gcc/gcc/lcm.c
Alexandre Oliva e8eacc3f8c lcm.c (compute_earliest): Let EXIT_BLOCK be handled as a regular basic block.
* lcm.c (compute_earliest): Let EXIT_BLOCK be handled as a regular
basic block.
(optimize_mode_switching) [NORMAL_MODE]: Set up EXIT_BLOCK as a
regular basic block, and arrange for all edges into it to switch
to normal mode.

From-SVN: r39594
2001-02-12 06:18:44 +00:00

1385 lines
42 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Generic partial redundancy elimination with lazy code motion support.
Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* These routines are meant to be used by various optimization
passes which can be modeled as lazy code motion problems.
Including, but not limited to:
* Traditional partial redundancy elimination.
* Placement of caller/caller register save/restores.
* Load/store motion.
* Copy motion.
* Conversion of flat register files to a stacked register
model.
* Dead load/store elimination.
These routines accept as input:
* Basic block information (number of blocks, lists of
predecessors and successors). Note the granularity
does not need to be basic block, they could be statements
or functions.
* Bitmaps of local properties (computed, transparent and
anticipatable expressions).
The output of these routines is bitmap of redundant computations
and a bitmap of optimal placement points. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
#include "tm_p.h"
/* We want target macros for the mode switching code to be able to refer
to instruction attribute values. */
#include "insn-attr.h"
/* Edge based LCM routines. */
static void compute_antinout_edge PARAMS ((sbitmap *, sbitmap *,
sbitmap *, sbitmap *));
static void compute_earliest PARAMS ((struct edge_list *, int,
sbitmap *, sbitmap *,
sbitmap *, sbitmap *,
sbitmap *));
static void compute_laterin PARAMS ((struct edge_list *, sbitmap *,
sbitmap *, sbitmap *,
sbitmap *));
static void compute_insert_delete PARAMS ((struct edge_list *edge_list,
sbitmap *, sbitmap *,
sbitmap *, sbitmap *,
sbitmap *));
/* Edge based LCM routines on a reverse flowgraph. */
static void compute_farthest PARAMS ((struct edge_list *, int,
sbitmap *, sbitmap *,
sbitmap*, sbitmap *,
sbitmap *));
static void compute_nearerout PARAMS ((struct edge_list *, sbitmap *,
sbitmap *, sbitmap *,
sbitmap *));
static void compute_rev_insert_delete PARAMS ((struct edge_list *edge_list,
sbitmap *, sbitmap *,
sbitmap *, sbitmap *,
sbitmap *));
/* Edge based lcm routines. */
/* Compute expression anticipatability at entrance and exit of each block.
This is done based on the flow graph, and not on the pred-succ lists.
Other than that, its pretty much identical to compute_antinout. */
static void
compute_antinout_edge (antloc, transp, antin, antout)
sbitmap *antloc;
sbitmap *transp;
sbitmap *antin;
sbitmap *antout;
{
int bb;
edge e;
basic_block *worklist, *qin, *qout, *qend;
unsigned int qlen;
/* Allocate a worklist array/queue. Entries are only added to the
list if they were not already on the list. So the size is
bounded by the number of basic blocks. */
qin = qout = worklist
= (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks);
/* We want a maximal solution, so make an optimistic initialization of
ANTIN. */
sbitmap_vector_ones (antin, n_basic_blocks);
/* Put every block on the worklist; this is necessary because of the
optimistic initialization of ANTIN above. */
for (bb = n_basic_blocks - 1; bb >= 0; bb--)
{
*qin++ = BASIC_BLOCK (bb);
BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb);
}
qin = worklist;
qend = &worklist[n_basic_blocks];
qlen = n_basic_blocks;
/* Mark blocks which are predecessors of the exit block so that we
can easily identify them below. */
for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
e->src->aux = EXIT_BLOCK_PTR;
/* Iterate until the worklist is empty. */
while (qlen)
{
/* Take the first entry off the worklist. */
basic_block b = *qout++;
bb = b->index;
qlen--;
if (qout >= qend)
qout = worklist;
if (b->aux == EXIT_BLOCK_PTR)
/* Do not clear the aux field for blocks which are predecessors of
the EXIT block. That way we never add then to the worklist
again. */
sbitmap_zero (antout[bb]);
else
{
/* Clear the aux field of this block so that it can be added to
the worklist again if necessary. */
b->aux = NULL;
sbitmap_intersection_of_succs (antout[bb], antin, bb);
}
if (sbitmap_a_or_b_and_c (antin[bb], antloc[bb], transp[bb], antout[bb]))
/* If the in state of this block changed, then we need
to add the predecessors of this block to the worklist
if they are not already on the worklist. */
for (e = b->pred; e; e = e->pred_next)
if (!e->src->aux && e->src != ENTRY_BLOCK_PTR)
{
*qin++ = e->src;
e->src->aux = e;
qlen++;
if (qin >= qend)
qin = worklist;
}
}
free (worklist);
}
/* Compute the earliest vector for edge based lcm. */
static void
compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest)
struct edge_list *edge_list;
int n_exprs;
sbitmap *antin, *antout, *avout, *kill, *earliest;
{
sbitmap difference, temp_bitmap;
int x, num_edges;
basic_block pred, succ;
num_edges = NUM_EDGES (edge_list);
difference = sbitmap_alloc (n_exprs);
temp_bitmap = sbitmap_alloc (n_exprs);
for (x = 0; x < num_edges; x++)
{
pred = INDEX_EDGE_PRED_BB (edge_list, x);
succ = INDEX_EDGE_SUCC_BB (edge_list, x);
if (pred == ENTRY_BLOCK_PTR)
sbitmap_copy (earliest[x], antin[succ->index]);
else
{
/* We refer to the EXIT_BLOCK index, instead of testing for
EXIT_BLOCK_PTR, so that EXIT_BLOCK_PTR's index can be
changed so as to pretend it's a regular block, so that
its antin can be taken into account. */
if (succ->index == EXIT_BLOCK)
sbitmap_zero (earliest[x]);
else
{
sbitmap_difference (difference, antin[succ->index],
avout[pred->index]);
sbitmap_not (temp_bitmap, antout[pred->index]);
sbitmap_a_and_b_or_c (earliest[x], difference,
kill[pred->index], temp_bitmap);
}
}
}
free (temp_bitmap);
free (difference);
}
/* later(p,s) is dependent on the calculation of laterin(p).
