6009 lines
165 KiB
Go
6009 lines
165 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"internal/cpu"
|
|
"runtime/internal/atomic"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// Functions called by C code.
|
|
//go:linkname main
|
|
//go:linkname goparkunlock
|
|
//go:linkname newextram
|
|
//go:linkname acquirep
|
|
//go:linkname releasep
|
|
//go:linkname incidlelocked
|
|
//go:linkname ginit
|
|
//go:linkname schedinit
|
|
//go:linkname ready
|
|
//go:linkname stopm
|
|
//go:linkname handoffp
|
|
//go:linkname wakep
|
|
//go:linkname stoplockedm
|
|
//go:linkname schedule
|
|
//go:linkname execute
|
|
//go:linkname goexit1
|
|
//go:linkname reentersyscall
|
|
//go:linkname reentersyscallblock
|
|
//go:linkname exitsyscall
|
|
//go:linkname gfget
|
|
//go:linkname kickoff
|
|
//go:linkname mstart1
|
|
//go:linkname mexit
|
|
//go:linkname globrunqput
|
|
//go:linkname pidleget
|
|
|
|
// Exported for test (see runtime/testdata/testprogcgo/dropm_stub.go).
|
|
//go:linkname getm
|
|
|
|
// Function called by misc/cgo/test.
|
|
//go:linkname lockedOSThread
|
|
|
|
// C functions for thread and context management.
|
|
func newosproc(*m)
|
|
|
|
//go:noescape
|
|
func malg(bool, bool, *unsafe.Pointer, *uintptr) *g
|
|
|
|
//go:noescape
|
|
func resetNewG(*g, *unsafe.Pointer, *uintptr)
|
|
func gogo(*g)
|
|
func setGContext()
|
|
func makeGContext(*g, unsafe.Pointer, uintptr)
|
|
func getTraceback(me, gp *g)
|
|
func gtraceback(*g)
|
|
func _cgo_notify_runtime_init_done()
|
|
func alreadyInCallers() bool
|
|
func stackfree(*g)
|
|
|
|
// Functions created by the compiler.
|
|
//extern __go_init_main
|
|
func main_init()
|
|
|
|
//extern main.main
|
|
func main_main()
|
|
|
|
// set using cmd/go/internal/modload.ModInfoProg
|
|
var modinfo string
|
|
|
|
// Goroutine scheduler
|
|
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
|
|
//
|
|
// The main concepts are:
|
|
// G - goroutine.
|
|
// M - worker thread, or machine.
|
|
// P - processor, a resource that is required to execute Go code.
|
|
// M must have an associated P to execute Go code, however it can be
|
|
// blocked or in a syscall w/o an associated P.
|
|
//
|
|
// Design doc at https://golang.org/s/go11sched.
|
|
|
|
// Worker thread parking/unparking.
|
|
// We need to balance between keeping enough running worker threads to utilize
|
|
// available hardware parallelism and parking excessive running worker threads
|
|
// to conserve CPU resources and power. This is not simple for two reasons:
|
|
// (1) scheduler state is intentionally distributed (in particular, per-P work
|
|
// queues), so it is not possible to compute global predicates on fast paths;
|
|
// (2) for optimal thread management we would need to know the future (don't park
|
|
// a worker thread when a new goroutine will be readied in near future).
|
|
//
|
|
// Three rejected approaches that would work badly:
|
|
// 1. Centralize all scheduler state (would inhibit scalability).
|
|
// 2. Direct goroutine handoff. That is, when we ready a new goroutine and there
|
|
// is a spare P, unpark a thread and handoff it the thread and the goroutine.
|
|
// This would lead to thread state thrashing, as the thread that readied the
|
|
// goroutine can be out of work the very next moment, we will need to park it.
|
|
// Also, it would destroy locality of computation as we want to preserve
|
|
// dependent goroutines on the same thread; and introduce additional latency.
|
|
// 3. Unpark an additional thread whenever we ready a goroutine and there is an
|
|
// idle P, but don't do handoff. This would lead to excessive thread parking/
|
|
// unparking as the additional threads will instantly park without discovering
|
|
// any work to do.
|
|
//
|
|
// The current approach:
|
|
//
|
|
// This approach applies to three primary sources of potential work: readying a
|
|
// goroutine, new/modified-earlier timers, and idle-priority GC. See below for
|
|
// additional details.
|
|
//
|
|
// We unpark an additional thread when we submit work if (this is wakep()):
|
|
// 1. There is an idle P, and
|
|
// 2. There are no "spinning" worker threads.
|
|
//
|
|
// A worker thread is considered spinning if it is out of local work and did
|
|
// not find work in the global run queue or netpoller; the spinning state is
|
|
// denoted in m.spinning and in sched.nmspinning. Threads unparked this way are
|
|
// also considered spinning; we don't do goroutine handoff so such threads are
|
|
// out of work initially. Spinning threads spin on looking for work in per-P
|
|
// run queues and timer heaps or from the GC before parking. If a spinning
|
|
// thread finds work it takes itself out of the spinning state and proceeds to
|
|
// execution. If it does not find work it takes itself out of the spinning
|
|
// state and then parks.
|
|
//
|
|
// If there is at least one spinning thread (sched.nmspinning>1), we don't
|
|
// unpark new threads when submitting work. To compensate for that, if the last
|
|
// spinning thread finds work and stops spinning, it must unpark a new spinning
|
|
// thread. This approach smooths out unjustified spikes of thread unparking,
|
|
// but at the same time guarantees eventual maximal CPU parallelism
|
|
// utilization.
|
|
//
|
|
// The main implementation complication is that we need to be very careful
|
|
// during spinning->non-spinning thread transition. This transition can race
|
|
// with submission of new work, and either one part or another needs to unpark
|
|
// another worker thread. If they both fail to do that, we can end up with
|
|
// semi-persistent CPU underutilization.
|
|
//
|
|
// The general pattern for submission is:
|
|
// 1. Submit work to the local run queue, timer heap, or GC state.
|
|
// 2. #StoreLoad-style memory barrier.
|
|
// 3. Check sched.nmspinning.
|
|
//
|
|
// The general pattern for spinning->non-spinning transition is:
|
|
// 1. Decrement nmspinning.
|
|
// 2. #StoreLoad-style memory barrier.
|
|
// 3. Check all per-P work queues and GC for new work.
|
|
//
|
|
// Note that all this complexity does not apply to global run queue as we are
|
|
// not sloppy about thread unparking when submitting to global queue. Also see
|
|
// comments for nmspinning manipulation.
|
|
//
|
|
// How these different sources of work behave varies, though it doesn't affect
|
|
// the synchronization approach:
|
|
// * Ready goroutine: this is an obvious source of work; the goroutine is
|
|
// immediately ready and must run on some thread eventually.
|
|
// * New/modified-earlier timer: The current timer implementation (see time.go)
|
|
// uses netpoll in a thread with no work available to wait for the soonest
|
|
// timer. If there is no thread waiting, we want a new spinning thread to go
|
|
// wait.
|
|
// * Idle-priority GC: The GC wakes a stopped idle thread to contribute to
|
|
// background GC work (note: currently disabled per golang.org/issue/19112).
|
|
// Also see golang.org/issue/44313, as this should be extended to all GC
|
|
// workers.
|
|
|
|
var (
|
|
m0 m
|
|
g0 g
|
|
mcache0 *mcache
|
|
raceprocctx0 uintptr
|
|
)
|
|
|
|
// main_init_done is a signal used by cgocallbackg that initialization
|
|
// has been completed. It is made before _cgo_notify_runtime_init_done,
|
|
// so all cgo calls can rely on it existing. When main_init is complete,
|
|
// it is closed, meaning cgocallbackg can reliably receive from it.
|
|
var main_init_done chan bool
|
|
|
|
// mainStarted indicates that the main M has started.
|
|
var mainStarted bool
|
|
|
|
// runtimeInitTime is the nanotime() at which the runtime started.
|
|
var runtimeInitTime int64
|
|
|
|
// Value to use for signal mask for newly created M's.
|
|
var initSigmask sigset
|
|
|
|
// The main goroutine.
|
|
func main(unsafe.Pointer) {
|
|
g := getg()
|
|
|
|
// Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
|
|
// Using decimal instead of binary GB and MB because
|
|
// they look nicer in the stack overflow failure message.
|
|
if sys.PtrSize == 8 {
|
|
maxstacksize = 1000000000
|
|
} else {
|
|
maxstacksize = 250000000
|
|
}
|
|
|
|
// An upper limit for max stack size. Used to avoid random crashes
|
|
// after calling SetMaxStack and trying to allocate a stack that is too big,
|
|
// since stackalloc works with 32-bit sizes.
|
|
// Not used by gofrontend.
|
|
// maxstackceiling = 2 * maxstacksize
|
|
|
|
// Allow newproc to start new Ms.
|
|
mainStarted = true
|
|
|
|
if GOARCH != "wasm" { // no threads on wasm yet, so no sysmon
|
|
// For runtime_syscall_doAllThreadsSyscall, we
|
|
// register sysmon is not ready for the world to be
|
|
// stopped.
|
|
atomic.Store(&sched.sysmonStarting, 1)
|
|
systemstack(func() {
|
|
newm(sysmon, nil, -1)
|
|
})
|
|
}
|
|
|
|
// Lock the main goroutine onto this, the main OS thread,
|
|
// during initialization. Most programs won't care, but a few
|
|
// do require certain calls to be made by the main thread.
|
|
// Those can arrange for main.main to run in the main thread
|
|
// by calling runtime.LockOSThread during initialization
|
|
// to preserve the lock.
|
|
lockOSThread()
|
|
|
|
if g.m != &m0 {
|
|
throw("runtime.main not on m0")
|
|
}
|
|
m0.doesPark = true
|
|
|
|
// Record when the world started.
|
|
// Must be before doInit for tracing init.
|
|
runtimeInitTime = nanotime()
|
|
if runtimeInitTime == 0 {
|
|
throw("nanotime returning zero")
|
|
}
|
|
|
|
if debug.inittrace != 0 {
|
|
inittrace.id = getg().goid
|
|
inittrace.active = true
|
|
}
|
|
|
|
// doInit(&runtime_inittask) // Must be before defer.
|
|
|
|
// Defer unlock so that runtime.Goexit during init does the unlock too.
|
|
needUnlock := true
|
|
defer func() {
|
|
if needUnlock {
|
|
unlockOSThread()
|
|
}
|
|
}()
|
|
|
|
main_init_done = make(chan bool)
|
|
if iscgo {
|
|
// Start the template thread in case we enter Go from
|
|
// a C-created thread and need to create a new thread.
|
|
startTemplateThread()
|
|
_cgo_notify_runtime_init_done()
|
|
}
|
|
|
|
fn := main_init // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
|
|
fn()
|
|
createGcRootsIndex()
|
|
|
|
// For gccgo we have to wait until after main is initialized
|
|
// to enable GC, because initializing main registers the GC roots.
|
|
gcenable()
|
|
|
|
// Disable init tracing after main init done to avoid overhead
|
|
// of collecting statistics in malloc and newproc
|
|
inittrace.active = false
|
|
|
|
close(main_init_done)
|
|
|
|
needUnlock = false
|
|
unlockOSThread()
|
|
|
|
if isarchive || islibrary {
|
|
// A program compiled with -buildmode=c-archive or c-shared
|
|
// has a main, but it is not executed.
|
|
return
|
|
}
|
|
fn = main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
|
|
fn()
|
|
if raceenabled {
|
|
racefini()
|
|
}
|
|
|
|
// Make racy client program work: if panicking on
|
|
// another goroutine at the same time as main returns,
|
|
// let the other goroutine finish printing the panic trace.
|
|
// Once it does, it will exit. See issues 3934 and 20018.
|
|
if atomic.Load(&runningPanicDefers) != 0 {
|
|
// Running deferred functions should not take long.
|
|
for c := 0; c < 1000; c++ {
|
|
if atomic.Load(&runningPanicDefers) == 0 {
|
|
break
|
|
}
|
|
Gosched()
|
|
}
|
|
}
|
|
if atomic.Load(&panicking) != 0 {
|
|
gopark(nil, nil, waitReasonPanicWait, traceEvGoStop, 1)
|
|
}
|
|
|
|
exit(0)
|
|
for {
|
|
var x *int32
|
|
*x = 0
|
|
}
|
|
}
|
|
|
|
// os_beforeExit is called from os.Exit(0).
|
|
//go:linkname os_beforeExit os.runtime__beforeExit
|
|
func os_beforeExit() {
|
|
if raceenabled {
|
|
racefini()
|
|
}
|
|
}
|
|
|
|
// start forcegc helper goroutine
|
|
func init() {
|
|
expectSystemGoroutine()
|
|
go forcegchelper()
|
|
}
|
|
|
|
func forcegchelper() {
|
|
setSystemGoroutine()
|
|
|
|
forcegc.g = getg()
|
|
lockInit(&forcegc.lock, lockRankForcegc)
|
|
for {
|
|
lock(&forcegc.lock)
|
|
if forcegc.idle != 0 {
|
|
throw("forcegc: phase error")
|
|
}
|
|
atomic.Store(&forcegc.idle, 1)
|
|
goparkunlock(&forcegc.lock, waitReasonForceGCIdle, traceEvGoBlock, 1)
|
|
// this goroutine is explicitly resumed by sysmon
|
|
if debug.gctrace > 0 {
|
|
println("GC forced")
|
|
}
|
|
// Time-triggered, fully concurrent.
|
|
gcStart(gcTrigger{kind: gcTriggerTime, now: nanotime()})
|
|
}
|
|
}
|
|
|
|
//go:nosplit
|
|
|
|
// Gosched yields the processor, allowing other goroutines to run. It does not
|
|
// suspend the current goroutine, so execution resumes automatically.
|
|
func Gosched() {
|
|
checkTimeouts()
|
|
mcall(gosched_m)
|
|
}
|
|
|
|
// goschedguarded yields the processor like gosched, but also checks
|
|
// for forbidden states and opts out of the yield in those cases.
|
|
//go:nosplit
|
|
func goschedguarded() {
|
|
mcall(goschedguarded_m)
|
|
}
|
|
|
|
// Puts the current goroutine into a waiting state and calls unlockf on the
|
|
// system stack.
|
|
//
|
|
// If unlockf returns false, the goroutine is resumed.
|
|
//
|
|
// unlockf must not access this G's stack, as it may be moved between
|
|
// the call to gopark and the call to unlockf.
|
|
//
|
|
// Note that because unlockf is called after putting the G into a waiting
|
|
// state, the G may have already been readied by the time unlockf is called
|
|
// unless there is external synchronization preventing the G from being
|
|
// readied. If unlockf returns false, it must guarantee that the G cannot be
|
|
// externally readied.
|
|
//
|
|
// Reason explains why the goroutine has been parked. It is displayed in stack
|
|
// traces and heap dumps. Reasons should be unique and descriptive. Do not
|
|
// re-use reasons, add new ones.
|
|
func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) {
|
|
if reason != waitReasonSleep {
|
|
checkTimeouts() // timeouts may expire while two goroutines keep the scheduler busy
|
|
}
|
|
mp := acquirem()
|
|
gp := mp.curg
|
|
status := readgstatus(gp)
|
|
if status != _Grunning && status != _Gscanrunning {
|
|
throw("gopark: bad g status")
|
|
}
|
|
mp.waitlock = lock
|
|
mp.waitunlockf = unlockf
|
|
gp.waitreason = reason
|
|
mp.waittraceev = traceEv
|
|
mp.waittraceskip = traceskip
|
|
releasem(mp)
|
|
// can't do anything that might move the G between Ms here.
|
|
mcall(park_m)
|
|
}
|
|
|
|
// Puts the current goroutine into a waiting state and unlocks the lock.
|
|
// The goroutine can be made runnable again by calling goready(gp).
|
|
func goparkunlock(lock *mutex, reason waitReason, traceEv byte, traceskip int) {
|
|
gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip)
|
|
}
|
|
|
|
func goready(gp *g, traceskip int) {
|
|
systemstack(func() {
|
|
ready(gp, traceskip, true)
|
|
})
|
|
}
|
|
|
|
//go:nosplit
|
|
func acquireSudog() *sudog {
|
|
// Delicate dance: the semaphore implementation calls
|
|
// acquireSudog, acquireSudog calls new(sudog),
|
|
// new calls malloc, malloc can call the garbage collector,
|
|
// and the garbage collector calls the semaphore implementation
|
|
// in stopTheWorld.
|
|
// Break the cycle by doing acquirem/releasem around new(sudog).
|
|
// The acquirem/releasem increments m.locks during new(sudog),
|
|
// which keeps the garbage collector from being invoked.
|
|
mp := acquirem()
|
|
pp := mp.p.ptr()
|
|
if len(pp.sudogcache) == 0 {
|
|
lock(&sched.sudoglock)
|
|
// First, try to grab a batch from central cache.
|
|
for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil {
|
|
s := sched.sudogcache
|
|
sched.sudogcache = s.next
|
|
s.next = nil
|
|
pp.sudogcache = append(pp.sudogcache, s)
|
|
}
|
|
unlock(&sched.sudoglock)
|
|
// If the central cache is empty, allocate a new one.
|
|
if len(pp.sudogcache) == 0 {
|
|
pp.sudogcache = append(pp.sudogcache, new(sudog))
|
|
}
|
|
}
|
|
n := len(pp.sudogcache)
|
|
s := pp.sudogcache[n-1]
|
|
pp.sudogcache[n-1] = nil
|
|
pp.sudogcache = pp.sudogcache[:n-1]
|
|
if s.elem != nil {
|
|
throw("acquireSudog: found s.elem != nil in cache")
|
|
}
|
|
releasem(mp)
|
|
return s
|
|
}
|
|
|
|
//go:nosplit
|
|
func releaseSudog(s *sudog) {
|
|
if s.elem != nil {
|
|
throw("runtime: sudog with non-nil elem")
|
|
}
|
|
if s.isSelect {
|
|
throw("runtime: sudog with non-false isSelect")
|
|
}
|
|
if s.next != nil {
|
|
throw("runtime: sudog with non-nil next")
|
|
}
|
|
if s.prev != nil {
|
|
throw("runtime: sudog with non-nil prev")
|
|
}
|
|
if s.waitlink != nil {
|
|
throw("runtime: sudog with non-nil waitlink")
|
|
}
|
|
if s.c != nil {
|
|
throw("runtime: sudog with non-nil c")
|
|
}
|
|
gp := getg()
|
|
if gp.param != nil {
|
|
throw("runtime: releaseSudog with non-nil gp.param")
|
|
}
|
|
mp := acquirem() // avoid rescheduling to another P
|
|
pp := mp.p.ptr()
|
|
if len(pp.sudogcache) == cap(pp.sudogcache) {
|
|
// Transfer half of local cache to the central cache.
