gcc/libgo/runtime/go-reflect-call.c
Ian Lance Taylor 5302cd0250 runtime, reflect: rewrite Go to FFI type conversion in Go
As we move toward the Go 1.7 garbage collector, it's essential that all
    allocation of values that can contain Go pointers be done using the
    correct type descriptor.  That is simplest if we do all such allocation
    in Go code.  This rewrites the code that converts from a Go type to a
    libffi CIF into Go.
    
    Reviewed-on: https://go-review.googlesource.com/33353

From-SVN: r242578
2016-11-18 00:15:38 +00:00

259 lines
5.9 KiB
C

/* go-reflect-call.c -- call reflection support for Go.
Copyright 2009 The Go Authors. All rights reserved.
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file. */
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include "runtime.h"
#include "go-alloc.h"
#include "go-assert.h"
#include "go-type.h"
#ifdef USE_LIBFFI
#include "ffi.h"
#endif
#if defined(USE_LIBFFI) && FFI_GO_CLOSURES
/* The functions in this file are only called from reflect_call. As
reflect_call calls a libffi function, which will be compiled
without -fsplit-stack, it will always run with a large stack. */
static size_t go_results_size (const struct __go_func_type *)
__attribute__ ((no_split_stack));
static void go_set_results (const struct __go_func_type *, unsigned char *,
void **)
__attribute__ ((no_split_stack));
/* Get the total size required for the result parameters of a
function. */
static size_t
go_results_size (const struct __go_func_type *func)
{
int count;
const struct __go_type_descriptor **types;
size_t off;
size_t maxalign;
int i;
count = func->__out.__count;
if (count == 0)
return 0;
types = (const struct __go_type_descriptor **) func->__out.__values;
/* A single integer return value is always promoted to a full
word. */
if (count == 1)
{
switch (types[0]->__code & GO_CODE_MASK)
{
case GO_BOOL:
case GO_INT8:
case GO_INT16:
case GO_INT32:
case GO_UINT8:
case GO_UINT16:
case GO_UINT32:
case GO_INT:
case GO_UINT:
return sizeof (ffi_arg);
default:
break;
}
}
off = 0;
maxalign = 0;
for (i = 0; i < count; ++i)
{
size_t align;
align = types[i]->__field_align;
if (align > maxalign)
maxalign = align;
off = (off + align - 1) & ~ (align - 1);
off += types[i]->__size;
}
off = (off + maxalign - 1) & ~ (maxalign - 1);
// The libffi library doesn't understand a struct with no fields.
// We generate a struct with a single field of type void. When used
// as a return value, libffi will think that requires a byte.
if (off == 0)
off = 1;
return off;
}
/* Copy the results of calling a function via FFI from CALL_RESULT
into the addresses in RESULTS. */
static void
go_set_results (const struct __go_func_type *func, unsigned char *call_result,
void **results)
{
int count;
const struct __go_type_descriptor **types;
size_t off;
int i;
count = func->__out.__count;
if (count == 0)
return;
types = (const struct __go_type_descriptor **) func->__out.__values;
/* A single integer return value is always promoted to a full
word. */
if (count == 1)
{
switch (types[0]->__code & GO_CODE_MASK)
{
case GO_BOOL:
case GO_INT8:
case GO_INT16:
case GO_INT32:
case GO_UINT8:
case GO_UINT16:
case GO_UINT32:
case GO_INT:
case GO_UINT:
{
union
{
unsigned char buf[sizeof (ffi_arg)];
ffi_arg v;
} u;
ffi_arg v;
__builtin_memcpy (&u.buf, call_result, sizeof (ffi_arg));
v = u.v;
switch (types[0]->__size)
{
case 1:
{
uint8_t b;
b = (uint8_t) v;
__builtin_memcpy (results[0], &b, 1);
}
break;
case 2:
{
uint16_t s;
s = (uint16_t) v;
__builtin_memcpy (results[0], &s, 2);
}
break;
case 4:
{
uint32_t w;
w = (uint32_t) v;
__builtin_memcpy (results[0], &w, 4);
}
break;
case 8:
{
uint64_t d;
d = (uint64_t) v;
__builtin_memcpy (results[0], &d, 8);
}
break;
default:
abort ();
}
}
return;
default:
break;
}
}
off = 0;
for (i = 0; i < count; ++i)
{
size_t align;
size_t size;
align = types[i]->__field_align;
size = types[i]->__size;
off = (off + align - 1) & ~ (align - 1);
__builtin_memcpy (results[i], call_result + off, size);
off += size;
}
}
/* The code that converts the Go type to an FFI type is written in Go,
so that it can allocate Go heap memory. */
extern void ffiFuncToCIF(const struct __go_func_type*, _Bool, _Bool, ffi_cif*)
__asm__ ("runtime.ffiFuncToCIF");
/* Call a function. The type of the function is FUNC_TYPE, and the
closure is FUNC_VAL. PARAMS is an array of parameter addresses.
RESULTS is an array of result addresses.
If IS_INTERFACE is true this is a call to an interface method and
the first argument is the receiver, which is always a pointer.
This argument, the receiver, is not described in FUNC_TYPE.
If IS_METHOD is true this is a call to a method expression. The
first argument is the receiver. It is described in FUNC_TYPE, but
regardless of FUNC_TYPE, it is passed as a pointer. */
void
reflect_call (const struct __go_func_type *func_type, FuncVal *func_val,
_Bool is_interface, _Bool is_method, void **params,
void **results)
{
ffi_cif cif;
unsigned char *call_result;
__go_assert ((func_type->__common.__code & GO_CODE_MASK) == GO_FUNC);
ffiFuncToCIF (func_type, is_interface, is_method, &cif);
call_result = (unsigned char *) malloc (go_results_size (func_type));
ffi_call_go (&cif, func_val->fn, call_result, params, func_val);
/* Some day we may need to free result values if RESULTS is
NULL. */
if (results != NULL)
go_set_results (func_type, call_result, results);
free (call_result);
}
#else /* !defined(USE_LIBFFI) */
void
reflect_call (const struct __go_func_type *func_type __attribute__ ((unused)),
FuncVal *func_val __attribute__ ((unused)),
_Bool is_interface __attribute__ ((unused)),
_Bool is_method __attribute__ ((unused)),
void **params __attribute__ ((unused)),
void **results __attribute__ ((unused)))
{
/* Without FFI there is nothing we can do. */
runtime_throw("libgo built without FFI does not support "
"reflect.Call or runtime.SetFinalizer");
}
#endif /* !defined(USE_LIBFFI) */