laterin(p) is dependent on the calculation of later(p2,p).
laterin(ENTRY) is defined as all 0's
later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
If we progress in this manner, starting with all basic blocks
in the work list, anytime we change later(bb), we need to add
succs(bb) to the worklist if they are not already on the worklist.
Boundary conditions:
We prime the worklist all the normal basic blocks. The ENTRY block can
never be added to the worklist since it is never the successor of any
block. We explicitly prevent the EXIT block from being added to the
worklist.
We optimistically initialize LATER. That is the only time this routine
will compute LATER for an edge out of the entry block since the entry
block is never on the worklist. Thus, LATERIN is neither used nor
computed for the ENTRY block.
Since the EXIT block is never added to the worklist, we will neither
use nor compute LATERIN for the exit block. Edges which reach the
EXIT block are handled in the normal fashion inside the loop. However,
the insertion/deletion computation needs LATERIN(EXIT), so we have
to compute it. */
static void
compute_laterin (edge_list, earliest, antloc, later, laterin)
struct edge_list *edge_list;
sbitmap *earliest, *antloc, *later, *laterin;
{
int bb, num_edges, i;
edge e;
basic_block *worklist, *qin, *qout, *qend;
unsigned int qlen;
num_edges = NUM_EDGES (edge_list);
/* Allocate a worklist array/queue. Entries are only added to the
list if they were not already on the list. So the size is
bounded by the number of basic blocks. */
qin = qout = worklist
= (basic_block *) xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
/* Initialize a mapping from each edge to its index. */
for (i = 0; i < num_edges; i++)
INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
/* We want a maximal solution, so initially consider LATER true for
all edges. This allows propagation through a loop since the incoming
loop edge will have LATER set, so if all the other incoming edges
to the loop are set, then LATERIN will be set for the head of the
loop.
If the optimistic setting of LATER on that edge was incorrect (for
example the expression is ANTLOC in a block within the loop) then
this algorithm will detect it when we process the block at the head
of the optimistic edge. That will requeue the affected blocks. */
sbitmap_vector_ones (later, num_edges);
/* Note that even though we want an optimistic setting of LATER, we
do not want to be overly optimistic. Consider an outgoing edge from
the entry block. That edge should always have a LATER value the
same as EARLIEST for that edge. */
for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
/* Add all the blocks to the worklist. This prevents an early exit from
the loop given our optimistic initialization of LATER above. */
for (bb = 0; bb < n_basic_blocks; bb++)
{
basic_block b = BASIC_BLOCK (bb);
*qin++ = b;
b->aux = b;
}
qin = worklist;
/* Note that we do not use the last allocated element for our queue,
as EXIT_BLOCK is never inserted into it. In fact the above allocation
of n_basic_blocks + 1 elements is not encessary. */
qend = &worklist[n_basic_blocks];
qlen = n_basic_blocks;
/* Iterate until the worklist is empty. */
while (qlen)
{
/* Take the first entry off the worklist. */
basic_block b = *qout++;
b->aux = NULL;
qlen--;
if (qout >= qend)
qout = worklist;
/* Compute the intersection of LATERIN for each incoming edge to B. */
bb = b->index;
sbitmap_ones (laterin[bb]);
for (e = b->pred; e != NULL; e = e->pred_next)
sbitmap_a_and_b (laterin[bb], laterin[bb], later[(size_t)e->aux]);
/* Calculate LATER for all outgoing edges. */
for (e = b->succ; e != NULL; e = e->succ_next)
if (sbitmap_union_of_diff (later[(size_t) e->aux],
earliest[(size_t) e->aux],
laterin[e->src->index],
antloc[e->src->index])
/* If LATER for an outgoing edge was changed, then we need
to add the target of the outgoing edge to the worklist. */
&& e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0)
{
*qin++ = e->dest;
e->dest->aux = e;
qlen++;
if (qin >= qend)
qin = worklist;
}
}
/* Computation of insertion and deletion points requires computing LATERIN
for the EXIT block. We allocated an extra entry in the LATERIN array
for just this purpose. */
sbitmap_ones (laterin[n_basic_blocks]);
for (e = EXIT_BLOCK_PTR->pred; e != NULL; e = e->pred_next)
sbitmap_a_and_b (laterin[n_basic_blocks],
laterin[n_basic_blocks],
later[(size_t) e->aux]);
free (worklist);
}
/* Compute the insertion and deletion points for edge based LCM. */
static void
compute_insert_delete (edge_list, antloc, later, laterin,
insert, delete)