|
|
var first, last *sudog
|
|
for len(pp.sudogcache) > cap(pp.sudogcache)/2 {
|
|
n := len(pp.sudogcache)
|
|
p := pp.sudogcache[n-1]
|
|
pp.sudogcache[n-1] = nil
|
|
pp.sudogcache = pp.sudogcache[:n-1]
|
|
if first == nil {
|
|
first = p
|
|
} else {
|
|
last.next = p
|
|
}
|
|
last = p
|
|
}
|
|
lock(&sched.sudoglock)
|
|
last.next = sched.sudogcache
|
|
sched.sudogcache = first
|
|
unlock(&sched.sudoglock)
|
|
}
|
|
pp.sudogcache = append(pp.sudogcache, s)
|
|
releasem(mp)
|
|
}
|
|
|
|
// funcPC returns the entry PC of the function f.
|
|
// It assumes that f is a func value. Otherwise the behavior is undefined.
|
|
// CAREFUL: In programs with plugins, funcPC can return different values
|
|
// for the same function (because there are actually multiple copies of
|
|
// the same function in the address space). To be safe, don't use the
|
|
// results of this function in any == expression. It is only safe to
|
|
// use the result as an address at which to start executing code.
|
|
//
|
|
// For gccgo note that this differs from the gc implementation; the gc
|
|
// implementation adds sys.PtrSize to the address of the interface
|
|
// value, but GCC's alias analysis decides that that can not be a
|
|
// reference to the second field of the interface, and in some cases
|
|
// it drops the initialization of the second field as a dead store.
|
|
//go:nosplit
|
|
func funcPC(f interface{}) uintptr {
|
|
i := (*iface)(unsafe.Pointer(&f))
|
|
r := *(*uintptr)(i.data)
|
|
if cpu.FunctionDescriptors {
|
|
// With PPC64 ELF ABI v1 function descriptors the
|
|
// function address is a pointer to a struct whose
|
|
// first field is the actual PC.
|
|
r = *(*uintptr)(unsafe.Pointer(r))
|
|
}
|
|
return r
|
|
}
|
|
|
|
func lockedOSThread() bool {
|
|
gp := getg()
|
|
return gp.lockedm != 0 && gp.m.lockedg != 0
|
|
}
|
|
|
|
var (
|
|
// allgs contains all Gs ever created (including dead Gs), and thus
|
|
// never shrinks.
|
|
//
|
|
// Access via the slice is protected by allglock or stop-the-world.
|
|
// Readers that cannot take the lock may (carefully!) use the atomic
|
|
// variables below.
|
|
allglock mutex
|
|
allgs []*g
|
|
|
|
// allglen and allgptr are atomic variables that contain len(allgs) and
|
|
// &allgs[0] respectively. Proper ordering depends on totally-ordered
|
|
// loads and stores. Writes are protected by allglock.
|
|
//
|
|
// allgptr is updated before allglen. Readers should read allglen
|
|
// before allgptr to ensure that allglen is always <= len(allgptr). New
|
|
// Gs appended during the race can be missed. For a consistent view of
|
|
// all Gs, allglock must be held.
|
|
//
|
|
// allgptr copies should always be stored as a concrete type or
|
|
// unsafe.Pointer, not uintptr, to ensure that GC can still reach it
|
|
// even if it points to a stale array.
|
|
allglen uintptr
|
|
allgptr **g
|
|
)
|
|
|
|
func allgadd(gp *g) {
|
|
if readgstatus(gp) == _Gidle {
|
|
throw("allgadd: bad status Gidle")
|
|
}
|
|
|
|
lock(&allglock)
|
|
allgs = append(allgs, gp)
|
|
if &allgs[0] != allgptr {
|
|
atomicstorep(unsafe.Pointer(&allgptr), unsafe.Pointer(&allgs[0]))
|
|
}
|
|
atomic.Storeuintptr(&allglen, uintptr(len(allgs)))
|
|
unlock(&allglock)
|
|
}
|
|
|
|
// atomicAllG returns &allgs[0] and len(allgs) for use with atomicAllGIndex.
|
|
func atomicAllG() (**g, uintptr) {
|
|
length := atomic.Loaduintptr(&allglen)
|
|
ptr := (**g)(atomic.Loadp(unsafe.Pointer(&allgptr)))
|
|
return ptr, length
|
|
}
|
|
|
|
// atomicAllGIndex returns ptr[i] with the allgptr returned from atomicAllG.
|
|
func atomicAllGIndex(ptr **g, i uintptr) *g {
|
|
return *(**g)(add(unsafe.Pointer(ptr), i*sys.PtrSize))
|
|
}
|
|
|
|
// forEachG calls fn on every G from allgs.
|
|
//
|
|
// forEachG takes a lock to exclude concurrent addition of new Gs.
|
|
func forEachG(fn func(gp *g)) {
|
|
lock(&allglock)
|
|
for _, gp := range allgs {
|
|
fn(gp)
|
|
}
|
|
unlock(&allglock)
|
|
}
|
|
|
|
// forEachGRace calls fn on every G from allgs.
|
|
//
|
|
// forEachGRace avoids locking, but does not exclude addition of new Gs during
|
|
// execution, which may be missed.
|
|
func forEachGRace(fn func(gp *g)) {
|
|
ptr, length := atomicAllG()
|
|
for i := uintptr(0); i < length; i++ {
|
|
gp := atomicAllGIndex(ptr, i)
|
|
fn(gp)
|
|
}
|
|
return
|
|
}
|
|
|
|
const (
|
|
// Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
|
|
// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
|
|
_GoidCacheBatch = 16
|
|
)
|
|
|
|
// cpuinit extracts the environment variable GODEBUG from the environment on
|
|
// Unix-like operating systems and calls internal/cpu.Initialize.
|
|
func cpuinit() {
|
|
const prefix = "GODEBUG="
|
|
var env string
|
|
|
|
switch GOOS {
|
|
case "aix", "darwin", "ios", "dragonfly", "freebsd", "netbsd", "openbsd", "illumos", "solaris", "linux":
|
|
cpu.DebugOptions = true
|
|
|
|
// Similar to goenv_unix but extracts the environment value for
|
|
// GODEBUG directly.
|
|
// TODO(moehrmann): remove when general goenvs() can be called before cpuinit()
|
|
n := int32(0)
|
|
for argv_index(argv, argc+1+n) != nil {
|
|
n++
|
|
}
|
|
|
|
for i := int32(0); i < n; i++ {
|
|
p := argv_index(argv, argc+1+i)
|
|
s := *(*string)(unsafe.Pointer(&stringStruct{unsafe.Pointer(p), findnull(p)}))
|
|
|
|
if hasPrefix(s, prefix) {
|
|
env = gostring(p)[len(prefix):]
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
cpu.Initialize(env)
|
|
}
|
|
|
|
func ginit() {
|
|
_m_ := &m0
|
|
_g_ := &g0
|
|
_m_.g0 = _g_
|
|
_m_.curg = _g_
|
|
_g_.m = _m_
|
|
setg(_g_)
|
|
}
|
|
|
|
// The bootstrap sequence is:
|
|
//
|
|
// call osinit
|
|
// call schedinit
|
|
// make & queue new G
|
|
// call runtime·mstart
|
|
//
|
|
// The new G calls runtime·main.
|
|
func schedinit() {
|
|
lockInit(&sched.lock, lockRankSched)
|
|
lockInit(&sched.sysmonlock, lockRankSysmon)
|
|
lockInit(&sched.deferlock, lockRankDefer)
|
|
lockInit(&sched.sudoglock, lockRankSudog)
|
|
lockInit(&deadlock, lockRankDeadlock)
|
|
lockInit(&paniclk, lockRankPanic)
|
|
lockInit(&allglock, lockRankAllg)
|
|
lockInit(&allpLock, lockRankAllp)
|
|
// lockInit(&reflectOffs.lock, lockRankReflectOffs)
|
|
lockInit(&finlock, lockRankFin)
|
|
lockInit(&trace.bufLock, lockRankTraceBuf)
|
|
lockInit(&trace.stringsLock, lockRankTraceStrings)
|
|
lockInit(&trace.lock, lockRankTrace)
|
|
lockInit(&cpuprof.lock, lockRankCpuprof)
|
|
lockInit(&trace.stackTab.lock, lockRankTraceStackTab)
|
|
// Enforce that this lock is always a leaf lock.
|
|
// All of this lock's critical sections should be
|
|
// extremely short.
|
|
lockInit(&memstats.heapStats.noPLock, lockRankLeafRank)
|
|
|
|
_g_ := getg()
|
|
sched.maxmcount = 10000
|
|
|
|
usestackmaps = probestackmaps()
|
|
|
|
// The world starts stopped.
|
|
worldStopped()
|
|
|
|
mallocinit()
|
|
fastrandinit() // must run before mcommoninit
|
|
mcommoninit(_g_.m, -1)
|
|
cpuinit() // must run before alginit
|
|
alginit() // maps must not be used before this call
|
|
|
|
sigsave(&_g_.m.sigmask)
|
|
initSigmask = _g_.m.sigmask
|
|
|
|
if offset := unsafe.Offsetof(sched.timeToRun); offset%8 != 0 {
|
|
println(offset)
|
|
throw("sched.timeToRun not aligned to 8 bytes")
|
|
}
|
|
|
|
goargs()
|
|
goenvs()
|
|
parsedebugvars()
|
|
gcinit()
|
|
|
|
lock(&sched.lock)
|
|
sched.lastpoll = uint64(nanotime())
|
|
procs := ncpu
|
|
|
|
// In 32-bit mode, we can burn a lot of memory on thread stacks.
|
|
// Try to avoid this by limiting the number of threads we run
|
|
// by default.
|
|
if sys.PtrSize == 4 && procs > 32 {
|
|
procs = 32
|
|
}
|
|
|
|
if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 {
|
|
procs = n
|
|
}
|
|
if procresize(procs) != nil {
|
|
throw("unknown runnable goroutine during bootstrap")
|
|
}
|
|
unlock(&sched.lock)
|
|
|
|
// World is effectively started now, as P's can run.
|
|
worldStarted()
|
|
|
|
// For cgocheck > 1, we turn on the write barrier at all times
|
|
// and check all pointer writes. We can't do this until after
|
|
// procresize because the write barrier needs a P.
|
|
if debug.cgocheck > 1 {
|
|
writeBarrier.cgo = true
|
|
writeBarrier.enabled = true
|
|
for _, p := range allp {
|
|
p.wbBuf.reset()
|
|
}
|
|
}
|
|
|
|
if buildVersion == "" {
|
|
// Condition should never trigger. This code just serves
|
|
// to ensure runtime·buildVersion is kept in the resulting binary.
|
|
buildVersion = "unknown"
|
|
}
|
|
if len(modinfo) == 1 {
|
|
// Condition should never trigger. This code just serves
|
|
// to ensure runtime·modinfo is kept in the resulting binary.
|
|
modinfo = ""
|
|
}
|
|
}
|
|
|
|
func dumpgstatus(gp *g) {
|
|
_g_ := getg()
|
|
print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
|
|
print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n")
|
|
}
|
|
|
|
// sched.lock must be held.
|
|
func checkmcount() {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
if mcount() > sched.maxmcount {
|
|
print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
|
|
throw("thread exhaustion")
|
|
}
|
|
}
|
|
|
|
// mReserveID returns the next ID to use for a new m. This new m is immediately
|
|
// considered 'running' by checkdead.
|
|
//
|
|
// sched.lock must be held.
|
|
func mReserveID() int64 {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
if sched.mnext+1 < sched.mnext {
|
|
throw("runtime: thread ID overflow")
|
|
}
|
|
id := sched.mnext
|
|
sched.mnext++
|
|
checkmcount()
|
|
return id
|
|
}
|
|
|
|
// Pre-allocated ID may be passed as 'id', or omitted by passing -1.
|
|
func mcommoninit(mp *m, id int64) {
|
|
_g_ := getg()
|
|
|
|
// g0 stack won't make sense for user (and is not necessary unwindable).
|
|
if _g_ != _g_.m.g0 {
|
|
callers(1, mp.createstack[:])
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
|
|
if id >= 0 {
|
|
mp.id = id
|
|
} else {
|
|
mp.id = mReserveID()
|
|
}
|
|
|
|
mp.fastrand[0] = uint32(int64Hash(uint64(mp.id), fastrandseed))
|
|
mp.fastrand[1] = uint32(int64Hash(uint64(cputicks()), ^fastrandseed))
|
|
if mp.fastrand[0]|mp.fastrand[1] == 0 {
|
|
mp.fastrand[1] = 1
|
|
}
|
|
|
|
mpreinit(mp)
|
|
|
|
// Add to allm so garbage collector doesn't free g->m
|
|
// when it is just in a register or thread-local storage.
|
|
mp.alllink = allm
|
|
|
|
// NumCgoCall() iterates over allm w/o schedlock,
|
|
// so we need to publish it safely.
|
|
atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
var fastrandseed uintptr
|
|
|
|
func fastrandinit() {
|
|
s := (*[unsafe.Sizeof(fastrandseed)]byte)(unsafe.Pointer(&fastrandseed))[:]
|
|
getRandomData(s)
|
|
}
|
|
|
|
// Mark gp ready to run.
|
|
func ready(gp *g, traceskip int, next bool) {
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, traceskip)
|
|
}
|
|
|
|
status := readgstatus(gp)
|
|
|
|
// Mark runnable.
|
|
_g_ := getg()
|
|
mp := acquirem() // disable preemption because it can be holding p in a local var
|
|
if status&^_Gscan != _Gwaiting {
|
|
dumpgstatus(gp)
|
|
throw("bad g->status in ready")
|
|
}
|
|
|
|
// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
runqput(_g_.m.p.ptr(), gp, next)
|
|
wakep()
|
|
releasem(mp)
|
|
}
|
|
|
|
// freezeStopWait is a large value that freezetheworld sets
|
|
// sched.stopwait to in order to request that all Gs permanently stop.
|
|
const freezeStopWait = 0x7fffffff
|
|
|
|
// freezing is set to non-zero if the runtime is trying to freeze the
|
|
// world.
|
|
var freezing uint32
|
|
|
|
// Similar to stopTheWorld but best-effort and can be called several times.
|
|
// There is no reverse operation, used during crashing.
|
|
// This function must not lock any mutexes.
|
|
func freezetheworld() {
|
|
atomic.Store(&freezing, 1)
|
|
// stopwait and preemption requests can be lost
|
|
// due to races with concurrently executing threads,
|
|
// so try several times
|
|
for i := 0; i < 5; i++ {
|
|
// this should tell the scheduler to not start any new goroutines
|
|
sched.stopwait = freezeStopWait
|
|
atomic.Store(&sched.gcwaiting, 1)
|
|
// this should stop running goroutines
|
|
if !preemptall() {
|
|
break // no running goroutines
|
|
}
|
|
usleep(1000)
|
|
}
|
|
// to be sure
|
|
usleep(1000)
|
|
preemptall()
|
|
usleep(1000)
|
|
}
|
|
|
|
// All reads and writes of g's status go through readgstatus, casgstatus
|
|
// castogscanstatus, casfrom_Gscanstatus.
|
|
//go:nosplit
|
|
func readgstatus(gp *g) uint32 {
|
|
return atomic.Load(&gp.atomicstatus)
|
|
}
|
|
|
|
// The Gscanstatuses are acting like locks and this releases them.
|
|
// If it proves to be a performance hit we should be able to make these
|
|
// simple atomic stores but for now we are going to throw if
|
|
// we see an inconsistent state.
|
|
func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
|
|
success := false
|
|
|
|
// Check that transition is valid.
|
|
switch oldval {
|
|
default:
|
|
print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
|
|
dumpgstatus(gp)
|
|
throw("casfrom_Gscanstatus:top gp->status is not in scan state")
|
|
case _Gscanrunnable,
|
|
_Gscanwaiting,
|
|
_Gscanrunning,
|
|
_Gscansyscall,
|
|
_Gscanpreempted:
|
|
if newval == oldval&^_Gscan {
|
|
success = atomic.Cas(&gp.atomicstatus, oldval, newval)
|
|
}
|
|
}
|
|
if !success {
|
|
print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
|
|
dumpgstatus(gp)
|
|
throw("casfrom_Gscanstatus: gp->status is not in scan state")
|
|
}
|
|
releaseLockRank(lockRankGscan)
|
|
}
|
|
|
|
// This will return false if the gp is not in the expected status and the cas fails.
|
|
// This acts like a lock acquire while the casfromgstatus acts like a lock release.
|
|
func castogscanstatus(gp *g, oldval, newval uint32) bool {
|
|
switch oldval {
|
|
case _Grunnable,
|
|
_Grunning,
|
|
_Gwaiting,
|
|
_Gsyscall:
|
|
if newval == oldval|_Gscan {
|
|
r := atomic.Cas(&gp.atomicstatus, oldval, newval)
|
|
if r {
|
|
acquireLockRank(lockRankGscan)
|
|
}
|
|
return r
|
|
|
|
}
|
|
}
|
|
print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
|
|
throw("castogscanstatus")
|
|
panic("not reached")
|
|
}
|
|
|
|
// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
|
|
// and casfrom_Gscanstatus instead.
|
|
// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
|
|
// put it in the Gscan state is finished.
|
|
//go:nosplit
|
|
func casgstatus(gp *g, oldval, newval uint32) {
|
|
if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
|
|
systemstack(func() {
|
|
print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
|
|
throw("casgstatus: bad incoming values")
|
|
})
|
|
}
|
|
|
|
acquireLockRank(lockRankGscan)
|
|
releaseLockRank(lockRankGscan)
|
|
|
|
// See https://golang.org/cl/21503 for justification of the yield delay.
