gcc/libsanitizer/sanitizer_common/sanitizer_rtems.cc
Martin Liska eac9753122 backport: All source files: Merge from upstream 345033.
Merge from upstream 345033.

2018-10-31  Martin Liska  <mliska@suse.cz>

	* All source files: Merge from upstream 345033.

From-SVN: r265665
2018-10-31 11:14:23 +00:00

281 lines
7.5 KiB
C++

//===-- sanitizer_rtems.cc ------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between various sanitizers' runtime libraries and
// implements RTEMS-specific functions.
//===----------------------------------------------------------------------===//
#include "sanitizer_rtems.h"
#if SANITIZER_RTEMS
#define posix_memalign __real_posix_memalign
#define free __real_free
#define memset __real_memset
#include "sanitizer_file.h"
#include "sanitizer_symbolizer.h"
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
// There is no mmap on RTEMS. Use memalign, etc.
#define __mmap_alloc_aligned posix_memalign
#define __mmap_free free
#define __mmap_memset memset
namespace __sanitizer {
#include "sanitizer_syscall_generic.inc"
void NORETURN internal__exit(int exitcode) {
_exit(exitcode);
}
uptr internal_sched_yield() {
return sched_yield();
}
uptr internal_getpid() {
return getpid();
}
bool FileExists(const char *filename) {
struct stat st;
if (stat(filename, &st))
return false;
// Sanity check: filename is a regular file.
return S_ISREG(st.st_mode);
}
uptr GetThreadSelf() { return static_cast<uptr>(pthread_self()); }
tid_t GetTid() { return GetThreadSelf(); }
void Abort() { abort(); }
int Atexit(void (*function)(void)) { return atexit(function); }
void SleepForSeconds(int seconds) { sleep(seconds); }
void SleepForMillis(int millis) { usleep(millis * 1000); }
bool SupportsColoredOutput(fd_t fd) { return false; }
void GetThreadStackTopAndBottom(bool at_initialization,
uptr *stack_top, uptr *stack_bottom) {
pthread_attr_t attr;
pthread_attr_init(&attr);
CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
void *base = nullptr;
size_t size = 0;
CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
CHECK_EQ(pthread_attr_destroy(&attr), 0);
*stack_bottom = reinterpret_cast<uptr>(base);
*stack_top = *stack_bottom + size;
}
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
uptr *tls_addr, uptr *tls_size) {
uptr stack_top, stack_bottom;
GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
*stk_addr = stack_bottom;
*stk_size = stack_top - stack_bottom;
*tls_addr = *tls_size = 0;
}
void MaybeReexec() {}
void CheckASLR() {}
void DisableCoreDumperIfNecessary() {}
void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
void SetAlternateSignalStack() {}
void UnsetAlternateSignalStack() {}
void InitTlsSize() {}
void PrintModuleMap() {}
void SignalContext::DumpAllRegisters(void *context) {}
const char *DescribeSignalOrException(int signo) { UNIMPLEMENTED(); }
enum MutexState { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 };
BlockingMutex::BlockingMutex() {
internal_memset(this, 0, sizeof(*this));
}
void BlockingMutex::Lock() {
CHECK_EQ(owner_, 0);
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
return;
while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) {
internal_sched_yield();
}
}
void BlockingMutex::Unlock() {
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release);
CHECK_NE(v, MtxUnlocked);
}
void BlockingMutex::CheckLocked() {
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
}
uptr GetPageSize() { return getpagesize(); }
uptr GetMmapGranularity() { return GetPageSize(); }
uptr GetMaxVirtualAddress() {
return (1ULL << 32) - 1; // 0xffffffff
}
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
void* ptr = 0;
int res = __mmap_alloc_aligned(&ptr, GetPageSize(), size);
if (UNLIKELY(res))
ReportMmapFailureAndDie(size, mem_type, "allocate", res, raw_report);
__mmap_memset(ptr, 0, size);
IncreaseTotalMmap(size);
return ptr;
}
void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
void* ptr = 0;
int res = __mmap_alloc_aligned(&ptr, GetPageSize(), size);
if (UNLIKELY(res)) {
if (res == ENOMEM)
return nullptr;
ReportMmapFailureAndDie(size, mem_type, "allocate", false);
}
__mmap_memset(ptr, 0, size);
IncreaseTotalMmap(size);
return ptr;
}
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
const char *mem_type) {
CHECK(IsPowerOfTwo(size));
CHECK(IsPowerOfTwo(alignment));
void* ptr = 0;
int res = __mmap_alloc_aligned(&ptr, alignment, size);
if (res)
ReportMmapFailureAndDie(size, mem_type, "align allocate", res, false);
__mmap_memset(ptr, 0, size);
IncreaseTotalMmap(size);
return ptr;
}
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
return MmapOrDie(size, mem_type, false);
}
void UnmapOrDie(void *addr, uptr size) {
if (!addr || !size) return;
__mmap_free(addr);
DecreaseTotalMmap(size);
}
fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *errno_p) {
int flags;
switch (mode) {
case RdOnly: flags = O_RDONLY; break;
case WrOnly: flags = O_WRONLY | O_CREAT | O_TRUNC; break;
case RdWr: flags = O_RDWR | O_CREAT; break;
}
fd_t res = open(filename, flags, 0660);
if (internal_iserror(res, errno_p))
return kInvalidFd;
return res;
}
void CloseFile(fd_t fd) {
close(fd);
}
bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
error_t *error_p) {
uptr res = read(fd, buff, buff_size);
if (internal_iserror(res, error_p))
return false;
if (bytes_read)
*bytes_read = res;
return true;
}
bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
error_t *error_p) {
uptr res = write(fd, buff, buff_size);
if (internal_iserror(res, error_p))
return false;
if (bytes_written)
*bytes_written = res;
return true;
}
bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) {
uptr res = rename(oldpath, newpath);
return !internal_iserror(res, error_p);
}
void ReleaseMemoryPagesToOS(uptr beg, uptr end) {}
void DumpProcessMap() {}
// There is no page protection so everything is "accessible."
bool IsAccessibleMemoryRange(uptr beg, uptr size) {
return true;
}
char **GetArgv() { return nullptr; }
const char *GetEnv(const char *name) {
return getenv(name);
}
uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
internal_strncpy(buf, "StubBinaryName", buf_len);
return internal_strlen(buf);
}
uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
internal_strncpy(buf, "StubProcessName", buf_len);
return internal_strlen(buf);
}
bool IsPathSeparator(const char c) {
return c == '/';
}
bool IsAbsolutePath(const char *path) {
return path != nullptr && IsPathSeparator(path[0]);
}
void ReportFile::Write(const char *buffer, uptr length) {
SpinMutexLock l(mu);
static const char *kWriteError =
"ReportFile::Write() can't output requested buffer!\n";
ReopenIfNecessary();
if (length != write(fd, buffer, length)) {
write(fd, kWriteError, internal_strlen(kWriteError));
Die();
}
}
uptr MainThreadStackBase, MainThreadStackSize;
uptr MainThreadTlsBase, MainThreadTlsSize;
} // namespace __sanitizer
#endif // SANITIZER_RTEMS