struct edge_list *edge_list;
sbitmap *antloc, *later, *laterin, *insert, *delete;
{
int x;
for (x = 0; x < n_basic_blocks; x++)
sbitmap_difference (delete[x], antloc[x], laterin[x]);
for (x = 0; x < NUM_EDGES (edge_list); x++)
{
basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
if (b == EXIT_BLOCK_PTR)
sbitmap_difference (insert[x], later[x], laterin[n_basic_blocks]);
else
sbitmap_difference (insert[x], later[x], laterin[b->index]);
}
}
/* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
delete vectors for edge based LCM. Returns an edgelist which is used to
map the insert vector to what edge an expression should be inserted on. */
struct edge_list *
pre_edge_lcm (file, n_exprs, transp, avloc, antloc, kill, insert, delete)
FILE *file ATTRIBUTE_UNUSED;
int n_exprs;
sbitmap *transp;
sbitmap *avloc;
sbitmap *antloc;
sbitmap *kill;
sbitmap **insert;
sbitmap **delete;
{
sbitmap *antin, *antout, *earliest;
sbitmap *avin, *avout;
sbitmap *later, *laterin;
struct edge_list *edge_list;
int num_edges;
edge_list = create_edge_list ();
num_edges = NUM_EDGES (edge_list);
#ifdef LCM_DEBUG_INFO
if (file)
{
fprintf (file, "Edge List:\n");
verify_edge_list (file, edge_list);
print_edge_list (file, edge_list);
dump_sbitmap_vector (file, "transp", "", transp, n_basic_blocks);
dump_sbitmap_vector (file, "antloc", "", antloc, n_basic_blocks);
dump_sbitmap_vector (file, "avloc", "", avloc, n_basic_blocks);
dump_sbitmap_vector (file, "kill", "", kill, n_basic_blocks);
}
#endif
/* Compute global availability. */
avin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
avout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
compute_available (avloc, kill, avout, avin);
free (avin);
/* Compute global anticipatability. */
antin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
antout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
compute_antinout_edge (antloc, transp, antin, antout);
#ifdef LCM_DEBUG_INFO
if (file)
{
dump_sbitmap_vector (file, "antin", "", antin, n_basic_blocks);
dump_sbitmap_vector (file, "antout", "", antout, n_basic_blocks);
}
#endif
/* Compute earliestness. */
earliest = sbitmap_vector_alloc (num_edges, n_exprs);
compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
#ifdef LCM_DEBUG_INFO
if (file)
dump_sbitmap_vector (file, "earliest", "", earliest, num_edges);
#endif
free (antout);
free (antin);
free (avout);
later = sbitmap_vector_alloc (num_edges, n_exprs);
/* Allocate an extra element for the exit block in the laterin vector. */
laterin = sbitmap_vector_alloc (n_basic_blocks + 1, n_exprs);
compute_laterin (edge_list, earliest, antloc, later, laterin);
#ifdef LCM_DEBUG_INFO
if (file)
{
dump_sbitmap_vector (file, "laterin", "", laterin, n_basic_blocks + 1);
dump_sbitmap_vector (file, "later", "", later, num_edges);
}
#endif
free (earliest);
*insert = sbitmap_vector_alloc (num_edges, n_exprs);
*delete = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
compute_insert_delete (edge_list, antloc, later, laterin, *insert, *delete);
free (laterin);
free (later);
#ifdef LCM_DEBUG_INFO
if (file)
{
dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges);
dump_sbitmap_vector (file, "pre_delete_map", "", *delete,
n_basic_blocks);
}
#endif
return edge_list;
}
/* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
Return the number of passes we performed to iterate to a solution. */
void
compute_available (avloc, kill, avout, avin)
sbitmap *avloc, *kill, *avout, *avin;
{
int bb;
edge e;
basic_block *worklist, *qin, *qout, *qend;
unsigned int qlen;
/* Allocate a worklist array/queue. Entries are only added to the
list if they were not already on the list. So the size is
bounded by the number of basic blocks. */
qin = qout = worklist
= (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks);
/* We want a maximal solution. */
sbitmap_vector_ones (avout, n_basic_blocks);
/* Put every block on the worklist; this is necessary because of the
optimistic initialization of AVOUT above. */
for (bb = 0; bb < n_basic_blocks; bb++)
{
*qin++ = BASIC_BLOCK (bb);
BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb);
}
qin = worklist;
qend = &worklist[n_basic_blocks];
qlen = n_basic_blocks;
/* Mark blocks which are successors of the entry block so that we
can easily identify them below. */
for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
e->dest->aux = ENTRY_BLOCK_PTR;
/* Iterate until the worklist is empty. */
while (qlen)
{
/* Take the first entry off the worklist. */
basic_block b = *qout++;
bb = b->index;
qlen--;
if (qout >= qend)
qout = worklist;
/* If one of the predecessor blocks is the ENTRY block, then the