|
|
const yieldDelay = 5 * 1000
|
|
var nextYield int64
|
|
|
|
// loop if gp->atomicstatus is in a scan state giving
|
|
// GC time to finish and change the state to oldval.
|
|
for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ {
|
|
if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
|
|
throw("casgstatus: waiting for Gwaiting but is Grunnable")
|
|
}
|
|
if i == 0 {
|
|
nextYield = nanotime() + yieldDelay
|
|
}
|
|
if nanotime() < nextYield {
|
|
for x := 0; x < 10 && gp.atomicstatus != oldval; x++ {
|
|
procyield(1)
|
|
}
|
|
} else {
|
|
osyield()
|
|
nextYield = nanotime() + yieldDelay/2
|
|
}
|
|
}
|
|
|
|
// Handle tracking for scheduling latencies.
|
|
if oldval == _Grunning {
|
|
// Track every 8th time a goroutine transitions out of running.
|
|
if gp.trackingSeq%gTrackingPeriod == 0 {
|
|
gp.tracking = true
|
|
}
|
|
gp.trackingSeq++
|
|
}
|
|
if gp.tracking {
|
|
now := nanotime()
|
|
if oldval == _Grunnable {
|
|
// We transitioned out of runnable, so measure how much
|
|
// time we spent in this state and add it to
|
|
// runnableTime.
|
|
gp.runnableTime += now - gp.runnableStamp
|
|
gp.runnableStamp = 0
|
|
}
|
|
if newval == _Grunnable {
|
|
// We just transitioned into runnable, so record what
|
|
// time that happened.
|
|
gp.runnableStamp = now
|
|
} else if newval == _Grunning {
|
|
// We're transitioning into running, so turn off
|
|
// tracking and record how much time we spent in
|
|
// runnable.
|
|
gp.tracking = false
|
|
sched.timeToRun.record(gp.runnableTime)
|
|
gp.runnableTime = 0
|
|
}
|
|
}
|
|
}
|
|
|
|
// casGToPreemptScan transitions gp from _Grunning to _Gscan|_Gpreempted.
|
|
//
|
|
// TODO(austin): This is the only status operation that both changes
|
|
// the status and locks the _Gscan bit. Rethink this.
|
|
func casGToPreemptScan(gp *g, old, new uint32) {
|
|
if old != _Grunning || new != _Gscan|_Gpreempted {
|
|
throw("bad g transition")
|
|
}
|
|
acquireLockRank(lockRankGscan)
|
|
for !atomic.Cas(&gp.atomicstatus, _Grunning, _Gscan|_Gpreempted) {
|
|
}
|
|
}
|
|
|
|
// casGFromPreempted attempts to transition gp from _Gpreempted to
|
|
// _Gwaiting. If successful, the caller is responsible for
|
|
// re-scheduling gp.
|
|
func casGFromPreempted(gp *g, old, new uint32) bool {
|
|
if old != _Gpreempted || new != _Gwaiting {
|
|
throw("bad g transition")
|
|
}
|
|
return atomic.Cas(&gp.atomicstatus, _Gpreempted, _Gwaiting)
|
|
}
|
|
|
|
// stopTheWorld stops all P's from executing goroutines, interrupting
|
|
// all goroutines at GC safe points and records reason as the reason
|
|
// for the stop. On return, only the current goroutine's P is running.
|
|
// stopTheWorld must not be called from a system stack and the caller
|
|
// must not hold worldsema. The caller must call startTheWorld when
|
|
// other P's should resume execution.
|
|
//
|
|
// stopTheWorld is safe for multiple goroutines to call at the
|
|
// same time. Each will execute its own stop, and the stops will
|
|
// be serialized.
|
|
//
|
|
// This is also used by routines that do stack dumps. If the system is
|
|
// in panic or being exited, this may not reliably stop all
|
|
// goroutines.
|
|
func stopTheWorld(reason string) {
|
|
semacquire(&worldsema)
|
|
gp := getg()
|
|
gp.m.preemptoff = reason
|
|
systemstack(func() {
|
|
// Mark the goroutine which called stopTheWorld preemptible so its
|
|
// stack may be scanned.
|
|
// This lets a mark worker scan us while we try to stop the world
|
|
// since otherwise we could get in a mutual preemption deadlock.
|
|
// We must not modify anything on the G stack because a stack shrink
|
|
// may occur. A stack shrink is otherwise OK though because in order
|
|
// to return from this function (and to leave the system stack) we
|
|
// must have preempted all goroutines, including any attempting
|
|
// to scan our stack, in which case, any stack shrinking will
|
|
// have already completed by the time we exit.
|
|
casgstatus(gp, _Grunning, _Gwaiting)
|
|
stopTheWorldWithSema()
|
|
casgstatus(gp, _Gwaiting, _Grunning)
|
|
})
|
|
}
|
|
|
|
// startTheWorld undoes the effects of stopTheWorld.
|
|
func startTheWorld() {
|
|
systemstack(func() { startTheWorldWithSema(false) })
|
|
|
|
// worldsema must be held over startTheWorldWithSema to ensure
|
|
// gomaxprocs cannot change while worldsema is held.
|
|
//
|
|
// Release worldsema with direct handoff to the next waiter, but
|
|
// acquirem so that semrelease1 doesn't try to yield our time.
|
|
//
|
|
// Otherwise if e.g. ReadMemStats is being called in a loop,
|
|
// it might stomp on other attempts to stop the world, such as
|
|
// for starting or ending GC. The operation this blocks is
|
|
// so heavy-weight that we should just try to be as fair as
|
|
// possible here.
|
|
//
|
|
// We don't want to just allow us to get preempted between now
|
|
// and releasing the semaphore because then we keep everyone
|
|
// (including, for example, GCs) waiting longer.
|
|
mp := acquirem()
|
|
mp.preemptoff = ""
|
|
semrelease1(&worldsema, true, 0)
|
|
releasem(mp)
|
|
}
|
|
|
|
// stopTheWorldGC has the same effect as stopTheWorld, but blocks
|
|
// until the GC is not running. It also blocks a GC from starting
|
|
// until startTheWorldGC is called.
|
|
func stopTheWorldGC(reason string) {
|
|
semacquire(&gcsema)
|
|
stopTheWorld(reason)
|
|
}
|
|
|
|
// startTheWorldGC undoes the effects of stopTheWorldGC.
|
|
func startTheWorldGC() {
|
|
startTheWorld()
|
|
semrelease(&gcsema)
|
|
}
|
|
|
|
// Holding worldsema grants an M the right to try to stop the world.
|
|
var worldsema uint32 = 1
|
|
|
|
// Holding gcsema grants the M the right to block a GC, and blocks
|
|
// until the current GC is done. In particular, it prevents gomaxprocs
|
|
// from changing concurrently.
|
|
//
|
|
// TODO(mknyszek): Once gomaxprocs and the execution tracer can handle
|
|
// being changed/enabled during a GC, remove this.
|
|
var gcsema uint32 = 1
|
|
|
|
// stopTheWorldWithSema is the core implementation of stopTheWorld.
|
|
// The caller is responsible for acquiring worldsema and disabling
|
|
// preemption first and then should stopTheWorldWithSema on the system
|
|
// stack:
|
|
//
|
|
// semacquire(&worldsema, 0)
|
|
// m.preemptoff = "reason"
|
|
// systemstack(stopTheWorldWithSema)
|
|
//
|
|
// When finished, the caller must either call startTheWorld or undo
|
|
// these three operations separately:
|
|
//
|
|
// m.preemptoff = ""
|
|
// systemstack(startTheWorldWithSema)
|
|
// semrelease(&worldsema)
|
|
//
|
|
// It is allowed to acquire worldsema once and then execute multiple
|
|
// startTheWorldWithSema/stopTheWorldWithSema pairs.
|
|
// Other P's are able to execute between successive calls to
|
|
// startTheWorldWithSema and stopTheWorldWithSema.
|
|
// Holding worldsema causes any other goroutines invoking
|
|
// stopTheWorld to block.
|
|
func stopTheWorldWithSema() {
|
|
_g_ := getg()
|
|
|
|
// If we hold a lock, then we won't be able to stop another M
|
|
// that is blocked trying to acquire the lock.
|
|
if _g_.m.locks > 0 {
|
|
throw("stopTheWorld: holding locks")
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
sched.stopwait = gomaxprocs
|
|
atomic.Store(&sched.gcwaiting, 1)
|
|
preemptall()
|
|
// stop current P
|
|
_g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
|
|
sched.stopwait--
|
|
// try to retake all P's in Psyscall status
|
|
for _, p := range allp {
|
|
s := p.status
|
|
if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) {
|
|
if trace.enabled {
|
|
traceGoSysBlock(p)
|
|
traceProcStop(p)
|
|
}
|
|
p.syscalltick++
|
|
sched.stopwait--
|
|
}
|
|
}
|
|
// stop idle P's
|
|
for {
|
|
p := pidleget()
|
|
if p == nil {
|
|
break
|
|
}
|
|
p.status = _Pgcstop
|
|
sched.stopwait--
|
|
}
|
|
wait := sched.stopwait > 0
|
|
unlock(&sched.lock)
|
|
|
|
// wait for remaining P's to stop voluntarily
|
|
if wait {
|
|
for {
|
|
// wait for 100us, then try to re-preempt in case of any races
|
|
if notetsleep(&sched.stopnote, 100*1000) {
|
|
noteclear(&sched.stopnote)
|
|
break
|
|
}
|
|
preemptall()
|
|
}
|
|
}
|
|
|
|
// sanity checks
|
|
bad := ""
|
|
if sched.stopwait != 0 {
|
|
bad = "stopTheWorld: not stopped (stopwait != 0)"
|
|
} else {
|
|
for _, p := range allp {
|
|
if p.status != _Pgcstop {
|
|
bad = "stopTheWorld: not stopped (status != _Pgcstop)"
|
|
}
|
|
}
|
|
}
|
|
if atomic.Load(&freezing) != 0 {
|
|
// Some other thread is panicking. This can cause the
|
|
// sanity checks above to fail if the panic happens in
|
|
// the signal handler on a stopped thread. Either way,
|
|
// we should halt this thread.
|
|
lock(&deadlock)
|
|
lock(&deadlock)
|
|
}
|
|
if bad != "" {
|
|
throw(bad)
|
|
}
|
|
|
|
worldStopped()
|
|
}
|
|
|
|
func startTheWorldWithSema(emitTraceEvent bool) int64 {
|
|
assertWorldStopped()
|
|
|
|
mp := acquirem() // disable preemption because it can be holding p in a local var
|
|
if netpollinited() {
|
|
list := netpoll(0) // non-blocking
|
|
injectglist(&list)
|
|
}
|
|
lock(&sched.lock)
|
|
|
|
procs := gomaxprocs
|
|
if newprocs != 0 {
|
|
procs = newprocs
|
|
newprocs = 0
|
|
}
|
|
p1 := procresize(procs)
|
|
sched.gcwaiting = 0
|
|
if sched.sysmonwait != 0 {
|
|
sched.sysmonwait = 0
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
|
|
worldStarted()
|
|
|
|
for p1 != nil {
|
|
p := p1
|
|
p1 = p1.link.ptr()
|
|
if p.m != 0 {
|
|
mp := p.m.ptr()
|
|
p.m = 0
|
|
if mp.nextp != 0 {
|
|
throw("startTheWorld: inconsistent mp->nextp")
|
|
}
|
|
mp.nextp.set(p)
|
|
notewakeup(&mp.park)
|
|
} else {
|
|
// Start M to run P. Do not start another M below.
|
|
newm(nil, p, -1)
|
|
}
|
|
}
|
|
|
|
// Capture start-the-world time before doing clean-up tasks.
|
|
startTime := nanotime()
|
|
if emitTraceEvent {
|
|
traceGCSTWDone()
|
|
}
|
|
|
|
// Wakeup an additional proc in case we have excessive runnable goroutines
|
|
// in local queues or in the global queue. If we don't, the proc will park itself.
|
|
// If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
|
|
wakep()
|
|
|
|
releasem(mp)
|
|
|
|
return startTime
|
|
}
|
|
|
|
// First function run by a new goroutine.
|
|
// This is passed to makecontext.
|
|
func kickoff() {
|
|
gp := getg()
|
|
|
|
if gp.traceback != 0 {
|
|
gtraceback(gp)
|
|
}
|
|
|
|
fv := gp.entry
|
|
param := gp.param
|
|
|
|
// When running on the g0 stack we can wind up here without a p,
|
|
// for example from mcall(exitsyscall0) in exitsyscall, in
|
|
// which case we can not run a write barrier.
|
|
// It is also possible for us to get here from the systemstack
|
|
// call in wbBufFlush, at which point the write barrier buffer
|
|
// is full and we can not run a write barrier.
|
|
// Setting gp.entry = nil or gp.param = nil will try to run a
|
|
// write barrier, so if we are on the g0 stack due to mcall
|
|
// (systemstack calls mcall) then clear the field using uintptr.
|
|
// This is OK when gp.param is gp.m.curg, as curg will be kept
|
|
// alive elsewhere, and gp.entry always points into g, or
|
|
// to a statically allocated value, or (in the case of mcall)
|
|
// to the stack.
|
|
if gp == gp.m.g0 && gp.param == unsafe.Pointer(gp.m.curg) {
|
|
*(*uintptr)(unsafe.Pointer(&gp.entry)) = 0
|
|
*(*uintptr)(unsafe.Pointer(&gp.param)) = 0
|
|
} else if gp.m.p == 0 {
|
|
throw("no p in kickoff")
|
|
} else {
|
|
gp.entry = nil
|
|
gp.param = nil
|
|
}
|
|
|
|
// Record the entry SP to help stack scan.
|
|
gp.entrysp = getsp()
|
|
|
|
fv(param)
|
|
goexit1()
|
|
}
|
|
|
|
// The go:noinline is to guarantee the getcallerpc/getcallersp below are safe,
|
|
// so that we can set up g0.sched to return to the call of mstart1 above.
|
|
//go:noinline
|
|
func mstart1() {
|
|
_g_ := getg()
|
|
|
|
if _g_ != _g_.m.g0 {
|
|
throw("bad runtime·mstart")
|
|
}
|
|
|
|
asminit()
|
|
|
|
// Install signal handlers; after minit so that minit can
|
|
// prepare the thread to be able to handle the signals.
|
|
// For gccgo minit was called by C code.
|
|
if _g_.m == &m0 {
|
|
mstartm0()
|
|
}
|
|
|
|
if fn := _g_.m.mstartfn; fn != nil {
|
|
fn()
|
|
}
|
|
|
|
if _g_.m != &m0 {
|
|
acquirep(_g_.m.nextp.ptr())
|
|
_g_.m.nextp = 0
|
|
}
|
|
schedule()
|
|
}
|
|
|
|
// mstartm0 implements part of mstart1 that only runs on the m0.
|
|
//
|
|
// Write barriers are allowed here because we know the GC can't be
|
|
// running yet, so they'll be no-ops.
|
|
//
|
|
//go:yeswritebarrierrec
|
|
func mstartm0() {
|
|
// Create an extra M for callbacks on threads not created by Go.
|
|
// An extra M is also needed on Windows for callbacks created by
|
|
// syscall.NewCallback. See issue #6751 for details.
|
|
if (iscgo || GOOS == "windows") && !cgoHasExtraM {
|
|
cgoHasExtraM = true
|
|
newextram()
|
|
}
|
|
initsig(false)
|
|
}
|
|
|
|
// mPark causes a thread to park itself - temporarily waking for
|
|
// fixups but otherwise waiting to be fully woken. This is the
|
|
// only way that m's should park themselves.
|
|
//go:nosplit
|
|
func mPark() {
|
|
g := getg()
|
|
for {
|
|
notesleep(&g.m.park)
|
|
// Note, because of signal handling by this parked m,
|
|
// a preemptive mDoFixup() may actually occur via
|
|
// mDoFixupAndOSYield(). (See golang.org/issue/44193)
|
|
noteclear(&g.m.park)
|
|
if !mDoFixup() {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// mexit tears down and exits the current thread.
|
|
//
|
|
// Don't call this directly to exit the thread, since it must run at
|
|
// the top of the thread stack. Instead, use gogo(&_g_.m.g0.sched) to
|
|
// unwind the stack to the point that exits the thread.
|
|
//
|
|
// It is entered with m.p != nil, so write barriers are allowed. It
|
|
// will release the P before exiting.
|
|
//
|
|
//go:yeswritebarrierrec
|
|
func mexit(osStack bool) {
|
|
g := getg()
|
|
m := g.m
|
|
|
|
if m == &m0 {
|
|
// This is the main thread. Just wedge it.
|
|
//
|
|
// On Linux, exiting the main thread puts the process
|
|
// into a non-waitable zombie state. On Plan 9,
|
|
// exiting the main thread unblocks wait even though
|
|
// other threads are still running. On Solaris we can
|
|
// neither exitThread nor return from mstart. Other
|
|
// bad things probably happen on other platforms.
|
|
//
|
|
// We could try to clean up this M more before wedging
|
|
// it, but that complicates signal handling.
|
|
handoffp(releasep())
|
|
lock(&sched.lock)
|
|
sched.nmfreed++
|
|
checkdead()
|
|
unlock(&sched.lock)
|
|
mPark()
|
|
throw("locked m0 woke up")
|
|
}
|
|
|
|
sigblock(true)
|
|
unminit()
|
|
|
|
// Free the gsignal stack.
|
|
if m.gsignal != nil {
|
|
stackfree(m.gsignal)
|
|
// On some platforms, when calling into VDSO (e.g. nanotime)
|
|
// we store our g on the gsignal stack, if there is one.
|
|
// Now the stack is freed, unlink it from the m, so we
|
|
// won't write to it when calling VDSO code.
|
|
m.gsignal = nil
|
|
}
|
|
|
|
// Remove m from allm.
|
|
lock(&sched.lock)
|
|
for pprev := &allm; *pprev != nil; pprev = &(*pprev).alllink {
|
|
if *pprev == m {
|
|
*pprev = m.alllink
|
|
goto found
|
|
}
|
|
}
|
|
throw("m not found in allm")
|
|
found:
|
|
if !osStack {
|
|
// Delay reaping m until it's done with the stack.
|
|
//
|
|
// If this is using an OS stack, the OS will free it
|
|
// so there's no need for reaping.
