
|
||
|| !(CLASS_LIKELY_SPILLED_P
|
||
(REGNO_REG_CLASS (ret_start)))
|
||
|| (nregs
|
||
!= hard_regno_nregs[ret_start][GET_MODE (ret_reg)])
|
||
/* For multi-hard-register floating point
|
||
values, sometimes the likely-spilled part
|
||
is ordinarily copied first, then the other
|
||
part is set with an arithmetic operation.
|
||
This doesn't actually cause reload
|
||
failures, so let it pass. */
|
||
|| (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
|
||
&& nregs != 1));
|
||
|
||
if (INSN_P (last_insn))
|
||
{
|
||
before_return_copy
|
||
= emit_note_before (NOTE_INSN_DELETED, last_insn);
|
||
/* Instructions preceding LAST_INSN in the same block might
|
||
require a different mode than MODE_EXIT, so if we might
|
||
have such instructions, keep them in a separate block
|
||
from pre_exit. */
|
||
if (last_insn != BB_HEAD (src_bb))
|
||
src_bb = split_block (src_bb,
|
||
PREV_INSN (before_return_copy))->dest;
|
||
}
|
||
else
|
||
before_return_copy = last_insn;
|
||
pre_exit = split_block (src_bb, before_return_copy)->src;
|
||
}
|
||
else
|
||
{
|
||
pre_exit = split_edge (eg);
|
||
COPY_REG_SET (pre_exit->il.rtl->global_live_at_start, live_at_end);
|
||
COPY_REG_SET (pre_exit->il.rtl->global_live_at_end, live_at_end);
|
||
}
|
||
}
|
||
|
||
return pre_exit;
|
||
}
|
||
#endif
|
||
|
||
/* Find all insns that need a particular mode setting, and insert the
|
||
necessary mode switches. Return true if we did work. */
|
||
|
||
static int
|
||
optimize_mode_switching (void)
|
||
{
|
||
rtx insn;
|
||
int e;
|
||
basic_block bb;
|
||
int need_commit = 0;
|
||
sbitmap *kill;
|
||
struct edge_list *edge_list;
|
||
static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
|
||
#define N_ENTITIES ARRAY_SIZE (num_modes)
|
||
int entity_map[N_ENTITIES];
|
||
struct bb_info *bb_info[N_ENTITIES];
|
||
int i, j;
|
||
int n_entities;
|
||
int max_num_modes = 0;
|
||
bool emited = false;
|
||
basic_block post_entry ATTRIBUTE_UNUSED, pre_exit ATTRIBUTE_UNUSED;
|
||
|
||
clear_bb_flags ();
|
||
|
||
for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
|
||
if (OPTIMIZE_MODE_SWITCHING (e))
|
||
{
|
||
int entry_exit_extra = 0;
|
||
|
||
/* Create the list of segments within each basic block.
|
||
If NORMAL_MODE is defined, allow for two extra
|
||
blocks split from the entry and exit block. */
|
||
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
|
||
entry_exit_extra = 3;
|
||
#endif
|
||
bb_info[n_entities]
|
||
= XCNEWVEC (struct bb_info, last_basic_block + entry_exit_extra);
|
||
entity_map[n_entities++] = e;
|
||
if (num_modes[e] > max_num_modes)
|
||
max_num_modes = num_modes[e];
|
||
}
|
||
|
||
if (! n_entities)
|
||
return 0;
|
||
|
||
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
|
||
/* Split the edge from the entry block, so that we can note that
|
||
there NORMAL_MODE is supplied. */
|
||
post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
|
||
pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
|
||
#endif
|
||
|
||
/* Create the bitmap vectors. */
|
||
|
||
antic = sbitmap_vector_alloc (last_basic_block, n_entities);
|
||
transp = sbitmap_vector_alloc (last_basic_block, n_entities);
|
||
comp = sbitmap_vector_alloc (last_basic_block, n_entities);
|
||
|
||
sbitmap_vector_ones (transp, last_basic_block);
|
||
|
||
for (j = n_entities - 1; j >= 0; j--)
|
||
{
|
||
int e = entity_map[j];
|
||
int no_mode = num_modes[e];
|
||
struct bb_info *info = bb_info[j];
|
||
|
||
/* Determine what the first use (if any) need for a mode of entity E is.
|
||
This will be the mode that is anticipatable for this block.