intersection of avouts is the null set. We can identify such blocks
by the special value in the AUX field in the block structure. */
if (b->aux == ENTRY_BLOCK_PTR)
/* Do not clear the aux field for blocks which are successors of the
ENTRY block. That way we never add then to the worklist again. */
sbitmap_zero (avin[bb]);
else
{
/* Clear the aux field of this block so that it can be added to
the worklist again if necessary. */
b->aux = NULL;
sbitmap_intersection_of_preds (avin[bb], avout, bb);
}
if (sbitmap_union_of_diff (avout[bb], avloc[bb], avin[bb], kill[bb]))
/* If the out state of this block changed, then we need
to add the successors of this block to the worklist
if they are not already on the worklist. */
for (e = b->succ; e; e = e->succ_next)
if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR)
{
*qin++ = e->dest;
e->dest->aux = e;
qlen++;
if (qin >= qend)
qin = worklist;
}
}
free (worklist);
}
/* Compute the farthest vector for edge based lcm. */
static void
compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
kill, farthest)
struct edge_list *edge_list;
int n_exprs;
sbitmap *st_avout, *st_avin, *st_antin, *kill, *farthest;
{
sbitmap difference, temp_bitmap;
int x, num_edges;
basic_block pred, succ;
num_edges = NUM_EDGES (edge_list);
difference = sbitmap_alloc (n_exprs);
temp_bitmap = sbitmap_alloc (n_exprs);
for (x = 0; x < num_edges; x++)
{
pred = INDEX_EDGE_PRED_BB (edge_list, x);
succ = INDEX_EDGE_SUCC_BB (edge_list, x);
if (succ == EXIT_BLOCK_PTR)
sbitmap_copy (farthest[x], st_avout[pred->index]);
else
{
if (pred == ENTRY_BLOCK_PTR)
sbitmap_zero (farthest[x]);
else
{
sbitmap_difference (difference, st_avout[pred->index],
st_antin[succ->index]);
sbitmap_not (temp_bitmap, st_avin[succ->index]);
sbitmap_a_and_b_or_c (farthest[x], difference,
kill[succ->index], temp_bitmap);
}
}
}
free (temp_bitmap);
free (difference);
}
/* Compute nearer and nearerout vectors for edge based lcm.
This is the mirror of compute_laterin, additional comments on the
implementation can be found before compute_laterin. */
static void
compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout)
struct edge_list *edge_list;
sbitmap *farthest, *st_avloc, *nearer, *nearerout;
{
int bb, num_edges, i;
edge e;
basic_block *worklist, *tos;
num_edges = NUM_EDGES (edge_list);
/* Allocate a worklist array/queue. Entries are only added to the
list if they were not already on the list. So the size is
bounded by the number of basic blocks. */
tos = worklist
= (basic_block *) xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
/* Initialize NEARER for each edge and build a mapping from an edge to
its index. */
for (i = 0; i < num_edges; i++)
INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
/* We want a maximal solution. */
sbitmap_vector_ones (nearer, num_edges);
/* Note that even though we want an optimistic setting of NEARER, we
do not want to be overly optimistic. Consider an incoming edge to
the exit block. That edge should always have a NEARER value the
same as FARTHEST for that edge. */
for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
/* Add all the blocks to the worklist. This prevents an early exit
from the loop given our optimistic initialization of NEARER. */
for (bb = 0; bb < n_basic_blocks; bb++)
{
basic_block b = BASIC_BLOCK (bb);
*tos++ = b;
b->aux = b;
}
/* Iterate until the worklist is empty. */
while (tos != worklist)
{
/* Take the first entry off the worklist. */
basic_block b = *--tos;
b->aux = NULL;
/* Compute the intersection of NEARER for each outgoing edge from B. */
bb = b->index;
sbitmap_ones (nearerout[bb]);
for (e = b->succ; e != NULL; e = e->succ_next)
sbitmap_a_and_b (nearerout[bb], nearerout[bb],
nearer[(size_t) e->aux]);
/* Calculate NEARER for all incoming edges. */
for (e = b->pred; e != NULL; e = e->pred_next)
if (sbitmap_union_of_diff (nearer[(size_t) e->aux],
farthest[(size_t) e->aux],
nearerout[e->dest->index],
st_avloc[e->dest->index])
/* If NEARER for an incoming edge was changed, then we need
to add the source of the incoming edge to the worklist. */
&& e->src != ENTRY_BLOCK_PTR && e->src->aux == 0)
{
*tos++ = e->src;
e->src->aux = e;
}
}
/* Computation of insertion and deletion points requires computing NEAREROUT
for the ENTRY block. We allocated an extra entry in the NEAREROUT array
for just this purpose. */
sbitmap_ones (nearerout[n_basic_blocks]);
for (e = ENTRY_BLOCK_PTR->succ; e != NULL; e = e->succ_next)
sbitmap_a_and_b (nearerout[n_basic_blocks],
nearerout[n_basic_blocks],
nearer[(size_t) e->aux]);
free (tos);
}
/* Compute the insertion and deletion points for edge based LCM. */