|
|
atomic.Store(&m.freeWait, 1)
|
|
// Put m on the free list, though it will not be reaped until
|
|
// freeWait is 0. Note that the free list must not be linked
|
|
// through alllink because some functions walk allm without
|
|
// locking, so may be using alllink.
|
|
m.freelink = sched.freem
|
|
sched.freem = m
|
|
}
|
|
unlock(&sched.lock)
|
|
|
|
atomic.Xadd64(&ncgocall, int64(m.ncgocall))
|
|
|
|
// Release the P.
|
|
handoffp(releasep())
|
|
// After this point we must not have write barriers.
|
|
|
|
// Invoke the deadlock detector. This must happen after
|
|
// handoffp because it may have started a new M to take our
|
|
// P's work.
|
|
lock(&sched.lock)
|
|
sched.nmfreed++
|
|
checkdead()
|
|
unlock(&sched.lock)
|
|
|
|
if GOOS == "darwin" || GOOS == "ios" {
|
|
// Make sure pendingPreemptSignals is correct when an M exits.
|
|
// For #41702.
|
|
if atomic.Load(&m.signalPending) != 0 {
|
|
atomic.Xadd(&pendingPreemptSignals, -1)
|
|
}
|
|
}
|
|
|
|
// Destroy all allocated resources. After this is called, we may no
|
|
// longer take any locks.
|
|
mdestroy(m)
|
|
|
|
if osStack {
|
|
// Return from mstart and let the system thread
|
|
// library free the g0 stack and terminate the thread.
|
|
return
|
|
}
|
|
|
|
// mstart is the thread's entry point, so there's nothing to
|
|
// return to. Exit the thread directly. exitThread will clear
|
|
// m.freeWait when it's done with the stack and the m can be
|
|
// reaped.
|
|
exitThread(&m.freeWait)
|
|
}
|
|
|
|
// forEachP calls fn(p) for every P p when p reaches a GC safe point.
|
|
// If a P is currently executing code, this will bring the P to a GC
|
|
// safe point and execute fn on that P. If the P is not executing code
|
|
// (it is idle or in a syscall), this will call fn(p) directly while
|
|
// preventing the P from exiting its state. This does not ensure that
|
|
// fn will run on every CPU executing Go code, but it acts as a global
|
|
// memory barrier. GC uses this as a "ragged barrier."
|
|
//
|
|
// The caller must hold worldsema.
|
|
//
|
|
//go:systemstack
|
|
func forEachP(fn func(*p)) {
|
|
mp := acquirem()
|
|
_p_ := getg().m.p.ptr()
|
|
|
|
lock(&sched.lock)
|
|
if sched.safePointWait != 0 {
|
|
throw("forEachP: sched.safePointWait != 0")
|
|
}
|
|
sched.safePointWait = gomaxprocs - 1
|
|
sched.safePointFn = fn
|
|
|
|
// Ask all Ps to run the safe point function.
|
|
for _, p := range allp {
|
|
if p != _p_ {
|
|
atomic.Store(&p.runSafePointFn, 1)
|
|
}
|
|
}
|
|
preemptall()
|
|
|
|
// Any P entering _Pidle or _Psyscall from now on will observe
|
|
// p.runSafePointFn == 1 and will call runSafePointFn when
|
|
// changing its status to _Pidle/_Psyscall.
|
|
|
|
// Run safe point function for all idle Ps. sched.pidle will
|
|
// not change because we hold sched.lock.
|
|
for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
|
|
if atomic.Cas(&p.runSafePointFn, 1, 0) {
|
|
fn(p)
|
|
sched.safePointWait--
|
|
}
|
|
}
|
|
|
|
wait := sched.safePointWait > 0
|
|
unlock(&sched.lock)
|
|
|
|
// Run fn for the current P.
|
|
fn(_p_)
|
|
|
|
// Force Ps currently in _Psyscall into _Pidle and hand them
|
|
// off to induce safe point function execution.
|
|
for _, p := range allp {
|
|
s := p.status
|
|
if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) {
|
|
if trace.enabled {
|
|
traceGoSysBlock(p)
|
|
traceProcStop(p)
|
|
}
|
|
p.syscalltick++
|
|
handoffp(p)
|
|
}
|
|
}
|
|
|
|
// Wait for remaining Ps to run fn.
|
|
if wait {
|
|
for {
|
|
// Wait for 100us, then try to re-preempt in
|
|
// case of any races.
|
|
//
|
|
// Requires system stack.
|
|
if notetsleep(&sched.safePointNote, 100*1000) {
|
|
noteclear(&sched.safePointNote)
|
|
break
|
|
}
|
|
preemptall()
|
|
}
|
|
}
|
|
if sched.safePointWait != 0 {
|
|
throw("forEachP: not done")
|
|
}
|
|
for _, p := range allp {
|
|
if p.runSafePointFn != 0 {
|
|
throw("forEachP: P did not run fn")
|
|
}
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
sched.safePointFn = nil
|
|
unlock(&sched.lock)
|
|
releasem(mp)
|
|
}
|
|
|
|
// runSafePointFn runs the safe point function, if any, for this P.
|
|
// This should be called like
|
|
//
|
|
// if getg().m.p.runSafePointFn != 0 {
|
|
// runSafePointFn()
|
|
// }
|
|
//
|
|
// runSafePointFn must be checked on any transition in to _Pidle or
|
|
// _Psyscall to avoid a race where forEachP sees that the P is running
|
|
// just before the P goes into _Pidle/_Psyscall and neither forEachP
|
|
// nor the P run the safe-point function.
|
|
func runSafePointFn() {
|
|
p := getg().m.p.ptr()
|
|
// Resolve the race between forEachP running the safe-point
|
|
// function on this P's behalf and this P running the
|
|
// safe-point function directly.
|
|
if !atomic.Cas(&p.runSafePointFn, 1, 0) {
|
|
return
|
|
}
|
|
sched.safePointFn(p)
|
|
lock(&sched.lock)
|
|
sched.safePointWait--
|
|
if sched.safePointWait == 0 {
|
|
notewakeup(&sched.safePointNote)
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// Allocate a new m unassociated with any thread.
|
|
// Can use p for allocation context if needed.
|
|
// fn is recorded as the new m's m.mstartfn.
|
|
// id is optional pre-allocated m ID. Omit by passing -1.
|
|
//
|
|
// This function is allowed to have write barriers even if the caller
|
|
// isn't because it borrows _p_.
|
|
//
|
|
//go:yeswritebarrierrec
|
|
func allocm(_p_ *p, fn func(), id int64, allocatestack bool) (mp *m, g0Stack unsafe.Pointer, g0StackSize uintptr) {
|
|
_g_ := getg()
|
|
acquirem() // disable GC because it can be called from sysmon
|
|
if _g_.m.p == 0 {
|
|
acquirep(_p_) // temporarily borrow p for mallocs in this function
|
|
}
|
|
|
|
// Release the free M list. We need to do this somewhere and
|
|
// this may free up a stack we can use.
|
|
if sched.freem != nil {
|
|
lock(&sched.lock)
|
|
var newList *m
|
|
for freem := sched.freem; freem != nil; {
|
|
if freem.freeWait != 0 {
|
|
next := freem.freelink
|
|
freem.freelink = newList
|
|
newList = freem
|
|
freem = next
|
|
continue
|
|
}
|
|
// stackfree must be on the system stack, but allocm is
|
|
// reachable off the system stack transitively from
|
|
// startm.
|
|
systemstack(func() {
|
|
stackfree(freem.g0)
|
|
})
|
|
freem = freem.freelink
|
|
}
|
|
sched.freem = newList
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
mp = new(m)
|
|
mp.mstartfn = fn
|
|
mcommoninit(mp, id)
|
|
|
|
mp.g0 = malg(allocatestack, false, &g0Stack, &g0StackSize)
|
|
mp.g0.m = mp
|
|
|
|
if _p_ == _g_.m.p.ptr() {
|
|
releasep()
|
|
}
|
|
releasem(_g_.m)
|
|
|
|
return mp, g0Stack, g0StackSize
|
|
}
|
|
|
|
// needm is called when a cgo callback happens on a
|
|
// thread without an m (a thread not created by Go).
|
|
// In this case, needm is expected to find an m to use
|
|
// and return with m, g initialized correctly.
|
|
// Since m and g are not set now (likely nil, but see below)
|
|
// needm is limited in what routines it can call. In particular
|
|
// it can only call nosplit functions (textflag 7) and cannot
|
|
// do any scheduling that requires an m.
|
|
//
|
|
// In order to avoid needing heavy lifting here, we adopt
|
|
// the following strategy: there is a stack of available m's
|
|
// that can be stolen. Using compare-and-swap
|
|
// to pop from the stack has ABA races, so we simulate
|
|
// a lock by doing an exchange (via Casuintptr) to steal the stack
|
|
// head and replace the top pointer with MLOCKED (1).
|
|
// This serves as a simple spin lock that we can use even
|
|
// without an m. The thread that locks the stack in this way
|
|
// unlocks the stack by storing a valid stack head pointer.
|
|
//
|
|
// In order to make sure that there is always an m structure
|
|
// available to be stolen, we maintain the invariant that there
|
|
// is always one more than needed. At the beginning of the
|
|
// program (if cgo is in use) the list is seeded with a single m.
|
|
// If needm finds that it has taken the last m off the list, its job
|
|
// is - once it has installed its own m so that it can do things like
|
|
// allocate memory - to create a spare m and put it on the list.
|
|
//
|
|
// Each of these extra m's also has a g0 and a curg that are
|
|
// pressed into service as the scheduling stack and current
|
|
// goroutine for the duration of the cgo callback.
|
|
//
|
|
// When the callback is done with the m, it calls dropm to
|
|
// put the m back on the list.
|
|
//go:nosplit
|
|
func needm() {
|
|
if (iscgo || GOOS == "windows") && !cgoHasExtraM {
|
|
// Can happen if C/C++ code calls Go from a global ctor.
|
|
// Can also happen on Windows if a global ctor uses a
|
|
// callback created by syscall.NewCallback. See issue #6751
|
|
// for details.
|
|
//
|
|
// Can not throw, because scheduler is not initialized yet.
|
|
write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
|
|
exit(1)
|
|
}
|
|
|
|
// Save and block signals before getting an M.
|
|
// The signal handler may call needm itself,
|
|
// and we must avoid a deadlock. Also, once g is installed,
|
|
// any incoming signals will try to execute,
|
|
// but we won't have the sigaltstack settings and other data
|
|
// set up appropriately until the end of minit, which will
|
|
// unblock the signals. This is the same dance as when
|
|
// starting a new m to run Go code via newosproc.
|
|
var sigmask sigset
|
|
sigsave(&sigmask)
|
|
sigblock(false)
|
|
|
|
// Lock extra list, take head, unlock popped list.
|
|
// nilokay=false is safe here because of the invariant above,
|
|
// that the extra list always contains or will soon contain
|
|
// at least one m.
|
|
mp := lockextra(false)
|
|
|
|
// Set needextram when we've just emptied the list,
|
|
// so that the eventual call into cgocallbackg will
|
|
// allocate a new m for the extra list. We delay the
|
|
// allocation until then so that it can be done
|
|
// after exitsyscall makes sure it is okay to be
|
|
// running at all (that is, there's no garbage collection
|
|
// running right now).
|
|
mp.needextram = mp.schedlink == 0
|
|
extraMCount--
|
|
unlockextra(mp.schedlink.ptr())
|
|
|
|
// Store the original signal mask for use by minit.
|
|
mp.sigmask = sigmask
|
|
|
|
// Install TLS on some platforms (previously setg
|
|
// would do this if necessary).
|
|
osSetupTLS(mp)
|
|
|
|
// Install g (= m->curg).
|
|
setg(mp.curg)
|
|
|
|
// Initialize this thread to use the m.
|
|
asminit()
|
|
minit()
|
|
|
|
setGContext()
|
|
|
|
// mp.curg is now a real goroutine.
|
|
casgstatus(mp.curg, _Gdead, _Gsyscall)
|
|
atomic.Xadd(&sched.ngsys, -1)
|
|
}
|
|
|
|
var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
|
|
|
|
// newextram allocates m's and puts them on the extra list.
|
|
// It is called with a working local m, so that it can do things
|
|
// like call schedlock and allocate.
|
|
func newextram() {
|
|
c := atomic.Xchg(&extraMWaiters, 0)
|
|
if c > 0 {
|
|
for i := uint32(0); i < c; i++ {
|
|
oneNewExtraM()
|
|
}
|
|
} else {
|
|
// Make sure there is at least one extra M.
|
|
mp := lockextra(true)
|
|
unlockextra(mp)
|
|
if mp == nil {
|
|
oneNewExtraM()
|
|
}
|
|
}
|
|
}
|
|
|
|
// oneNewExtraM allocates an m and puts it on the extra list.
|
|
func oneNewExtraM() {
|
|
// Create extra goroutine locked to extra m.
|
|
// The goroutine is the context in which the cgo callback will run.
|
|
// The sched.pc will never be returned to, but setting it to
|
|
// goexit makes clear to the traceback routines where
|
|
// the goroutine stack ends.
|
|
mp, g0SP, g0SPSize := allocm(nil, nil, -1, true)
|
|
gp := malg(true, false, nil, nil)
|
|
// malg returns status as _Gidle. Change to _Gdead before
|
|
// adding to allg where GC can see it. We use _Gdead to hide
|
|
// this from tracebacks and stack scans since it isn't a
|
|
// "real" goroutine until needm grabs it.
|
|
casgstatus(gp, _Gidle, _Gdead)
|
|
gp.m = mp
|
|
mp.curg = gp
|
|
mp.lockedInt++
|
|
mp.lockedg.set(gp)
|
|
gp.lockedm.set(mp)
|
|
gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1))
|
|
// put on allg for garbage collector
|
|
allgadd(gp)
|
|
|
|
// The context for gp will be set up in needm.
|
|
// Here we need to set the context for g0.
|
|
makeGContext(mp.g0, g0SP, g0SPSize)
|
|
|
|
// gp is now on the allg list, but we don't want it to be
|
|
// counted by gcount. It would be more "proper" to increment
|
|
// sched.ngfree, but that requires locking. Incrementing ngsys
|
|
// has the same effect.
|
|
atomic.Xadd(&sched.ngsys, +1)
|
|
|
|
// Add m to the extra list.
|
|
mnext := lockextra(true)
|
|
mp.schedlink.set(mnext)
|
|
extraMCount++
|
|
unlockextra(mp)
|
|
}
|
|
|
|
// dropm is called when a cgo callback has called needm but is now
|
|
// done with the callback and returning back into the non-Go thread.
|
|
// It puts the current m back onto the extra list.
|
|
//
|
|
// The main expense here is the call to signalstack to release the
|
|
// m's signal stack, and then the call to needm on the next callback
|
|
// from this thread. It is tempting to try to save the m for next time,
|
|
// which would eliminate both these costs, but there might not be
|
|
// a next time: the current thread (which Go does not control) might exit.
|
|
// If we saved the m for that thread, there would be an m leak each time
|
|
// such a thread exited. Instead, we acquire and release an m on each
|
|
// call. These should typically not be scheduling operations, just a few
|
|
// atomics, so the cost should be small.
|
|
//
|
|
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
|
|
// variable using pthread_key_create. Unlike the pthread keys we already use
|
|
// on OS X, this dummy key would never be read by Go code. It would exist
|
|
// only so that we could register at thread-exit-time destructor.
|
|
// That destructor would put the m back onto the extra list.
|
|
// This is purely a performance optimization. The current version,
|
|
// in which dropm happens on each cgo call, is still correct too.
|
|
// We may have to keep the current version on systems with cgo
|
|
// but without pthreads, like Windows.
|
|
//
|
|
// CgocallBackDone calls this after releasing p, so no write barriers.
|
|
//go:nowritebarrierrec
|
|
func dropm() {
|
|
// Clear m and g, and return m to the extra list.
|
|
// After the call to setg we can only call nosplit functions
|
|
// with no pointer manipulation.
|
|
mp := getg().m
|
|
|
|
// Return mp.curg to dead state.
|
|
casgstatus(mp.curg, _Gsyscall, _Gdead)
|
|
mp.curg.preemptStop = false
|
|
atomic.Xadd(&sched.ngsys, +1)
|
|
|
|
// Block signals before unminit.
|
|
// Unminit unregisters the signal handling stack (but needs g on some systems).
|
|
// Setg(nil) clears g, which is the signal handler's cue not to run Go handlers.
|
|
// It's important not to try to handle a signal between those two steps.
|
|
sigmask := mp.sigmask
|
|
sigblock(false)
|
|
unminit()
|
|
|
|
// gccgo sets the stack to Gdead here, because the splitstack
|
|
// context is not initialized.
|
|
atomic.Store(&mp.curg.atomicstatus, _Gdead)
|
|
mp.curg.gcstack = 0
|
|
mp.curg.gcnextsp = 0
|
|
|
|
mnext := lockextra(true)
|
|
extraMCount++
|
|
mp.schedlink.set(mnext)
|
|
|
|
setg(nil)
|
|
|
|
// Commit the release of mp.
|
|
unlockextra(mp)
|
|
|
|
msigrestore(sigmask)
|
|
}
|
|
|
|
// A helper function for EnsureDropM.
|
|
func getm() uintptr {
|
|
return uintptr(unsafe.Pointer(getg().m))
|
|
}
|
|
|
|
var extram uintptr
|
|
var extraMCount uint32 // Protected by lockextra
|
|
var extraMWaiters uint32
|
|
|
|
// lockextra locks the extra list and returns the list head.
|
|
// The caller must unlock the list by storing a new list head
|
|
// to extram. If nilokay is true, then lockextra will
|
|
// return a nil list head if that's what it finds. If nilokay is false,
|
|
// lockextra will keep waiting until the list head is no longer nil.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func lockextra(nilokay bool) *m {
|
|
const locked = 1
|
|
|
|
incr := false
|
|
for {
|
|
old := atomic.Loaduintptr(&extram)
|
|
if old == locked {
|
|
osyield_no_g()
|
|
continue
|
|
}
|
|
if old == 0 && !nilokay {
|
|
if !incr {
|
|
// Add 1 to the number of threads
|
|
// waiting for an M.
|
|
// This is cleared by newextram.