|
||
Also compute the initial transparency settings. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
struct seginfo *ptr;
|
||
int last_mode = no_mode;
|
||
HARD_REG_SET live_now;
|
||
|
||
REG_SET_TO_HARD_REG_SET (live_now,
|
||
bb->il.rtl->global_live_at_start);
|
||
|
||
/* Pretend the mode is clobbered across abnormal edges. */
|
||
{
|
||
edge_iterator ei;
|
||
edge e;
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (e->flags & EDGE_COMPLEX)
|
||
break;
|
||
if (e)
|
||
{
|
||
ptr = new_seginfo (no_mode, BB_HEAD (bb), bb->index, live_now);
|
||
add_seginfo (info + bb->index, ptr);
|
||
RESET_BIT (transp[bb->index], j);
|
||
}
|
||
}
|
||
|
||
for (insn = BB_HEAD (bb);
|
||
insn != NULL && insn != NEXT_INSN (BB_END (bb));
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
if (INSN_P (insn))
|
||
{
|
||
int mode = MODE_NEEDED (e, insn);
|
||
rtx link;
|
||
|
||
if (mode != no_mode && mode != last_mode)
|
||
{
|
||
last_mode = mode;
|
||
ptr = new_seginfo (mode, insn, bb->index, live_now);
|
||
add_seginfo (info + bb->index, ptr);
|
||
RESET_BIT (transp[bb->index], j);
|
||
}
|
||
#ifdef MODE_AFTER
|
||
last_mode = MODE_AFTER (last_mode, insn);
|
||
#endif
|
||
/* Update LIVE_NOW. */
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_DEAD)
|
||
reg_dies (XEXP (link, 0), &live_now);
|
||
|
||
note_stores (PATTERN (insn), reg_becomes_live, &live_now);
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_UNUSED)
|
||
reg_dies (XEXP (link, 0), &live_now);
|
||
}
|
||
}
|
||
|
||
info[bb->index].computing = last_mode;
|
||
/* Check for blocks without ANY mode requirements. */
|
||
if (last_mode == no_mode)
|
||
{
|
||
ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
|
||
add_seginfo (info + bb->index, ptr);
|
||
}
|
||
}
|
||
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
|
||
{
|
||
int mode = MODE_ENTRY (e);
|
||
|
||
if (mode != no_mode)
|
||
{
|
||
bb = post_entry;
|
||
|
||
/* By always making this nontransparent, we save
|
||
an extra check in make_preds_opaque. We also
|
||
need this to avoid confusing pre_edge_lcm when
|
||
antic is cleared but transp and comp are set. */
|
||
RESET_BIT (transp[bb->index], j);
|
||
|
||
/* Insert a fake computing definition of MODE into entry
|
||
blocks which compute no mode. This represents the mode on
|
||
entry. */
|
||
info[bb->index].computing = mode;
|
||
|
||
if (pre_exit)
|
||
info[pre_exit->index].seginfo->mode = MODE_EXIT (e);
|
||
}
|
||
}
|
||
#endif /* NORMAL_MODE */
|
||
}
|
||
|
||
kill = sbitmap_vector_alloc (last_basic_block, n_entities);
|
||
for (i = 0; i < max_num_modes; i++)
|
||
{
|
||
int current_mode[N_ENTITIES];
|
||
sbitmap *delete;
|
||
sbitmap *insert;
|
||
|
||
/* Set the anticipatable and computing arrays. */
|
||
sbitmap_vector_zero (antic, last_basic_block);
|
||
sbitmap_vector_zero (comp, last_basic_block);
|
||
for (j = n_entities - 1; j >= 0; j--)
|
||
{
|
||
int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
|
||
struct bb_info *info = bb_info[j];
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
if (info[bb->index].seginfo->mode == m)
|
||
SET_BIT (antic[bb->index], j);
|
||
|
||
if (info[bb->index].computing == m)
|
||
SET_BIT (comp[bb->index], j);
|
||
}
|
||
}
|
||
|
||
/* Calculate the optimal locations for the
|
||
placement mode switches to modes with priority I. */
|
||
|
||
FOR_EACH_BB (bb)
|
||
sbitmap_not (kill[bb->index], transp[bb->index]);
|
||
edge_list = pre_edge_lcm (n_entities, transp, comp, antic,
|
||
kill, &insert, &delete);
|
||
|
||
for (j = n_entities - 1; j >= 0; j--)
|
||
{
|
||
/* Insert all mode sets that have been inserted by lcm. */
|
||
int no_mode = num_modes[entity_map[j]];
|
||
|
||
/* Wherever we have moved a mode setting upwards in the flow graph,
|
||
the blocks between the new setting site and the now redundant
|
||
computation ceases to be transparent for any lower-priority