static void
compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
insert, delete)
struct edge_list *edge_list;
sbitmap *st_avloc, *nearer, *nearerout, *insert, *delete;
{
int x;
for (x = 0; x < n_basic_blocks; x++)
sbitmap_difference (delete[x], st_avloc[x], nearerout[x]);
for (x = 0; x < NUM_EDGES (edge_list); x++)
{
basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
if (b == ENTRY_BLOCK_PTR)
sbitmap_difference (insert[x], nearer[x], nearerout[n_basic_blocks]);
else
sbitmap_difference (insert[x], nearer[x], nearerout[b->index]);
}
}
/* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
insert and delete vectors for edge based reverse LCM. Returns an
edgelist which is used to map the insert vector to what edge
an expression should be inserted on. */
struct edge_list *
pre_edge_rev_lcm (file, n_exprs, transp, st_avloc, st_antloc, kill,
insert, delete)
FILE *file ATTRIBUTE_UNUSED;
int n_exprs;
sbitmap *transp;
sbitmap *st_avloc;
sbitmap *st_antloc;
sbitmap *kill;
sbitmap **insert;
sbitmap **delete;
{
sbitmap *st_antin, *st_antout;
sbitmap *st_avout, *st_avin, *farthest;
sbitmap *nearer, *nearerout;
struct edge_list *edge_list;
int num_edges;
edge_list = create_edge_list ();
num_edges = NUM_EDGES (edge_list);
st_antin = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, n_exprs);
st_antout = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, n_exprs);
sbitmap_vector_zero (st_antin, n_basic_blocks);
sbitmap_vector_zero (st_antout, n_basic_blocks);
compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
/* Compute global anticipatability. */
st_avout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
st_avin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
compute_available (st_avloc, kill, st_avout, st_avin);
#ifdef LCM_DEBUG_INFO
if (file)
{
fprintf (file, "Edge List:\n");
verify_edge_list (file, edge_list);
print_edge_list (file, edge_list);
dump_sbitmap_vector (file, "transp", "", transp, n_basic_blocks);
dump_sbitmap_vector (file, "st_avloc", "", st_avloc, n_basic_blocks);
dump_sbitmap_vector (file, "st_antloc", "", st_antloc, n_basic_blocks);
dump_sbitmap_vector (file, "st_antin", "", st_antin, n_basic_blocks);
dump_sbitmap_vector (file, "st_antout", "", st_antout, n_basic_blocks);
dump_sbitmap_vector (file, "st_kill", "", kill, n_basic_blocks);
}
#endif
#ifdef LCM_DEBUG_INFO
if (file)
{
dump_sbitmap_vector (file, "st_avout", "", st_avout, n_basic_blocks);
dump_sbitmap_vector (file, "st_avin", "", st_avin, n_basic_blocks);
}
#endif
/* Compute farthestness. */
farthest = sbitmap_vector_alloc (num_edges, n_exprs);
compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
kill, farthest);
#ifdef LCM_DEBUG_INFO
if (file)
dump_sbitmap_vector (file, "farthest", "", farthest, num_edges);
#endif
free (st_avin);
free (st_avout);
nearer = sbitmap_vector_alloc (num_edges, n_exprs);
/* Allocate an extra element for the entry block. */
nearerout = sbitmap_vector_alloc (n_basic_blocks + 1, n_exprs);
compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
#ifdef LCM_DEBUG_INFO
if (file)
{
dump_sbitmap_vector (file, "nearerout", "", nearerout,
n_basic_blocks + 1);
dump_sbitmap_vector (file, "nearer", "", nearer, num_edges);
}
#endif
free (farthest);
*insert = sbitmap_vector_alloc (num_edges, n_exprs);
*delete = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
*insert, *delete);
free (nearerout);
free (nearer);
#ifdef LCM_DEBUG_INFO
if (file)
{
dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges);
dump_sbitmap_vector (file, "pre_delete_map", "", *delete,
n_basic_blocks);
}
#endif
return edge_list;
}
/* Mode switching:
The algorithm for setting the modes consists of scanning the insn list
and finding all the insns which require a specific mode. Each insn gets
a unique struct seginfo element. These structures are inserted into a list
for each basic block. For each entity, there is an array of bb_info over
the flow graph basic blocks (local var 'bb_info'), and contains a list
of all insns within that basic block, in the order they are encountered.
For each entity, any basic block WITHOUT any insns requiring a specific
mode are given a single entry, without a mode. (Each basic block
in the flow graph must have at least one entry in the segment table.)
The LCM algorithm is then run over the flow graph to determine where to
place the sets to the highest-priority value in respect of first the first
insn in any one block. Any adjustments required to the transparancy
vectors are made, then the next iteration starts for the next-lower
priority mode, till for each entity all modes are exhasted.