|
|
atomic.Xadd(&extraMWaiters, 1)
|
|
incr = true
|
|
}
|
|
usleep_no_g(1)
|
|
continue
|
|
}
|
|
if atomic.Casuintptr(&extram, old, locked) {
|
|
return (*m)(unsafe.Pointer(old))
|
|
}
|
|
osyield_no_g()
|
|
continue
|
|
}
|
|
}
|
|
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func unlockextra(mp *m) {
|
|
atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp)))
|
|
}
|
|
|
|
// execLock serializes exec and clone to avoid bugs or unspecified behaviour
|
|
// around exec'ing while creating/destroying threads. See issue #19546.
|
|
var execLock rwmutex
|
|
|
|
// newmHandoff contains a list of m structures that need new OS threads.
|
|
// This is used by newm in situations where newm itself can't safely
|
|
// start an OS thread.
|
|
var newmHandoff struct {
|
|
lock mutex
|
|
|
|
// newm points to a list of M structures that need new OS
|
|
// threads. The list is linked through m.schedlink.
|
|
newm muintptr
|
|
|
|
// waiting indicates that wake needs to be notified when an m
|
|
// is put on the list.
|
|
waiting bool
|
|
wake note
|
|
|
|
// haveTemplateThread indicates that the templateThread has
|
|
// been started. This is not protected by lock. Use cas to set
|
|
// to 1.
|
|
haveTemplateThread uint32
|
|
}
|
|
|
|
// Create a new m. It will start off with a call to fn, or else the scheduler.
|
|
// fn needs to be static and not a heap allocated closure.
|
|
// May run with m.p==nil, so write barriers are not allowed.
|
|
//
|
|
// id is optional pre-allocated m ID. Omit by passing -1.
|
|
//go:nowritebarrierrec
|
|
func newm(fn func(), _p_ *p, id int64) {
|
|
mp, _, _ := allocm(_p_, fn, id, false)
|
|
mp.doesPark = (_p_ != nil)
|
|
mp.nextp.set(_p_)
|
|
mp.sigmask = initSigmask
|
|
if gp := getg(); gp != nil && gp.m != nil && (gp.m.lockedExt != 0 || gp.m.incgo) && GOOS != "plan9" {
|
|
// We're on a locked M or a thread that may have been
|
|
// started by C. The kernel state of this thread may
|
|
// be strange (the user may have locked it for that
|
|
// purpose). We don't want to clone that into another
|
|
// thread. Instead, ask a known-good thread to create
|
|
// the thread for us.
|
|
//
|
|
// This is disabled on Plan 9. See golang.org/issue/22227.
|
|
//
|
|
// TODO: This may be unnecessary on Windows, which
|
|
// doesn't model thread creation off fork.
|
|
lock(&newmHandoff.lock)
|
|
if newmHandoff.haveTemplateThread == 0 {
|
|
throw("on a locked thread with no template thread")
|
|
}
|
|
mp.schedlink = newmHandoff.newm
|
|
newmHandoff.newm.set(mp)
|
|
if newmHandoff.waiting {
|
|
newmHandoff.waiting = false
|
|
notewakeup(&newmHandoff.wake)
|
|
}
|
|
unlock(&newmHandoff.lock)
|
|
return
|
|
}
|
|
newm1(mp)
|
|
}
|
|
|
|
func newm1(mp *m) {
|
|
execLock.rlock() // Prevent process clone.
|
|
newosproc(mp)
|
|
execLock.runlock()
|
|
}
|
|
|
|
// startTemplateThread starts the template thread if it is not already
|
|
// running.
|
|
//
|
|
// The calling thread must itself be in a known-good state.
|
|
func startTemplateThread() {
|
|
if GOARCH == "wasm" { // no threads on wasm yet
|
|
return
|
|
}
|
|
|
|
// Disable preemption to guarantee that the template thread will be
|
|
// created before a park once haveTemplateThread is set.
|
|
mp := acquirem()
|
|
if !atomic.Cas(&newmHandoff.haveTemplateThread, 0, 1) {
|
|
releasem(mp)
|
|
return
|
|
}
|
|
newm(templateThread, nil, -1)
|
|
releasem(mp)
|
|
}
|
|
|
|
// mFixupRace is used to temporarily borrow the race context from the
|
|
// coordinating m during a syscall_runtime_doAllThreadsSyscall and
|
|
// loan it out to each of the m's of the runtime so they can execute a
|
|
// mFixup.fn in that context.
|
|
var mFixupRace struct {
|
|
lock mutex
|
|
ctx uintptr
|
|
}
|
|
|
|
// mDoFixup runs any outstanding fixup function for the running m.
|
|
// Returns true if a fixup was outstanding and actually executed.
|
|
//
|
|
// Note: to avoid deadlocks, and the need for the fixup function
|
|
// itself to be async safe, signals are blocked for the working m
|
|
// while it holds the mFixup lock. (See golang.org/issue/44193)
|
|
//
|
|
//go:nosplit
|
|
func mDoFixup() bool {
|
|
_g_ := getg()
|
|
if used := atomic.Load(&_g_.m.mFixup.used); used == 0 {
|
|
return false
|
|
}
|
|
|
|
// slow path - if fixup fn is used, block signals and lock.
|
|
var sigmask sigset
|
|
sigsave(&sigmask)
|
|
sigblock(false)
|
|
lock(&_g_.m.mFixup.lock)
|
|
fn := _g_.m.mFixup.fn
|
|
if fn != nil {
|
|
if gcphase != _GCoff {
|
|
// We can't have a write barrier in this
|
|
// context since we may not have a P, but we
|
|
// clear fn to signal that we've executed the
|
|
// fixup. As long as fn is kept alive
|
|
// elsewhere, technically we should have no
|
|
// issues with the GC, but fn is likely
|
|
// generated in a different package altogether
|
|
// that may change independently. Just assert
|
|
// the GC is off so this lack of write barrier
|
|
// is more obviously safe.
|
|
throw("GC must be disabled to protect validity of fn value")
|
|
}
|
|
*(*uintptr)(unsafe.Pointer(&_g_.m.mFixup.fn)) = 0
|
|
fn(false)
|
|
}
|
|
unlock(&_g_.m.mFixup.lock)
|
|
msigrestore(sigmask)
|
|
return fn != nil
|
|
}
|
|
|
|
// mDoFixupAndOSYield is called when an m is unable to send a signal
|
|
// because the allThreadsSyscall mechanism is in progress. That is, an
|
|
// mPark() has been interrupted with this signal handler so we need to
|
|
// ensure the fixup is executed from this context.
|
|
//go:nosplit
|
|
func mDoFixupAndOSYield() {
|
|
mDoFixup()
|
|
osyield()
|
|
}
|
|
|
|
// templateThread is a thread in a known-good state that exists solely
|
|
// to start new threads in known-good states when the calling thread
|
|
// may not be in a good state.
|
|
//
|
|
// Many programs never need this, so templateThread is started lazily
|
|
// when we first enter a state that might lead to running on a thread
|
|
// in an unknown state.
|
|
//
|
|
// templateThread runs on an M without a P, so it must not have write
|
|
// barriers.
|
|
//
|
|
//go:nowritebarrierrec
|
|
func templateThread() {
|
|
lock(&sched.lock)
|
|
sched.nmsys++
|
|
checkdead()
|
|
unlock(&sched.lock)
|
|
|
|
for {
|
|
lock(&newmHandoff.lock)
|
|
for newmHandoff.newm != 0 {
|
|
newm := newmHandoff.newm.ptr()
|
|
newmHandoff.newm = 0
|
|
unlock(&newmHandoff.lock)
|
|
for newm != nil {
|
|
next := newm.schedlink.ptr()
|
|
newm.schedlink = 0
|
|
newm1(newm)
|
|
newm = next
|
|
}
|
|
lock(&newmHandoff.lock)
|
|
}
|
|
newmHandoff.waiting = true
|
|
noteclear(&newmHandoff.wake)
|
|
unlock(&newmHandoff.lock)
|
|
notesleep(&newmHandoff.wake)
|
|
mDoFixup()
|
|
}
|
|
}
|
|
|
|
// Stops execution of the current m until new work is available.
|
|
// Returns with acquired P.
|
|
func stopm() {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.locks != 0 {
|
|
throw("stopm holding locks")
|
|
}
|
|
if _g_.m.p != 0 {
|
|
throw("stopm holding p")
|
|
}
|
|
if _g_.m.spinning {
|
|
throw("stopm spinning")
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
mput(_g_.m)
|
|
unlock(&sched.lock)
|
|
mPark()
|
|
acquirep(_g_.m.nextp.ptr())
|
|
_g_.m.nextp = 0
|
|
}
|
|
|
|
func mspinning() {
|
|
// startm's caller incremented nmspinning. Set the new M's spinning.
|
|
getg().m.spinning = true
|
|
}
|
|
|
|
// Schedules some M to run the p (creates an M if necessary).
|
|
// If p==nil, tries to get an idle P, if no idle P's does nothing.
|
|
// May run with m.p==nil, so write barriers are not allowed.
|
|
// If spinning is set, the caller has incremented nmspinning and startm will
|
|
// either decrement nmspinning or set m.spinning in the newly started M.
|
|
//
|
|
// Callers passing a non-nil P must call from a non-preemptible context. See
|
|
// comment on acquirem below.
|
|
//
|
|
// Must not have write barriers because this may be called without a P.
|
|
//go:nowritebarrierrec
|
|
func startm(_p_ *p, spinning bool) {
|
|
// Disable preemption.
|
|
//
|
|
// Every owned P must have an owner that will eventually stop it in the
|
|
// event of a GC stop request. startm takes transient ownership of a P
|
|
// (either from argument or pidleget below) and transfers ownership to
|
|
// a started M, which will be responsible for performing the stop.
|
|
//
|
|
// Preemption must be disabled during this transient ownership,
|
|
// otherwise the P this is running on may enter GC stop while still
|
|
// holding the transient P, leaving that P in limbo and deadlocking the
|
|
// STW.
|
|
//
|
|
// Callers passing a non-nil P must already be in non-preemptible
|
|
// context, otherwise such preemption could occur on function entry to
|
|
// startm. Callers passing a nil P may be preemptible, so we must
|
|
// disable preemption before acquiring a P from pidleget below.
|
|
mp := acquirem()
|
|
lock(&sched.lock)
|
|
if _p_ == nil {
|
|
_p_ = pidleget()
|
|
if _p_ == nil {
|
|
unlock(&sched.lock)
|
|
if spinning {
|
|
// The caller incremented nmspinning, but there are no idle Ps,
|
|
// so it's okay to just undo the increment and give up.
|
|
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
|
|
throw("startm: negative nmspinning")
|
|
}
|
|
}
|
|
releasem(mp)
|
|
return
|
|
}
|
|
}
|
|
nmp := mget()
|
|
if nmp == nil {
|
|
// No M is available, we must drop sched.lock and call newm.
|
|
// However, we already own a P to assign to the M.
|
|
//
|
|
// Once sched.lock is released, another G (e.g., in a syscall),
|
|
// could find no idle P while checkdead finds a runnable G but
|
|
// no running M's because this new M hasn't started yet, thus
|
|
// throwing in an apparent deadlock.
|
|
//
|
|
// Avoid this situation by pre-allocating the ID for the new M,
|
|
// thus marking it as 'running' before we drop sched.lock. This
|
|
// new M will eventually run the scheduler to execute any
|
|
// queued G's.
|
|
id := mReserveID()
|
|
unlock(&sched.lock)
|
|
|
|
var fn func()
|
|
if spinning {
|
|
// The caller incremented nmspinning, so set m.spinning in the new M.
|
|
fn = mspinning
|
|
}
|
|
newm(fn, _p_, id)
|
|
// Ownership transfer of _p_ committed by start in newm.
|
|
// Preemption is now safe.
|
|
releasem(mp)
|
|
return
|
|
}
|
|
unlock(&sched.lock)
|
|
if nmp.spinning {
|
|
throw("startm: m is spinning")
|
|
}
|
|
if nmp.nextp != 0 {
|
|
throw("startm: m has p")
|
|
}
|
|
if spinning && !runqempty(_p_) {
|
|
throw("startm: p has runnable gs")
|
|
}
|
|
// The caller incremented nmspinning, so set m.spinning in the new M.
|
|
nmp.spinning = spinning
|
|
nmp.nextp.set(_p_)
|
|
notewakeup(&nmp.park)
|
|
// Ownership transfer of _p_ committed by wakeup. Preemption is now
|
|
// safe.
|
|
releasem(mp)
|
|
}
|
|
|
|
// Hands off P from syscall or locked M.
|
|
// Always runs without a P, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func handoffp(_p_ *p) {
|
|
// handoffp must start an M in any situation where
|
|
// findrunnable would return a G to run on _p_.
|
|
|
|
// if it has local work, start it straight away
|
|
if !runqempty(_p_) || sched.runqsize != 0 {
|
|
startm(_p_, false)
|
|
return
|
|
}
|
|
// if it has GC work, start it straight away
|
|
if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) {
|
|
startm(_p_, false)
|
|
return
|
|
}
|
|
// no local work, check that there are no spinning/idle M's,
|
|
// otherwise our help is not required
|
|
if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
|
|
startm(_p_, true)
|
|
return
|
|
}
|
|
lock(&sched.lock)
|
|
if sched.gcwaiting != 0 {
|
|
_p_.status = _Pgcstop
|
|
sched.stopwait--
|
|
if sched.stopwait == 0 {
|
|
notewakeup(&sched.stopnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
return
|
|
}
|
|
if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) {
|
|
sched.safePointFn(_p_)
|
|
sched.safePointWait--
|
|
if sched.safePointWait == 0 {
|
|
notewakeup(&sched.safePointNote)
|
|
}
|
|
}
|
|
if sched.runqsize != 0 {
|
|
unlock(&sched.lock)
|
|
startm(_p_, false)
|
|
return
|
|
}
|
|
// If this is the last running P and nobody is polling network,
|
|
// need to wakeup another M to poll network.
|
|
if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 {
|
|
unlock(&sched.lock)
|
|
startm(_p_, false)
|
|
return
|
|
}
|
|
|
|
// The scheduler lock cannot be held when calling wakeNetPoller below
|
|
// because wakeNetPoller may call wakep which may call startm.
|
|
when := nobarrierWakeTime(_p_)
|
|
pidleput(_p_)
|
|
unlock(&sched.lock)
|
|
|
|
if when != 0 {
|
|
wakeNetPoller(when)
|
|
}
|
|
}
|
|
|
|
// Tries to add one more P to execute G's.
|
|
// Called when a G is made runnable (newproc, ready).
|
|
func wakep() {
|
|
if atomic.Load(&sched.npidle) == 0 {
|
|
return
|
|
}
|
|
// be conservative about spinning threads
|
|
if atomic.Load(&sched.nmspinning) != 0 || !atomic.Cas(&sched.nmspinning, 0, 1) {
|
|
return
|
|
}
|
|
startm(nil, true)
|
|
}
|
|
|
|
// Stops execution of the current m that is locked to a g until the g is runnable again.
|
|
// Returns with acquired P.
|
|
func stoplockedm() {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.lockedg == 0 || _g_.m.lockedg.ptr().lockedm.ptr() != _g_.m {
|
|
throw("stoplockedm: inconsistent locking")
|
|
}
|
|
if _g_.m.p != 0 {
|
|
// Schedule another M to run this p.
|
|
_p_ := releasep()
|
|
handoffp(_p_)
|
|
}
|
|
incidlelocked(1)
|
|
// Wait until another thread schedules lockedg again.
|
|
mPark()
|
|
status := readgstatus(_g_.m.lockedg.ptr())
|
|
if status&^_Gscan != _Grunnable {
|
|
print("runtime:stoplockedm: lockedg (atomicstatus=", status, ") is not Grunnable or Gscanrunnable\n")
|
|
dumpgstatus(_g_.m.lockedg.ptr())
|
|
throw("stoplockedm: not runnable")
|
|
}
|
|
acquirep(_g_.m.nextp.ptr())
|
|
_g_.m.nextp = 0
|
|
}
|
|
|
|
// Schedules the locked m to run the locked gp.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func startlockedm(gp *g) {
|
|
_g_ := getg()
|
|
|
|
mp := gp.lockedm.ptr()
|
|
if mp == _g_.m {
|
|
throw("startlockedm: locked to me")
|
|
}
|
|
if mp.nextp != 0 {
|
|
throw("startlockedm: m has p")
|
|
}
|
|
// directly handoff current P to the locked m
|
|
incidlelocked(-1)
|
|
_p_ := releasep()
|
|
mp.nextp.set(_p_)
|
|
notewakeup(&mp.park)
|
|
stopm()
|
|
}
|
|
|
|
// Stops the current m for stopTheWorld.
|
|
// Returns when the world is restarted.
|
|
func gcstopm() {
|
|
_g_ := getg()
|
|
|
|
if sched.gcwaiting == 0 {
|
|
throw("gcstopm: not waiting for gc")
|
|
}
|
|
if _g_.m.spinning {
|
|
_g_.m.spinning = false
|
|
// OK to just drop nmspinning here,
|
|
// startTheWorld will unpark threads as necessary.
|
|
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
|
|
throw("gcstopm: negative nmspinning")
|
|
}
|
|
}
|
|
_p_ := releasep()
|
|
lock(&sched.lock)
|
|
_p_.status = _Pgcstop
|
|
sched.stopwait--
|
|
if sched.stopwait == 0 {
|
|
notewakeup(&sched.stopnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
stopm()
|
|
}
|
|
|
|
// Schedules gp to run on the current M.
|
|
// If inheritTime is true, gp inherits the remaining time in the
|
|
// current time slice. Otherwise, it starts a new time slice.
|
|
// Never returns.
|
|
//
|
|
// Write barriers are allowed because this is called immediately after
|
|
// acquiring a P in several places.
|
|
//
|
|
//go:yeswritebarrierrec
|
|
func execute(gp *g, inheritTime bool) {
|
|
_g_ := getg()
|
|
|
|
// Assign gp.m before entering _Grunning so running Gs have an
|
|
// M.
|
|
_g_.m.curg = gp
|
|
gp.m = _g_.m
|
|
casgstatus(gp, _Grunnable, _Grunning)
|
|
gp.waitsince = 0
|
|
gp.preempt = false
|
|
if !inheritTime {
|
|
_g_.m.p.ptr().schedtick++
|
|
}
|
|
|
|
// Check whether the profiler needs to be turned on or off.