|
||
mode of the same entity. First set the aux field of each
|
||
insertion site edge non-transparent, then propagate the new
|
||
non-transparency from the redundant computation upwards till
|
||
we hit an insertion site or an already non-transparent block. */
|
||
for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
|
||
{
|
||
edge eg = INDEX_EDGE (edge_list, e);
|
||
int mode;
|
||
basic_block src_bb;
|
||
HARD_REG_SET live_at_edge;
|
||
rtx mode_set;
|
||
|
||
eg->aux = 0;
|
||
|
||
if (! TEST_BIT (insert[e], j))
|
||
continue;
|
||
|
||
eg->aux = (void *)1;
|
||
|
||
mode = current_mode[j];
|
||
src_bb = eg->src;
|
||
|
||
REG_SET_TO_HARD_REG_SET (live_at_edge,
|
||
src_bb->il.rtl->global_live_at_end);
|
||
|
||
start_sequence ();
|
||
EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
|
||
mode_set = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Do not bother to insert empty sequence. */
|
||
if (mode_set == NULL_RTX)
|
||
continue;
|
||
|
||
/* We should not get an abnormal edge here. */
|
||
gcc_assert (! (eg->flags & EDGE_ABNORMAL));
|
||
|
||
need_commit = 1;
|
||
insert_insn_on_edge (mode_set, eg);
|
||
}
|
||
|
||
FOR_EACH_BB_REVERSE (bb)
|
||
if (TEST_BIT (delete[bb->index], j))
|
||
{
|
||
make_preds_opaque (bb, j);
|
||
/* Cancel the 'deleted' mode set. */
|
||
bb_info[j][bb->index].seginfo->mode = no_mode;
|
||
}
|
||
}
|
||
|
||
sbitmap_vector_free (delete);
|
||
sbitmap_vector_free (insert);
|
||
clear_aux_for_edges ();
|
||
free_edge_list (edge_list);
|
||
}
|
||
|
||
/* Now output the remaining mode sets in all the segments. */
|
||
for (j = n_entities - 1; j >= 0; j--)
|
||
{
|
||
int no_mode = num_modes[entity_map[j]];
|
||
|
||
FOR_EACH_BB_REVERSE (bb)
|
||
{
|
||
struct seginfo *ptr, *next;
|
||
for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
|
||
{
|
||
next = ptr->next;
|
||
if (ptr->mode != no_mode)
|
||
{
|
||
rtx mode_set;
|
||
|
||
start_sequence ();
|
||
EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
|
||
mode_set = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Insert MODE_SET only if it is nonempty. */
|
||
if (mode_set != NULL_RTX)
|
||
{
|
||
emited = true;
|
||
if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
|
||
emit_insn_after (mode_set, ptr->insn_ptr);
|
||
else
|
||
emit_insn_before (mode_set, ptr->insn_ptr);
|
||
}
|
||
}
|
||
|
||
free (ptr);
|
||
}
|
||
}
|
||
|
||
free (bb_info[j]);
|
||
}
|
||
|
||
/* Finished. Free up all the things we've allocated. */
|
||
|
||
sbitmap_vector_free (kill);
|
||
sbitmap_vector_free (antic);
|
||
sbitmap_vector_free (transp);
|
||
sbitmap_vector_free (comp);
|
||
|
||
if (need_commit)
|
||
commit_edge_insertions ();
|
||
|
||
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
|
||
cleanup_cfg (CLEANUP_NO_INSN_DEL);
|
||
#else
|
||
if (!need_commit && !emited)
|
||
return 0;
|
||
#endif
|
||
|
||
max_regno = max_reg_num ();
|
||
allocate_reg_info (max_regno, FALSE, FALSE);
|
||
update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
|
||
(PROP_DEATH_NOTES | PROP_KILL_DEAD_CODE
|
||
| PROP_SCAN_DEAD_CODE));
|
||
|
||
return 1;
|
||
}
|
||
|
||
#endif /* OPTIMIZE_MODE_SWITCHING */
|
||
|
||
static bool
|
||
gate_mode_switching (void)
|
||
{
|
||
#ifdef OPTIMIZE_MODE_SWITCHING
|
||
return true;
|
||
#else
|
||
return false;
|
||
#endif
|
||
}
|
||
|
||
static unsigned int
|
||
rest_of_handle_mode_switching (void)
|
||
{
|
||
#ifdef OPTIMIZE_MODE_SWITCHING
|
||
no_new_pseudos = 0;
|
||
optimize_mode_switching ();
|
||
no_new_pseudos = 1;
|
||
#endif /* OPTIMIZE_MODE_SWITCHING */
|
||
return 0;
|
||
}
|
||
|
||
|
||
struct tree_opt_pass pass_mode_switching =
|
||
{
|
||
"mode-sw", /* name */
|
||
gate_mode_switching, /* gate */
|
||
rest_of_handle_mode_switching, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_MODE_SWITCH, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|