More details are located in the code for optimize_mode_switching(). */
/* This structure contains the information for each insn which requires
either single or double mode to be set.
MODE is the mode this insn must be executed in.
INSN_PTR is the insn to be executed (may be the note that marks the
beginning of a basic block).
BBNUM is the flow graph basic block this insn occurs in.
NEXT is the next insn in the same basic block. */
struct seginfo
{
int mode;
rtx insn_ptr;
int bbnum;
struct seginfo *next;
HARD_REG_SET regs_live;
};
struct bb_info
{
struct seginfo *seginfo;
int computing;
};
/* These bitmaps are used for the LCM algorithm. */
#ifdef OPTIMIZE_MODE_SWITCHING
static sbitmap *antic;
static sbitmap *transp;
static sbitmap *comp;
static sbitmap *delete;
static sbitmap *insert;
static struct seginfo * new_seginfo PARAMS ((int, rtx, int, HARD_REG_SET));
static void add_seginfo PARAMS ((struct bb_info *, struct seginfo *));
static void reg_dies PARAMS ((rtx, HARD_REG_SET));
static void reg_becomes_live PARAMS ((rtx, rtx, void *));
static void make_preds_opaque PARAMS ((basic_block, int));
#endif
#ifdef OPTIMIZE_MODE_SWITCHING
/* This function will allocate a new BBINFO structure, initialized
with the MODE, INSN, and basic block BB parameters. */
static struct seginfo *
new_seginfo (mode, insn, bb, regs_live)
int mode;
rtx insn;
int bb;
HARD_REG_SET regs_live;
{
struct seginfo *ptr;
ptr = xmalloc (sizeof (struct seginfo));
ptr->mode = mode;
ptr->insn_ptr = insn;
ptr->bbnum = bb;
ptr->next = NULL;
COPY_HARD_REG_SET (ptr->regs_live, regs_live);
return ptr;
}
/* Add a seginfo element to the end of a list.
HEAD is a pointer to the list beginning.
INFO is the structure to be linked in. */
static void
add_seginfo (head, info)
struct bb_info *head;
struct seginfo *info;
{
struct seginfo *ptr;
if (head->seginfo == NULL)
head->seginfo = info;
else
{
ptr = head->seginfo;
while (ptr->next != NULL)
ptr = ptr->next;
ptr->next = info;
}
}
/* Make all predecessors of basic block B opaque, recursively, till we hit
some that are already non-transparent, or an edge where aux is set; that
denotes that a mode set is to be done on that edge.
J is the bit number in the bitmaps that corresponds to the entity that
we are currently handling mode-switching for. */
static void
make_preds_opaque (b, j)
basic_block b;
int j;
{
edge e;
for (e = b->pred; e; e = e->pred_next)
{
basic_block pb = e->src;
if (e->aux || ! TEST_BIT (transp[pb->index], j))
continue;
RESET_BIT (transp[pb->index], j);
make_preds_opaque (pb, j);
}
}
/* Record in LIVE that register REG died. */
static void
reg_dies (reg, live)
rtx reg;
HARD_REG_SET live;
{
int regno, nregs;
if (GET_CODE (reg) != REG)
return;
regno = REGNO (reg);
if (regno < FIRST_PSEUDO_REGISTER)
for (nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; nregs >= 0;
nregs--)
CLEAR_HARD_REG_BIT (live, regno + nregs);
}
/* Record in LIVE that register REG became live.
This is called via note_stores. */
static void
reg_becomes_live (reg, setter, live)
rtx reg;
rtx setter ATTRIBUTE_UNUSED;
void *live;
{
int regno, nregs;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (GET_CODE (reg) != REG)
return;
regno = REGNO (reg);
if (regno < FIRST_PSEUDO_REGISTER)
for (nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; nregs >= 0;
nregs--)
SET_HARD_REG_BIT (* (HARD_REG_SET *) live, regno + nregs);
}
/* Find all insns that need a particular mode setting, and insert the
necessary mode switches. Return true if we did work. */
int
optimize_mode_switching (file)
FILE *file;
{
rtx insn;
int bb, e;
edge eg;
int need_commit = 0;
sbitmap *kill;
struct edge_list *edge_list;
static int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
#define N_ENTITIES (sizeof num_modes / sizeof (int))
int entity_map[N_ENTITIES];
struct bb_info *bb_info[N_ENTITIES];
int i, j;
int n_entities;
int max_num_modes = 0;
#ifdef NORMAL_MODE
/* Increment n_basic_blocks before allocating bb_info. */
n_basic_blocks++;
#endif
for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
if (OPTIMIZE_MODE_SWITCHING (e))
{
/* Create the list of segments within each basic block. */
bb_info[n_entities]
= (struct bb_info *) xcalloc (n_basic_blocks, sizeof **bb_info);
entity_map[n_entities++] = e;
if (num_modes[e] > max_num_modes)
max_num_modes = num_modes[e];
}
#ifdef NORMAL_MODE
/* Decrement it back in case we return below. */
n_basic_blocks--;
#endif
if (! n_entities)
return 0;
#ifdef NORMAL_MODE
/* We're going to pretend the EXIT_BLOCK is a regular basic block,
so that switching back to normal mode when entering the
EXIT_BLOCK isn't optimized away. We do this by incrementing the
basic block count, growing the VARRAY of basic_block_info and
appending the EXIT_BLOCK_PTR to it. */
n_basic_blocks++;
if (VARRAY_SIZE (basic_block_info) < n_basic_blocks)
VARRAY_GROW (basic_block_info, n_basic_blocks);
BASIC_BLOCK (n_basic_blocks - 1) = EXIT_BLOCK_PTR;
EXIT_BLOCK_PTR->index = n_basic_blocks - 1;
#endif
/* Create the bitmap vectors. */
antic = sbitmap_vector_alloc (n_basic_blocks, n_entities);
transp = sbitmap_vector_alloc (n_basic_blocks, n_entities);
comp = sbitmap_vector_alloc (n_basic_blocks, n_entities);
sbitmap_vector_ones (transp, n_basic_blocks);
for (j = n_entities - 1; j >= 0; j--)
{
int e = entity_map[j];
int no_mode = num_modes[e];
struct bb_info *info = bb_info[j];
/* Determine what the first use (if any) need for a mode of entity E is.