|
|
hz := sched.profilehz
|
|
if _g_.m.profilehz != hz {
|
|
setThreadCPUProfiler(hz)
|
|
}
|
|
|
|
if trace.enabled {
|
|
// GoSysExit has to happen when we have a P, but before GoStart.
|
|
// So we emit it here.
|
|
if gp.syscallsp != 0 && gp.sysblocktraced {
|
|
traceGoSysExit(gp.sysexitticks)
|
|
}
|
|
traceGoStart()
|
|
}
|
|
|
|
gogo(gp)
|
|
}
|
|
|
|
// Finds a runnable goroutine to execute.
|
|
// Tries to steal from other P's, get g from local or global queue, poll network.
|
|
func findrunnable() (gp *g, inheritTime bool) {
|
|
_g_ := getg()
|
|
|
|
// The conditions here and in handoffp must agree: if
|
|
// findrunnable would return a G to run, handoffp must start
|
|
// an M.
|
|
|
|
top:
|
|
_p_ := _g_.m.p.ptr()
|
|
if sched.gcwaiting != 0 {
|
|
gcstopm()
|
|
goto top
|
|
}
|
|
if _p_.runSafePointFn != 0 {
|
|
runSafePointFn()
|
|
}
|
|
|
|
now, pollUntil, _ := checkTimers(_p_, 0)
|
|
|
|
if fingwait && fingwake {
|
|
if gp := wakefing(); gp != nil {
|
|
ready(gp, 0, true)
|
|
}
|
|
}
|
|
if *cgo_yield != nil {
|
|
asmcgocall(*cgo_yield, nil)
|
|
}
|
|
|
|
// local runq
|
|
if gp, inheritTime := runqget(_p_); gp != nil {
|
|
return gp, inheritTime
|
|
}
|
|
|
|
// global runq
|
|
if sched.runqsize != 0 {
|
|
lock(&sched.lock)
|
|
gp := globrunqget(_p_, 0)
|
|
unlock(&sched.lock)
|
|
if gp != nil {
|
|
return gp, false
|
|
}
|
|
}
|
|
|
|
// Poll network.
|
|
// This netpoll is only an optimization before we resort to stealing.
|
|
// We can safely skip it if there are no waiters or a thread is blocked
|
|
// in netpoll already. If there is any kind of logical race with that
|
|
// blocked thread (e.g. it has already returned from netpoll, but does
|
|
// not set lastpoll yet), this thread will do blocking netpoll below
|
|
// anyway.
|
|
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 {
|
|
if list := netpoll(0); !list.empty() { // non-blocking
|
|
gp := list.pop()
|
|
injectglist(&list)
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
return gp, false
|
|
}
|
|
}
|
|
|
|
// Spinning Ms: steal work from other Ps.
|
|
//
|
|
// Limit the number of spinning Ms to half the number of busy Ps.
|
|
// This is necessary to prevent excessive CPU consumption when
|
|
// GOMAXPROCS>>1 but the program parallelism is low.
|
|
procs := uint32(gomaxprocs)
|
|
if _g_.m.spinning || 2*atomic.Load(&sched.nmspinning) < procs-atomic.Load(&sched.npidle) {
|
|
if !_g_.m.spinning {
|
|
_g_.m.spinning = true
|
|
atomic.Xadd(&sched.nmspinning, 1)
|
|
}
|
|
|
|
gp, inheritTime, tnow, w, newWork := stealWork(now)
|
|
now = tnow
|
|
if gp != nil {
|
|
// Successfully stole.
|
|
return gp, inheritTime
|
|
}
|
|
if newWork {
|
|
// There may be new timer or GC work; restart to
|
|
// discover.
|
|
goto top
|
|
}
|
|
if w != 0 && (pollUntil == 0 || w < pollUntil) {
|
|
// Earlier timer to wait for.
|
|
pollUntil = w
|
|
}
|
|
}
|
|
|
|
// We have nothing to do.
|
|
//
|
|
// If we're in the GC mark phase, can safely scan and blacken objects,
|
|
// and have work to do, run idle-time marking rather than give up the
|
|
// P.
|
|
if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) {
|
|
node := (*gcBgMarkWorkerNode)(gcBgMarkWorkerPool.pop())
|
|
if node != nil {
|
|
_p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
|
|
gp := node.gp.ptr()
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
return gp, false
|
|
}
|
|
}
|
|
|
|
// wasm only:
|
|
// If a callback returned and no other goroutine is awake,
|
|
// then wake event handler goroutine which pauses execution
|
|
// until a callback was triggered.
|
|
gp, otherReady := beforeIdle(now, pollUntil)
|
|
if gp != nil {
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
return gp, false
|
|
}
|
|
if otherReady {
|
|
goto top
|
|
}
|
|
|
|
// Before we drop our P, make a snapshot of the allp slice,
|
|
// which can change underfoot once we no longer block
|
|
// safe-points. We don't need to snapshot the contents because
|
|
// everything up to cap(allp) is immutable.
|
|
allpSnapshot := allp
|
|
// Also snapshot masks. Value changes are OK, but we can't allow
|
|
// len to change out from under us.
|
|
idlepMaskSnapshot := idlepMask
|
|
timerpMaskSnapshot := timerpMask
|
|
|
|
// return P and block
|
|
lock(&sched.lock)
|
|
if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 {
|
|
unlock(&sched.lock)
|
|
goto top
|
|
}
|
|
if sched.runqsize != 0 {
|
|
gp := globrunqget(_p_, 0)
|
|
unlock(&sched.lock)
|
|
return gp, false
|
|
}
|
|
if releasep() != _p_ {
|
|
throw("findrunnable: wrong p")
|
|
}
|
|
pidleput(_p_)
|
|
unlock(&sched.lock)
|
|
|
|
// Delicate dance: thread transitions from spinning to non-spinning
|
|
// state, potentially concurrently with submission of new work. We must
|
|
// drop nmspinning first and then check all sources again (with
|
|
// #StoreLoad memory barrier in between). If we do it the other way
|
|
// around, another thread can submit work after we've checked all
|
|
// sources but before we drop nmspinning; as a result nobody will
|
|
// unpark a thread to run the work.
|
|
//
|
|
// This applies to the following sources of work:
|
|
//
|
|
// * Goroutines added to a per-P run queue.
|
|
// * New/modified-earlier timers on a per-P timer heap.
|
|
// * Idle-priority GC work (barring golang.org/issue/19112).
|
|
//
|
|
// If we discover new work below, we need to restore m.spinning as a signal
|
|
// for resetspinning to unpark a new worker thread (because there can be more
|
|
// than one starving goroutine). However, if after discovering new work
|
|
// we also observe no idle Ps it is OK to skip unparking a new worker
|
|
// thread: the system is fully loaded so no spinning threads are required.
|
|
// Also see "Worker thread parking/unparking" comment at the top of the file.
|
|
wasSpinning := _g_.m.spinning
|
|
if _g_.m.spinning {
|
|
_g_.m.spinning = false
|
|
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
|
|
throw("findrunnable: negative nmspinning")
|
|
}
|
|
|
|
// Note the for correctness, only the last M transitioning from
|
|
// spinning to non-spinning must perform these rechecks to
|
|
// ensure no missed work. We are performing it on every M that
|
|
// transitions as a conservative change to monitor effects on
|
|
// latency. See golang.org/issue/43997.
|
|
|
|
// Check all runqueues once again.
|
|
_p_ = checkRunqsNoP(allpSnapshot, idlepMaskSnapshot)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
_g_.m.spinning = true
|
|
atomic.Xadd(&sched.nmspinning, 1)
|
|
goto top
|
|
}
|
|
|
|
// Check for idle-priority GC work again.
|
|
_p_, gp = checkIdleGCNoP()
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
_g_.m.spinning = true
|
|
atomic.Xadd(&sched.nmspinning, 1)
|
|
|
|
// Run the idle worker.
|
|
_p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
return gp, false
|
|
}
|
|
|
|
// Finally, check for timer creation or expiry concurrently with
|
|
// transitioning from spinning to non-spinning.
|
|
//
|
|
// Note that we cannot use checkTimers here because it calls
|
|
// adjusttimers which may need to allocate memory, and that isn't
|
|
// allowed when we don't have an active P.
|
|
pollUntil = checkTimersNoP(allpSnapshot, timerpMaskSnapshot, pollUntil)
|
|
}
|
|
|
|
// Poll network until next timer.
|
|
if netpollinited() && (atomic.Load(&netpollWaiters) > 0 || pollUntil != 0) && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
|
|
atomic.Store64(&sched.pollUntil, uint64(pollUntil))
|
|
if _g_.m.p != 0 {
|
|
throw("findrunnable: netpoll with p")
|
|
}
|
|
if _g_.m.spinning {
|
|
throw("findrunnable: netpoll with spinning")
|
|
}
|
|
delay := int64(-1)
|
|
if pollUntil != 0 {
|
|
if now == 0 {
|
|
now = nanotime()
|
|
}
|
|
delay = pollUntil - now
|
|
if delay < 0 {
|
|
delay = 0
|
|
}
|
|
}
|
|
if faketime != 0 {
|
|
// When using fake time, just poll.
|
|
delay = 0
|
|
}
|
|
list := netpoll(delay) // block until new work is available
|
|
atomic.Store64(&sched.pollUntil, 0)
|
|
atomic.Store64(&sched.lastpoll, uint64(nanotime()))
|
|
if faketime != 0 && list.empty() {
|
|
// Using fake time and nothing is ready; stop M.
|
|
// When all M's stop, checkdead will call timejump.
|
|
stopm()
|
|
goto top
|
|
}
|
|
lock(&sched.lock)
|
|
_p_ = pidleget()
|
|
unlock(&sched.lock)
|
|
if _p_ == nil {
|
|
injectglist(&list)
|
|
} else {
|
|
acquirep(_p_)
|
|
if !list.empty() {
|
|
gp := list.pop()
|
|
injectglist(&list)
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
return gp, false
|
|
}
|
|
if wasSpinning {
|
|
_g_.m.spinning = true
|
|
atomic.Xadd(&sched.nmspinning, 1)
|
|
}
|
|
goto top
|
|
}
|
|
} else if pollUntil != 0 && netpollinited() {
|
|
pollerPollUntil := int64(atomic.Load64(&sched.pollUntil))
|
|
if pollerPollUntil == 0 || pollerPollUntil > pollUntil {
|
|
netpollBreak()
|
|
}
|
|
}
|
|
stopm()
|
|
goto top
|
|
}
|
|
|
|
// pollWork reports whether there is non-background work this P could
|
|
// be doing. This is a fairly lightweight check to be used for
|
|
// background work loops, like idle GC. It checks a subset of the
|
|
// conditions checked by the actual scheduler.
|
|
func pollWork() bool {
|
|
if sched.runqsize != 0 {
|
|
return true
|
|
}
|
|
p := getg().m.p.ptr()
|
|
if !runqempty(p) {
|
|
return true
|
|
}
|
|
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && sched.lastpoll != 0 {
|
|
if list := netpoll(0); !list.empty() {
|
|
injectglist(&list)
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// stealWork attempts to steal a runnable goroutine or timer from any P.
|
|
//
|
|
// If newWork is true, new work may have been readied.
|
|
//
|
|
// If now is not 0 it is the current time. stealWork returns the passed time or
|
|
// the current time if now was passed as 0.
|
|
func stealWork(now int64) (gp *g, inheritTime bool, rnow, pollUntil int64, newWork bool) {
|
|
pp := getg().m.p.ptr()
|
|
|
|
ranTimer := false
|
|
|
|
const stealTries = 4
|
|
for i := 0; i < stealTries; i++ {
|
|
stealTimersOrRunNextG := i == stealTries-1
|
|
|
|
for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() {
|
|
if sched.gcwaiting != 0 {
|
|
// GC work may be available.
|
|
return nil, false, now, pollUntil, true
|
|
}
|
|
p2 := allp[enum.position()]
|
|
if pp == p2 {
|
|
continue
|
|
}
|
|
|
|
// Steal timers from p2. This call to checkTimers is the only place
|
|
// where we might hold a lock on a different P's timers. We do this
|
|
// once on the last pass before checking runnext because stealing
|
|
// from the other P's runnext should be the last resort, so if there
|
|
// are timers to steal do that first.
|
|
//
|
|
// We only check timers on one of the stealing iterations because
|
|
// the time stored in now doesn't change in this loop and checking
|
|
// the timers for each P more than once with the same value of now
|
|
// is probably a waste of time.
|
|
//
|
|
// timerpMask tells us whether the P may have timers at all. If it
|
|
// can't, no need to check at all.
|
|
if stealTimersOrRunNextG && timerpMask.read(enum.position()) {
|
|
tnow, w, ran := checkTimers(p2, now)
|
|
now = tnow
|
|
if w != 0 && (pollUntil == 0 || w < pollUntil) {
|
|
pollUntil = w
|
|
}
|
|
if ran {
|
|
// Running the timers may have
|
|
// made an arbitrary number of G's
|
|
// ready and added them to this P's
|
|
// local run queue. That invalidates
|
|
// the assumption of runqsteal
|
|
// that it always has room to add
|
|
// stolen G's. So check now if there
|
|
// is a local G to run.
|
|
if gp, inheritTime := runqget(pp); gp != nil {
|
|
return gp, inheritTime, now, pollUntil, ranTimer
|
|
}
|
|
ranTimer = true
|
|
}
|
|
}
|
|
|
|
// Don't bother to attempt to steal if p2 is idle.
|
|
if !idlepMask.read(enum.position()) {
|
|
if gp := runqsteal(pp, p2, stealTimersOrRunNextG); gp != nil {
|
|
return gp, false, now, pollUntil, ranTimer
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// No goroutines found to steal. Regardless, running a timer may have
|
|
// made some goroutine ready that we missed. Indicate the next timer to
|
|
// wait for.
|
|
return nil, false, now, pollUntil, ranTimer
|
|
}
|
|
|
|
// Check all Ps for a runnable G to steal.
|
|
//
|
|
// On entry we have no P. If a G is available to steal and a P is available,
|
|
// the P is returned which the caller should acquire and attempt to steal the
|
|
// work to.
|
|
func checkRunqsNoP(allpSnapshot []*p, idlepMaskSnapshot pMask) *p {
|
|
for id, p2 := range allpSnapshot {
|
|
if !idlepMaskSnapshot.read(uint32(id)) && !runqempty(p2) {
|
|
lock(&sched.lock)
|
|
pp := pidleget()
|
|
unlock(&sched.lock)
|
|
if pp != nil {
|
|
return pp
|
|
}
|
|
|
|
// Can't get a P, don't bother checking remaining Ps.
|
|
break
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Check all Ps for a timer expiring sooner than pollUntil.
|
|
//
|
|
// Returns updated pollUntil value.
|
|
func checkTimersNoP(allpSnapshot []*p, timerpMaskSnapshot pMask, pollUntil int64) int64 {
|
|
for id, p2 := range allpSnapshot {
|
|
if timerpMaskSnapshot.read(uint32(id)) {
|
|
w := nobarrierWakeTime(p2)
|
|
if w != 0 && (pollUntil == 0 || w < pollUntil) {
|
|
pollUntil = w
|
|
}
|
|
}
|
|
}
|
|
|
|
return pollUntil
|
|
}
|
|
|
|
// Check for idle-priority GC, without a P on entry.
|
|
//
|
|
// If some GC work, a P, and a worker G are all available, the P and G will be
|
|
// returned. The returned P has not been wired yet.
|
|
func checkIdleGCNoP() (*p, *g) {
|
|
// N.B. Since we have no P, gcBlackenEnabled may change at any time; we
|
|
// must check again after acquiring a P.
|
|
if atomic.Load(&gcBlackenEnabled) == 0 {
|
|
return nil, nil
|
|
}
|
|
if !gcMarkWorkAvailable(nil) {
|
|
return nil, nil
|
|
}
|
|
|
|
// Work is available; we can start an idle GC worker only if there is
|
|
// an available P and available worker G.
|
|
//
|
|
// We can attempt to acquire these in either order, though both have
|
|
// synchronization concerns (see below). Workers are almost always
|
|
// available (see comment in findRunnableGCWorker for the one case
|
|
// there may be none). Since we're slightly less likely to find a P,
|
|
// check for that first.
|
|
//
|
|
// Synchronization: note that we must hold sched.lock until we are
|
|
// committed to keeping it. Otherwise we cannot put the unnecessary P
|
|
// back in sched.pidle without performing the full set of idle
|
|
// transition checks.
|
|
//
|
|
// If we were to check gcBgMarkWorkerPool first, we must somehow handle
|
|
// the assumption in gcControllerState.findRunnableGCWorker that an
|
|
// empty gcBgMarkWorkerPool is only possible if gcMarkDone is running.
|
|
lock(&sched.lock)
|
|
pp := pidleget()
|
|
if pp == nil {
|
|
unlock(&sched.lock)
|
|
return nil, nil
|
|
}
|
|
|
|
// Now that we own a P, gcBlackenEnabled can't change (as it requires
|
|
// STW).
|
|
if gcBlackenEnabled == 0 {
|
|
pidleput(pp)
|
|
unlock(&sched.lock)
|
|
return nil, nil
|
|
}
|
|
|
|
node := (*gcBgMarkWorkerNode)(gcBgMarkWorkerPool.pop())
|
|
if node == nil {
|
|
pidleput(pp)
|
|
unlock(&sched.lock)
|
|
return nil, nil
|
|
}
|
|
|
|
unlock(&sched.lock)
|
|
|
|
return pp, node.gp.ptr()
|
|
}
|
|
|
|
// wakeNetPoller wakes up the thread sleeping in the network poller if it isn't
|
|
// going to wake up before the when argument; or it wakes an idle P to service
|
|
// timers and the network poller if there isn't one already.
|
|
func wakeNetPoller(when int64) {
|
|
if atomic.Load64(&sched.lastpoll) == 0 {
|
|
// In findrunnable we ensure that when polling the pollUntil
|
|
// field is either zero or the time to which the current
|
|
// poll is expected to run. This can have a spurious wakeup
|
|
// but should never miss a wakeup.