This will be the mode that is anticipatable for this block.
Also compute the initial transparency settings. */
for (bb = 0 ; bb < n_basic_blocks; bb++)
{
struct seginfo *ptr;
int last_mode = no_mode;
HARD_REG_SET live_now;
REG_SET_TO_HARD_REG_SET (live_now,
BASIC_BLOCK (bb)->global_live_at_start);
for (insn = BLOCK_HEAD (bb);
insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
int mode = MODE_NEEDED (e, insn);
rtx link;
if (mode != no_mode && mode != last_mode)
{
last_mode = mode;
ptr = new_seginfo (mode, insn, bb, live_now);
add_seginfo (info + bb, ptr);
RESET_BIT (transp[bb], j);
}
/* Update LIVE_NOW. */
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_DEAD)
reg_dies (XEXP (link, 0), live_now);
note_stores (PATTERN (insn), reg_becomes_live, &live_now);
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_UNUSED)
reg_dies (XEXP (link, 0), live_now);
}
}
info[bb].computing = last_mode;
/* Check for blocks without ANY mode requirements. */
if (last_mode == no_mode)
{
ptr = new_seginfo (no_mode, insn, bb, live_now);
add_seginfo (info + bb, ptr);
}
}
#ifdef NORMAL_MODE
{
int mode = NORMAL_MODE (e);
if (mode != no_mode)
{
for (eg = ENTRY_BLOCK_PTR->succ; eg; eg = eg->succ_next)
{
bb = eg->dest->index;
/* By always making this nontransparent, we save
an extra check in make_preds_opaque. We also
need this to avoid confusing pre_edge_lcm when
antic is cleared but transp and comp are set. */
RESET_BIT (transp[bb], j);
/* If the block already has MODE, pretend it
has none (because we don't need to set it),
but retain whatever mode it computes. */
if (info[bb].seginfo->mode == mode)
info[bb].seginfo->mode = no_mode;
/* Insert a fake computing definition of MODE into entry
blocks which compute no mode. This represents the mode on
entry. */
else if (info[bb].computing == no_mode)
{
info[bb].computing = mode;
info[bb].seginfo->mode = no_mode;
}
}
bb = n_basic_blocks - 1;
info[bb].seginfo->mode = mode;
}
}
#endif /* NORMAL_MODE */
}
kill = sbitmap_vector_alloc (n_basic_blocks, n_entities);
for (i = 0; i < max_num_modes; i++)
{
int current_mode[N_ENTITIES];
/* Set the anticipatable and computing arrays. */
sbitmap_vector_zero (antic, n_basic_blocks);
sbitmap_vector_zero (comp, n_basic_blocks);
for (j = n_entities - 1; j >= 0; j--)
{
int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
struct bb_info *info = bb_info[j];
for (bb = 0 ; bb < n_basic_blocks; bb++)
{
if (info[bb].seginfo->mode == m)
SET_BIT (antic[bb], j);
if (info[bb].computing == m)
SET_BIT (comp[bb], j);
}
}
/* Calculate the optimal locations for the
placement mode switches to modes with priority I. */
for (bb = n_basic_blocks - 1; bb >= 0; bb--)
sbitmap_not (kill[bb], transp[bb]);
edge_list = pre_edge_lcm (file, 1, transp, comp, antic,
kill, &insert, &delete);
for (j = n_entities - 1; j >= 0; j--)
{
/* Insert all mode sets that have been inserted by lcm. */
int no_mode = num_modes[entity_map[j]];
/* Wherever we have moved a mode setting upwards in the flow graph,
the blocks between the new setting site and the now redundant
computation ceases to be transparent for any lower-priority
mode of the same entity. First set the aux field of each
insertion site edge non-transparent, then propagate the new
non-transparency from the redundant computation upwards till
we hit an insertion site or an already non-transparent block. */
for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
{
edge eg = INDEX_EDGE (edge_list, e);
int mode;
basic_block src_bb;
HARD_REG_SET live_at_edge;
rtx mode_set;
eg->aux = 0;
if (! TEST_BIT (insert[e], j))
continue;
eg->aux = (void *)1;
mode = current_mode[j];
src_bb = eg->src;
REG_SET_TO_HARD_REG_SET (live_at_edge,
src_bb->global_live_at_end);
start_sequence ();
EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
mode_set = gen_sequence ();
end_sequence ();
/* If this is an abnormal edge, we'll insert at the end
of the previous block. */
if (eg->flags & EDGE_ABNORMAL)
{
if (GET_CODE (src_bb->end) == JUMP_INSN)
emit_insn_before (mode_set, src_bb->end);
/* It doesn't make sense to switch to normal mode
after a CALL_INSN, so we're going to abort if we
find one. The cases in which a CALL_INSN may
have an abnormal edge are sibcalls and EH edges.