|
|
pollerPollUntil := int64(atomic.Load64(&sched.pollUntil))
|
|
if pollerPollUntil == 0 || pollerPollUntil > when {
|
|
netpollBreak()
|
|
}
|
|
} else {
|
|
// There are no threads in the network poller, try to get
|
|
// one there so it can handle new timers.
|
|
if GOOS != "plan9" { // Temporary workaround - see issue #42303.
|
|
wakep()
|
|
}
|
|
}
|
|
}
|
|
|
|
func resetspinning() {
|
|
_g_ := getg()
|
|
if !_g_.m.spinning {
|
|
throw("resetspinning: not a spinning m")
|
|
}
|
|
_g_.m.spinning = false
|
|
nmspinning := atomic.Xadd(&sched.nmspinning, -1)
|
|
if int32(nmspinning) < 0 {
|
|
throw("findrunnable: negative nmspinning")
|
|
}
|
|
// M wakeup policy is deliberately somewhat conservative, so check if we
|
|
// need to wakeup another P here. See "Worker thread parking/unparking"
|
|
// comment at the top of the file for details.
|
|
wakep()
|
|
}
|
|
|
|
// injectglist adds each runnable G on the list to some run queue,
|
|
// and clears glist. If there is no current P, they are added to the
|
|
// global queue, and up to npidle M's are started to run them.
|
|
// Otherwise, for each idle P, this adds a G to the global queue
|
|
// and starts an M. Any remaining G's are added to the current P's
|
|
// local run queue.
|
|
// This may temporarily acquire sched.lock.
|
|
// Can run concurrently with GC.
|
|
func injectglist(glist *gList) {
|
|
if glist.empty() {
|
|
return
|
|
}
|
|
if trace.enabled {
|
|
for gp := glist.head.ptr(); gp != nil; gp = gp.schedlink.ptr() {
|
|
traceGoUnpark(gp, 0)
|
|
}
|
|
}
|
|
|
|
// Mark all the goroutines as runnable before we put them
|
|
// on the run queues.
|
|
head := glist.head.ptr()
|
|
var tail *g
|
|
qsize := 0
|
|
for gp := head; gp != nil; gp = gp.schedlink.ptr() {
|
|
tail = gp
|
|
qsize++
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
}
|
|
|
|
// Turn the gList into a gQueue.
|
|
var q gQueue
|
|
q.head.set(head)
|
|
q.tail.set(tail)
|
|
*glist = gList{}
|
|
|
|
startIdle := func(n int) {
|
|
for ; n != 0 && sched.npidle != 0; n-- {
|
|
startm(nil, false)
|
|
}
|
|
}
|
|
|
|
pp := getg().m.p.ptr()
|
|
if pp == nil {
|
|
lock(&sched.lock)
|
|
globrunqputbatch(&q, int32(qsize))
|
|
unlock(&sched.lock)
|
|
startIdle(qsize)
|
|
return
|
|
}
|
|
|
|
npidle := int(atomic.Load(&sched.npidle))
|
|
var globq gQueue
|
|
var n int
|
|
for n = 0; n < npidle && !q.empty(); n++ {
|
|
g := q.pop()
|
|
globq.pushBack(g)
|
|
}
|
|
if n > 0 {
|
|
lock(&sched.lock)
|
|
globrunqputbatch(&globq, int32(n))
|
|
unlock(&sched.lock)
|
|
startIdle(n)
|
|
qsize -= n
|
|
}
|
|
|
|
if !q.empty() {
|
|
runqputbatch(pp, &q, qsize)
|
|
}
|
|
}
|
|
|
|
// One round of scheduler: find a runnable goroutine and execute it.
|
|
// Never returns.
|
|
func schedule() {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.locks != 0 {
|
|
throw("schedule: holding locks")
|
|
}
|
|
|
|
if _g_.m.lockedg != 0 {
|
|
stoplockedm()
|
|
execute(_g_.m.lockedg.ptr(), false) // Never returns.
|
|
}
|
|
|
|
// We should not schedule away from a g that is executing a cgo call,
|
|
// since the cgo call is using the m's g0 stack.
|
|
if _g_.m.incgo {
|
|
throw("schedule: in cgo")
|
|
}
|
|
|
|
top:
|
|
pp := _g_.m.p.ptr()
|
|
pp.preempt = false
|
|
|
|
if sched.gcwaiting != 0 {
|
|
gcstopm()
|
|
goto top
|
|
}
|
|
if pp.runSafePointFn != 0 {
|
|
runSafePointFn()
|
|
}
|
|
|
|
// Sanity check: if we are spinning, the run queue should be empty.
|
|
// Check this before calling checkTimers, as that might call
|
|
// goready to put a ready goroutine on the local run queue.
|
|
if _g_.m.spinning && (pp.runnext != 0 || pp.runqhead != pp.runqtail) {
|
|
throw("schedule: spinning with local work")
|
|
}
|
|
|
|
checkTimers(pp, 0)
|
|
|
|
var gp *g
|
|
var inheritTime bool
|
|
|
|
// Normal goroutines will check for need to wakeP in ready,
|
|
// but GCworkers and tracereaders will not, so the check must
|
|
// be done here instead.
|
|
tryWakeP := false
|
|
if trace.enabled || trace.shutdown {
|
|
gp = traceReader()
|
|
if gp != nil {
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
traceGoUnpark(gp, 0)
|
|
tryWakeP = true
|
|
}
|
|
}
|
|
if gp == nil && gcBlackenEnabled != 0 {
|
|
gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
|
|
if gp != nil {
|
|
tryWakeP = true
|
|
}
|
|
}
|
|
if gp == nil {
|
|
// Check the global runnable queue once in a while to ensure fairness.
|
|
// Otherwise two goroutines can completely occupy the local runqueue
|
|
// by constantly respawning each other.
|
|
if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
|
|
lock(&sched.lock)
|
|
gp = globrunqget(_g_.m.p.ptr(), 1)
|
|
unlock(&sched.lock)
|
|
}
|
|
}
|
|
if gp == nil {
|
|
gp, inheritTime = runqget(_g_.m.p.ptr())
|
|
// We can see gp != nil here even if the M is spinning,
|
|
// if checkTimers added a local goroutine via goready.
|
|
|
|
// Because gccgo does not implement preemption as a stack check,
|
|
// we need to check for preemption here for fairness.
|
|
// Otherwise goroutines on the local queue may starve
|
|
// goroutines on the global queue.
|
|
// Since we preempt by storing the goroutine on the global
|
|
// queue, this is the only place we need to check preempt.
|
|
// This does not call checkPreempt because gp is not running.
|
|
if gp != nil && gp.preempt {
|
|
gp.preempt = false
|
|
lock(&sched.lock)
|
|
globrunqput(gp)
|
|
unlock(&sched.lock)
|
|
goto top
|
|
}
|
|
}
|
|
if gp == nil {
|
|
gp, inheritTime = findrunnable() // blocks until work is available
|
|
}
|
|
|
|
// This thread is going to run a goroutine and is not spinning anymore,
|
|
// so if it was marked as spinning we need to reset it now and potentially
|
|
// start a new spinning M.
|
|
if _g_.m.spinning {
|
|
resetspinning()
|
|
}
|
|
|
|
if sched.disable.user && !schedEnabled(gp) {
|
|
// Scheduling of this goroutine is disabled. Put it on
|
|
// the list of pending runnable goroutines for when we
|
|
// re-enable user scheduling and look again.
|
|
lock(&sched.lock)
|
|
if schedEnabled(gp) {
|
|
// Something re-enabled scheduling while we
|
|
// were acquiring the lock.
|
|
unlock(&sched.lock)
|
|
} else {
|
|
sched.disable.runnable.pushBack(gp)
|
|
sched.disable.n++
|
|
unlock(&sched.lock)
|
|
goto top
|
|
}
|
|
}
|
|
|
|
// If about to schedule a not-normal goroutine (a GCworker or tracereader),
|
|
// wake a P if there is one.
|
|
if tryWakeP {
|
|
wakep()
|
|
}
|
|
if gp.lockedm != 0 {
|
|
// Hands off own p to the locked m,
|
|
// then blocks waiting for a new p.
|
|
startlockedm(gp)
|
|
goto top
|
|
}
|
|
|
|
execute(gp, inheritTime)
|
|
}
|
|
|
|
// dropg removes the association between m and the current goroutine m->curg (gp for short).
|
|
// Typically a caller sets gp's status away from Grunning and then
|
|
// immediately calls dropg to finish the job. The caller is also responsible
|
|
// for arranging that gp will be restarted using ready at an
|
|
// appropriate time. After calling dropg and arranging for gp to be
|
|
// readied later, the caller can do other work but eventually should
|
|
// call schedule to restart the scheduling of goroutines on this m.
|
|
func dropg() {
|
|
_g_ := getg()
|
|
|
|
setMNoWB(&_g_.m.curg.m, nil)
|
|
setGNoWB(&_g_.m.curg, nil)
|
|
}
|
|
|
|
// checkTimers runs any timers for the P that are ready.
|
|
// If now is not 0 it is the current time.
|
|
// It returns the passed time or the current time if now was passed as 0.
|
|
// and the time when the next timer should run or 0 if there is no next timer,
|
|
// and reports whether it ran any timers.
|
|
// If the time when the next timer should run is not 0,
|
|
// it is always larger than the returned time.
|
|
// We pass now in and out to avoid extra calls of nanotime.
|
|
//go:yeswritebarrierrec
|
|
func checkTimers(pp *p, now int64) (rnow, pollUntil int64, ran bool) {
|
|
// If it's not yet time for the first timer, or the first adjusted
|
|
// timer, then there is nothing to do.
|
|
next := int64(atomic.Load64(&pp.timer0When))
|
|
nextAdj := int64(atomic.Load64(&pp.timerModifiedEarliest))
|
|
if next == 0 || (nextAdj != 0 && nextAdj < next) {
|
|
next = nextAdj
|
|
}
|
|
|
|
if next == 0 {
|
|
// No timers to run or adjust.
|
|
return now, 0, false
|
|
}
|
|
|
|
if now == 0 {
|
|
now = nanotime()
|
|
}
|
|
if now < next {
|
|
// Next timer is not ready to run, but keep going
|
|
// if we would clear deleted timers.
|
|
// This corresponds to the condition below where
|
|
// we decide whether to call clearDeletedTimers.
|
|
if pp != getg().m.p.ptr() || int(atomic.Load(&pp.deletedTimers)) <= int(atomic.Load(&pp.numTimers)/4) {
|
|
return now, next, false
|
|
}
|
|
}
|
|
|
|
lock(&pp.timersLock)
|
|
|
|
if len(pp.timers) > 0 {
|
|
adjusttimers(pp, now)
|
|
for len(pp.timers) > 0 {
|
|
// Note that runtimer may temporarily unlock
|
|
// pp.timersLock.
|
|
if tw := runtimer(pp, now); tw != 0 {
|
|
if tw > 0 {
|
|
pollUntil = tw
|
|
}
|
|
break
|
|
}
|
|
ran = true
|
|
}
|
|
}
|
|
|
|
// If this is the local P, and there are a lot of deleted timers,
|
|
// clear them out. We only do this for the local P to reduce
|
|
// lock contention on timersLock.
|
|
if pp == getg().m.p.ptr() && int(atomic.Load(&pp.deletedTimers)) > len(pp.timers)/4 {
|
|
clearDeletedTimers(pp)
|
|
}
|
|
|
|
unlock(&pp.timersLock)
|
|
|
|
return now, pollUntil, ran
|
|
}
|
|
|
|
func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
|
|
unlock((*mutex)(lock))
|
|
return true
|
|
}
|
|
|
|
// park continuation on g0.
|
|
func park_m(gp *g) {
|
|
_g_ := getg()
|
|
|
|
if trace.enabled {
|
|
traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip)
|
|
}
|
|
|
|
casgstatus(gp, _Grunning, _Gwaiting)
|
|
dropg()
|
|
|
|
if fn := _g_.m.waitunlockf; fn != nil {
|
|
ok := fn(gp, _g_.m.waitlock)
|
|
_g_.m.waitunlockf = nil
|
|
_g_.m.waitlock = nil
|
|
if !ok {
|
|
if trace.enabled {
|
|
traceGoUnpark(gp, 2)
|
|
}
|
|
casgstatus(gp, _Gwaiting, _Grunnable)
|
|
execute(gp, true) // Schedule it back, never returns.
|
|
}
|
|
}
|
|
schedule()
|
|
}
|
|
|
|
func goschedImpl(gp *g) {
|
|
status := readgstatus(gp)
|
|
if status&^_Gscan != _Grunning {
|
|
dumpgstatus(gp)
|
|
throw("bad g status")
|
|
}
|
|
casgstatus(gp, _Grunning, _Grunnable)
|
|
dropg()
|
|
lock(&sched.lock)
|
|
globrunqput(gp)
|
|
unlock(&sched.lock)
|
|
|
|
schedule()
|
|
}
|
|
|
|
// Gosched continuation on g0.
|
|
func gosched_m(gp *g) {
|
|
if trace.enabled {
|
|
traceGoSched()
|
|
}
|
|
goschedImpl(gp)
|
|
}
|
|
|
|
// goschedguarded is a forbidden-states-avoided version of gosched_m
|
|
func goschedguarded_m(gp *g) {
|
|
|
|
if !canPreemptM(gp.m) {
|
|
gogo(gp) // never return
|
|
}
|
|
|
|
if trace.enabled {
|
|
traceGoSched()
|
|
}
|
|
goschedImpl(gp)
|
|
}
|
|
|
|
func gopreempt_m(gp *g) {
|
|
if trace.enabled {
|
|
traceGoPreempt()
|
|
}
|
|
goschedImpl(gp)
|
|
}
|
|
|
|
// preemptPark parks gp and puts it in _Gpreempted.
|
|
//
|
|
//go:systemstack
|
|
func preemptPark(gp *g) {
|
|
if trace.enabled {
|
|
traceGoPark(traceEvGoBlock, 0)
|
|
}
|
|
status := readgstatus(gp)
|
|
if status&^_Gscan != _Grunning {
|
|
dumpgstatus(gp)
|
|
throw("bad g status")
|
|
}
|
|
gp.waitreason = waitReasonPreempted
|
|
|
|
// Transition from _Grunning to _Gscan|_Gpreempted. We can't
|
|
// be in _Grunning when we dropg because then we'd be running
|
|
// without an M, but the moment we're in _Gpreempted,
|
|
// something could claim this G before we've fully cleaned it
|
|
// up. Hence, we set the scan bit to lock down further
|
|
// transitions until we can dropg.
|
|
casGToPreemptScan(gp, _Grunning, _Gscan|_Gpreempted)
|
|
dropg()
|
|
casfrom_Gscanstatus(gp, _Gscan|_Gpreempted, _Gpreempted)
|
|
schedule()
|
|
}
|
|
|
|
// goyield is like Gosched, but it:
|
|
// - emits a GoPreempt trace event instead of a GoSched trace event
|
|
// - puts the current G on the runq of the current P instead of the globrunq
|
|
func goyield() {
|
|
checkTimeouts()
|
|
mcall(goyield_m)
|
|
}
|
|
|
|
func goyield_m(gp *g) {
|
|
if trace.enabled {
|
|
traceGoPreempt()
|
|
}
|
|
pp := gp.m.p.ptr()
|
|
casgstatus(gp, _Grunning, _Grunnable)
|
|
dropg()
|
|
runqput(pp, gp, false)
|
|
schedule()
|
|
}
|
|
|
|
// Finishes execution of the current goroutine.
|
|
func goexit1() {
|
|
if trace.enabled {
|
|
traceGoEnd()
|
|
}
|
|
mcall(goexit0)
|
|
}
|
|
|
|
// goexit continuation on g0.
|
|
func goexit0(gp *g) {
|
|
_g_ := getg()
|
|
|
|
casgstatus(gp, _Grunning, _Gdead)
|
|
if isSystemGoroutine(gp, false) {
|
|
atomic.Xadd(&sched.ngsys, -1)
|
|
gp.isSystemGoroutine = false
|
|
}
|
|
gp.m = nil
|
|
locked := gp.lockedm != 0
|
|
gp.lockedm = 0
|
|
_g_.m.lockedg = 0
|
|
gp.entry = nil
|
|
gp.preemptStop = false
|
|
gp.paniconfault = false
|
|
gp._defer = nil // should be true already but just in case.
|
|
gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
|
|
gp.writebuf = nil
|
|
gp.waitreason = 0
|
|
gp.param = nil
|
|
gp.labels = nil
|
|
gp.timer = nil
|
|
|
|
if gcBlackenEnabled != 0 && gp.gcAssistBytes > 0 {
|
|
// Flush assist credit to the global pool. This gives
|
|
// better information to pacing if the application is
|
|
// rapidly creating an exiting goroutines.
|
|
assistWorkPerByte := float64frombits(atomic.Load64(&gcController.assistWorkPerByte))
|
|
scanCredit := int64(assistWorkPerByte * float64(gp.gcAssistBytes))
|
|
atomic.Xaddint64(&gcController.bgScanCredit, scanCredit)
|
|
gp.gcAssistBytes = 0
|
|
}
|
|
|
|
dropg()
|
|
|
|
if GOARCH == "wasm" { // no threads yet on wasm
|
|
gfput(_g_.m.p.ptr(), gp)
|
|
schedule() // never returns
|
|
}
|
|
|
|
if _g_.m.lockedInt != 0 {
|
|
print("invalid m->lockedInt = ", _g_.m.lockedInt, "\n")
|
|
throw("internal lockOSThread error")
|
|
}
|
|
gfput(_g_.m.p.ptr(), gp)
|
|
if locked {
|
|
// The goroutine may have locked this thread because
|
|
// it put it in an unusual kernel state. Kill it
|
|
// rather than returning it to the thread pool.
|
|
|
|
// Return to mstart, which will release the P and exit
|
|
// the thread.
|
|
if GOOS != "plan9" { // See golang.org/issue/22227.
|
|
_g_.m.exiting = true
|
|
gogo(_g_.m.g0)
|
|
} else {
|
|
// Clear lockedExt on plan9 since we may end up re-using
|
|
// this thread.
|
|
_g_.m.lockedExt = 0
|
|
}
|
|
}
|
|
schedule()
|
|
}
|
|
|
|
// The goroutine g is about to enter a system call.
|
|
// Record that it's not using the cpu anymore.