In the case of sibcalls, the dest basic-block is
the EXIT_BLOCK, that runs in normal mode; it is
assumed that a sibcall insn requires normal mode
itself, so no mode switch would be required after
the call (it wouldn't make sense, anyway). In
the case of EH edges, EH entry points also start
in normal mode, so a similar reasoning applies. */
else if (GET_CODE (src_bb->end) == INSN)
src_bb->end = emit_insn_after (mode_set, src_bb->end);
else
abort ();
bb_info[j][src_bb->index].computing = mode;
RESET_BIT (transp[src_bb->index], j);
}
else
{
need_commit = 1;
insert_insn_on_edge (mode_set, eg);
}
}
for (bb = n_basic_blocks - 1; bb >= 0; bb--)
if (TEST_BIT (delete[bb], j))
{
make_preds_opaque (BASIC_BLOCK (bb), j);
/* Cancel the 'deleted' mode set. */
bb_info[j][bb].seginfo->mode = no_mode;
}
}
free_edge_list (edge_list);
}
#ifdef NORMAL_MODE
/* Restore the special status of EXIT_BLOCK. */
n_basic_blocks--;
VARRAY_POP (basic_block_info);
EXIT_BLOCK_PTR->index = EXIT_BLOCK;
#endif
/* Now output the remaining mode sets in all the segments. */
for (j = n_entities - 1; j >= 0; j--)
{
int no_mode = num_modes[entity_map[j]];
#ifdef NORMAL_MODE
if (bb_info[j][n_basic_blocks].seginfo->mode != no_mode)
{
edge eg;
struct seginfo *ptr = bb_info[j][n_basic_blocks].seginfo;
for (eg = EXIT_BLOCK_PTR->pred; eg; eg = eg->pred_next)
{
rtx mode_set;
if (bb_info[j][eg->src->index].computing == ptr->mode)
continue;
start_sequence ();
EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
mode_set = gen_sequence ();
end_sequence ();
/* If this is an abnormal edge, we'll insert at the end of the
previous block. */
if (eg->flags & EDGE_ABNORMAL)
{
if (GET_CODE (eg->src->end) == JUMP_INSN)
emit_insn_before (mode_set, eg->src->end);
else if (GET_CODE (eg->src->end) == INSN)
eg->src->end = emit_insn_after (mode_set, eg->src->end);
else
abort ();
}
else
{
need_commit = 1;
insert_insn_on_edge (mode_set, eg);
}
}
}
#endif
for (bb = n_basic_blocks - 1; bb >= 0; bb--)
{
struct seginfo *ptr, *next;
for (ptr = bb_info[j][bb].seginfo; ptr; ptr = next)
{
next = ptr->next;
if (ptr->mode != no_mode)
{
rtx mode_set;
start_sequence ();
EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
mode_set = gen_sequence ();
end_sequence ();
if (GET_CODE (ptr->insn_ptr) == NOTE
&& (NOTE_LINE_NUMBER (ptr->insn_ptr)
== NOTE_INSN_BASIC_BLOCK))
emit_block_insn_after (mode_set, ptr->insn_ptr,
BASIC_BLOCK (ptr->bbnum));
else
emit_block_insn_before (mode_set, ptr->insn_ptr,
BASIC_BLOCK (ptr->bbnum));
}
free (ptr);
}
}
free (bb_info[j]);
}
/* Finished. Free up all the things we've allocated. */
sbitmap_vector_free (kill);
sbitmap_vector_free (antic);
sbitmap_vector_free (transp);
sbitmap_vector_free (comp);
sbitmap_vector_free (delete);
sbitmap_vector_free (insert);
if (need_commit)
commit_edge_insertions ();
/* Ideally we'd figure out what blocks were affected and start from
there, but this is enormously complicated by commit_edge_insertions,
which would screw up any indicies we'd collected, and also need to
be involved in the update. Bail and recompute global life info for
everything. */
allocate_reg_life_data ();
update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
(PROP_DEATH_NOTES | PROP_KILL_DEAD_CODE
| PROP_SCAN_DEAD_CODE | PROP_REG_INFO));
return 1;
}
#endif /* OPTIMIZE_MODE_SWITCHING */