|
|
// This is called only from the go syscall library and cgocall,
|
|
// not from the low-level system calls used by the runtime.
|
|
//
|
|
// The entersyscall function is written in C, so that it can save the
|
|
// current register context so that the GC will see them.
|
|
// It calls reentersyscall.
|
|
//
|
|
// Syscall tracing:
|
|
// At the start of a syscall we emit traceGoSysCall to capture the stack trace.
|
|
// If the syscall does not block, that is it, we do not emit any other events.
|
|
// If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
|
|
// when syscall returns we emit traceGoSysExit and when the goroutine starts running
|
|
// (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
|
|
// To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
|
|
// we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick),
|
|
// whoever emits traceGoSysBlock increments p.syscalltick afterwards;
|
|
// and we wait for the increment before emitting traceGoSysExit.
|
|
// Note that the increment is done even if tracing is not enabled,
|
|
// because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
|
|
//
|
|
//go:nosplit
|
|
//go:noinline
|
|
func reentersyscall(pc, sp uintptr) {
|
|
_g_ := getg()
|
|
|
|
// Disable preemption because during this function g is in Gsyscall status,
|
|
// but can have inconsistent g->sched, do not let GC observe it.
|
|
_g_.m.locks++
|
|
|
|
_g_.syscallsp = sp
|
|
_g_.syscallpc = pc
|
|
casgstatus(_g_, _Grunning, _Gsyscall)
|
|
|
|
if trace.enabled {
|
|
systemstack(traceGoSysCall)
|
|
}
|
|
|
|
if atomic.Load(&sched.sysmonwait) != 0 {
|
|
systemstack(entersyscall_sysmon)
|
|
}
|
|
|
|
if _g_.m.p.ptr().runSafePointFn != 0 {
|
|
// runSafePointFn may stack split if run on this stack
|
|
systemstack(runSafePointFn)
|
|
}
|
|
|
|
_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
|
|
_g_.sysblocktraced = true
|
|
pp := _g_.m.p.ptr()
|
|
pp.m = 0
|
|
_g_.m.oldp.set(pp)
|
|
_g_.m.p = 0
|
|
atomic.Store(&pp.status, _Psyscall)
|
|
if sched.gcwaiting != 0 {
|
|
systemstack(entersyscall_gcwait)
|
|
}
|
|
|
|
_g_.m.locks--
|
|
}
|
|
|
|
func entersyscall_sysmon() {
|
|
lock(&sched.lock)
|
|
if atomic.Load(&sched.sysmonwait) != 0 {
|
|
atomic.Store(&sched.sysmonwait, 0)
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
func entersyscall_gcwait() {
|
|
_g_ := getg()
|
|
_p_ := _g_.m.oldp.ptr()
|
|
|
|
lock(&sched.lock)
|
|
if sched.stopwait > 0 && atomic.Cas(&_p_.status, _Psyscall, _Pgcstop) {
|
|
if trace.enabled {
|
|
traceGoSysBlock(_p_)
|
|
traceProcStop(_p_)
|
|
}
|
|
_p_.syscalltick++
|
|
if sched.stopwait--; sched.stopwait == 0 {
|
|
notewakeup(&sched.stopnote)
|
|
}
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
func reentersyscallblock(pc, sp uintptr) {
|
|
_g_ := getg()
|
|
|
|
_g_.m.locks++ // see comment in entersyscall
|
|
_g_.throwsplit = true
|
|
_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
|
|
_g_.sysblocktraced = true
|
|
_g_.m.p.ptr().syscalltick++
|
|
|
|
// Leave SP around for GC and traceback.
|
|
_g_.syscallsp = sp
|
|
_g_.syscallpc = pc
|
|
casgstatus(_g_, _Grunning, _Gsyscall)
|
|
systemstack(entersyscallblock_handoff)
|
|
|
|
_g_.m.locks--
|
|
}
|
|
|
|
func entersyscallblock_handoff() {
|
|
if trace.enabled {
|
|
traceGoSysCall()
|
|
traceGoSysBlock(getg().m.p.ptr())
|
|
}
|
|
handoffp(releasep())
|
|
}
|
|
|
|
// The goroutine g exited its system call.
|
|
// Arrange for it to run on a cpu again.
|
|
// This is called only from the go syscall library, not
|
|
// from the low-level system calls used by the runtime.
|
|
//
|
|
// Write barriers are not allowed because our P may have been stolen.
|
|
//
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func exitsyscall() {
|
|
_g_ := getg()
|
|
|
|
_g_.m.locks++ // see comment in entersyscall
|
|
|
|
_g_.waitsince = 0
|
|
oldp := _g_.m.oldp.ptr()
|
|
_g_.m.oldp = 0
|
|
if exitsyscallfast(oldp) {
|
|
if trace.enabled {
|
|
if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
|
|
systemstack(traceGoStart)
|
|
}
|
|
}
|
|
// There's a cpu for us, so we can run.
|
|
_g_.m.p.ptr().syscalltick++
|
|
// We need to cas the status and scan before resuming...
|
|
casgstatus(_g_, _Gsyscall, _Grunning)
|
|
|
|
exitsyscallclear(_g_)
|
|
_g_.m.locks--
|
|
_g_.throwsplit = false
|
|
|
|
// Check preemption, since unlike gc we don't check on
|
|
// every call.
|
|
if getg().preempt {
|
|
checkPreempt()
|
|
}
|
|
_g_.throwsplit = false
|
|
|
|
if sched.disable.user && !schedEnabled(_g_) {
|
|
// Scheduling of this goroutine is disabled.
|
|
Gosched()
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
_g_.sysexitticks = 0
|
|
if trace.enabled {
|
|
// Wait till traceGoSysBlock event is emitted.
|
|
// This ensures consistency of the trace (the goroutine is started after it is blocked).
|
|
for oldp != nil && oldp.syscalltick == _g_.m.syscalltick {
|
|
osyield()
|
|
}
|
|
// We can't trace syscall exit right now because we don't have a P.
|
|
// Tracing code can invoke write barriers that cannot run without a P.
|
|
// So instead we remember the syscall exit time and emit the event
|
|
// in execute when we have a P.
|
|
_g_.sysexitticks = cputicks()
|
|
}
|
|
|
|
_g_.m.locks--
|
|
|
|
// Call the scheduler.
|
|
mcall(exitsyscall0)
|
|
|
|
// Scheduler returned, so we're allowed to run now.
|
|
// Delete the syscallsp information that we left for
|
|
// the garbage collector during the system call.
|
|
// Must wait until now because until gosched returns
|
|
// we don't know for sure that the garbage collector
|
|
// is not running.
|
|
exitsyscallclear(_g_)
|
|
|
|
_g_.m.p.ptr().syscalltick++
|
|
_g_.throwsplit = false
|
|
}
|
|
|
|
//go:nosplit
|
|
func exitsyscallfast(oldp *p) bool {
|
|
_g_ := getg()
|
|
|
|
// Freezetheworld sets stopwait but does not retake P's.
|
|
if sched.stopwait == freezeStopWait {
|
|
return false
|
|
}
|
|
|
|
// Try to re-acquire the last P.
|
|
if oldp != nil && oldp.status == _Psyscall && atomic.Cas(&oldp.status, _Psyscall, _Pidle) {
|
|
// There's a cpu for us, so we can run.
|
|
wirep(oldp)
|
|
exitsyscallfast_reacquired()
|
|
return true
|
|
}
|
|
|
|
// Try to get any other idle P.
|
|
if sched.pidle != 0 {
|
|
var ok bool
|
|
systemstack(func() {
|
|
ok = exitsyscallfast_pidle()
|
|
if ok && trace.enabled {
|
|
if oldp != nil {
|
|
// Wait till traceGoSysBlock event is emitted.
|
|
// This ensures consistency of the trace (the goroutine is started after it is blocked).
|
|
for oldp.syscalltick == _g_.m.syscalltick {
|
|
osyield()
|
|
}
|
|
}
|
|
traceGoSysExit(0)
|
|
}
|
|
})
|
|
if ok {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// exitsyscallfast_reacquired is the exitsyscall path on which this G
|
|
// has successfully reacquired the P it was running on before the
|
|
// syscall.
|
|
//
|
|
//go:nosplit
|
|
func exitsyscallfast_reacquired() {
|
|
_g_ := getg()
|
|
if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
|
|
if trace.enabled {
|
|
// The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
|
|
// traceGoSysBlock for this syscall was already emitted,
|
|
// but here we effectively retake the p from the new syscall running on the same p.
|
|
systemstack(func() {
|
|
// Denote blocking of the new syscall.
|
|
traceGoSysBlock(_g_.m.p.ptr())
|
|
// Denote completion of the current syscall.
|
|
traceGoSysExit(0)
|
|
})
|
|
}
|
|
_g_.m.p.ptr().syscalltick++
|
|
}
|
|
}
|
|
|
|
func exitsyscallfast_pidle() bool {
|
|
lock(&sched.lock)
|
|
_p_ := pidleget()
|
|
if _p_ != nil && atomic.Load(&sched.sysmonwait) != 0 {
|
|
atomic.Store(&sched.sysmonwait, 0)
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// exitsyscall slow path on g0.
|
|
// Failed to acquire P, enqueue gp as runnable.
|
|
//
|
|
// Called via mcall, so gp is the calling g from this M.
|
|
//
|
|
//go:nowritebarrierrec
|
|
func exitsyscall0(gp *g) {
|
|
casgstatus(gp, _Gsyscall, _Gexitingsyscall)
|
|
dropg()
|
|
casgstatus(gp, _Gexitingsyscall, _Grunnable)
|
|
lock(&sched.lock)
|
|
var _p_ *p
|
|
if schedEnabled(gp) {
|
|
_p_ = pidleget()
|
|
}
|
|
var locked bool
|
|
if _p_ == nil {
|
|
globrunqput(gp)
|
|
|
|
// Below, we stoplockedm if gp is locked. globrunqput releases
|
|
// ownership of gp, so we must check if gp is locked prior to
|
|
// committing the release by unlocking sched.lock, otherwise we
|
|
// could race with another M transitioning gp from unlocked to
|
|
// locked.
|
|
locked = gp.lockedm != 0
|
|
} else if atomic.Load(&sched.sysmonwait) != 0 {
|
|
atomic.Store(&sched.sysmonwait, 0)
|
|
notewakeup(&sched.sysmonnote)
|
|
}
|
|
unlock(&sched.lock)
|
|
if _p_ != nil {
|
|
acquirep(_p_)
|
|
execute(gp, false) // Never returns.
|
|
}
|
|
if locked {
|
|
// Wait until another thread schedules gp and so m again.
|
|
//
|
|
// N.B. lockedm must be this M, as this g was running on this M
|
|
// before entersyscall.
|
|
stoplockedm()
|
|
execute(gp, false) // Never returns.
|
|
}
|
|
stopm()
|
|
schedule() // Never returns.
|
|
}
|
|
|
|
// exitsyscallclear clears GC-related information that we only track
|
|
// during a syscall.
|
|
func exitsyscallclear(gp *g) {
|
|
// Garbage collector isn't running (since we are), so okay to
|
|
// clear syscallsp.
|
|
gp.syscallsp = 0
|
|
|
|
gp.gcstack = 0
|
|
gp.gcnextsp = 0
|
|
memclrNoHeapPointers(unsafe.Pointer(&gp.gcregs), unsafe.Sizeof(gp.gcregs))
|
|
}
|
|
|
|
// Code generated by cgo, and some library code, calls syscall.Entersyscall
|
|
// and syscall.Exitsyscall.
|
|
|
|
//go:linkname syscall_entersyscall syscall.Entersyscall
|
|
//go:nosplit
|
|
func syscall_entersyscall() {
|
|
entersyscall()
|
|
}
|
|
|
|
//go:linkname syscall_exitsyscall syscall.Exitsyscall
|
|
//go:nosplit
|
|
func syscall_exitsyscall() {
|
|
exitsyscall()
|
|
}
|
|
|
|
// Called from syscall package before fork.
|
|
//go:linkname syscall_runtime_BeforeFork syscall.runtime__BeforeFork
|
|
//go:nosplit
|
|
func syscall_runtime_BeforeFork() {
|
|
gp := getg().m.curg
|
|
|
|
// Block signals during a fork, so that the child does not run
|
|
// a signal handler before exec if a signal is sent to the process
|
|
// group. See issue #18600.
|
|
gp.m.locks++
|
|
sigsave(&gp.m.sigmask)
|
|
sigblock(false)
|
|
}
|
|
|
|
// Called from syscall package after fork in parent.
|
|
//go:linkname syscall_runtime_AfterFork syscall.runtime__AfterFork
|
|
//go:nosplit
|
|
func syscall_runtime_AfterFork() {
|
|
gp := getg().m.curg
|
|
|
|
msigrestore(gp.m.sigmask)
|
|
|
|
gp.m.locks--
|
|
}
|
|
|
|
// inForkedChild is true while manipulating signals in the child process.
|
|
// This is used to avoid calling libc functions in case we are using vfork.
|
|
var inForkedChild bool
|
|
|
|
// Called from syscall package after fork in child.
|
|
// It resets non-sigignored signals to the default handler, and
|
|
// restores the signal mask in preparation for the exec.
|
|
//
|
|
// Because this might be called during a vfork, and therefore may be
|
|
// temporarily sharing address space with the parent process, this must
|
|
// not change any global variables or calling into C code that may do so.
|
|
//
|
|
//go:linkname syscall_runtime_AfterForkInChild syscall.runtime__AfterForkInChild
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func syscall_runtime_AfterForkInChild() {
|
|
// It's OK to change the global variable inForkedChild here
|
|
// because we are going to change it back. There is no race here,
|
|
// because if we are sharing address space with the parent process,
|
|
// then the parent process can not be running concurrently.
|
|
inForkedChild = true
|
|
|
|
clearSignalHandlers()
|
|
|
|
// When we are the child we are the only thread running,
|
|
// so we know that nothing else has changed gp.m.sigmask.
|
|
msigrestore(getg().m.sigmask)
|
|
|
|
inForkedChild = false
|
|
}
|
|
|
|
// pendingPreemptSignals is the number of preemption signals
|
|
// that have been sent but not received. This is only used on Darwin.
|
|
// For #41702.
|
|
var pendingPreemptSignals uint32
|
|
|
|
// Called from syscall package before Exec.
|
|
//go:linkname syscall_runtime_BeforeExec syscall.runtime__BeforeExec
|
|
func syscall_runtime_BeforeExec() {
|
|
// Prevent thread creation during exec.
|
|
execLock.lock()
|
|
|
|
// On Darwin, wait for all pending preemption signals to
|
|
// be received. See issue #41702.
|
|
if GOOS == "darwin" || GOOS == "ios" {
|
|
for int32(atomic.Load(&pendingPreemptSignals)) > 0 {
|
|
osyield()
|
|
}
|
|
}
|
|
}
|
|
|
|
// Called from syscall package after Exec.
|
|
//go:linkname syscall_runtime_AfterExec syscall.runtime__AfterExec
|
|
func syscall_runtime_AfterExec() {
|
|
execLock.unlock()
|
|
}
|
|
|
|
// panicgonil is used for gccgo as we need to use a compiler check for
|
|
// a nil func, in case we have to build a thunk.
|
|
//go:linkname panicgonil
|
|
func panicgonil() {
|
|
getg().m.throwing = -1 // do not dump full stacks
|
|
throw("go of nil func value")
|
|
}
|
|
|
|
// Create a new g running fn passing arg as the single argument.
|
|
// Put it on the queue of g's waiting to run.
|
|
// The compiler turns a go statement into a call to this.
|
|
//go:linkname newproc __go_go
|
|
func newproc(fn uintptr, arg unsafe.Pointer) *g {
|
|
_g_ := getg()
|
|
|
|
if fn == 0 {
|
|
_g_.m.throwing = -1 // do not dump full stacks
|
|
throw("go of nil func value")
|
|
}
|
|
acquirem() // disable preemption because it can be holding p in a local var
|
|
|
|
_p_ := _g_.m.p.ptr()
|
|
newg := gfget(_p_)
|
|
var (
|
|
sp unsafe.Pointer
|
|
spsize uintptr
|
|
)
|
|
if newg == nil {
|
|
newg = malg(true, false, &sp, &spsize)
|
|
casgstatus(newg, _Gidle, _Gdead)
|
|
allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
|
|
} else {
|
|
resetNewG(newg, &sp, &spsize)
|
|
}
|
|
newg.traceback = 0
|
|
|
|
if readgstatus(newg) != _Gdead {
|
|
throw("newproc1: new g is not Gdead")
|
|
}
|
|
|
|
// Store the C function pointer into entryfn, take the address
|
|
// of entryfn, convert it to a Go function value, and store
|
|
// that in entry.
|
|
newg.entryfn = fn
|
|
var entry func(unsafe.Pointer)
|
|
*(*unsafe.Pointer)(unsafe.Pointer(&entry)) = unsafe.Pointer(&newg.entryfn)
|
|
newg.entry = entry
|
|
|
|
newg.param = arg
|
|
newg.gopc = getcallerpc()
|
|
newg.ancestors = saveAncestors(_g_)
|
|
newg.startpc = fn
|
|
if _g_.m.curg != nil {
|
|
newg.labels = _g_.m.curg.labels
|
|
}
|
|
if isSystemGoroutine(newg, false) {
|
|
atomic.Xadd(&sched.ngsys, +1)
|
|
}
|
|
// Track initial transition?
|
|
newg.trackingSeq = uint8(fastrand())
|
|
if newg.trackingSeq%gTrackingPeriod == 0 {
|
|
newg.tracking = true
|
|
}
|
|
casgstatus(newg, _Gdead, _Grunnable)
|
|
|
|
if _p_.goidcache == _p_.goidcacheend {
|
|
// Sched.goidgen is the last allocated id,
|
|
// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
|
|
// At startup sched.goidgen=0, so main goroutine receives goid=1.
|
|
_p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
|
|
_p_.goidcache -= _GoidCacheBatch - 1
|
|
_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
|
|
}
|
|
newg.goid = int64(_p_.goidcache)
|
|
_p_.goidcache++
|
|
if trace.enabled {
|
|
traceGoCreate(newg, newg.startpc)
|
|
}
|
|
|
|
makeGContext(newg, sp, spsize)
|
|
|
|
releasem(_g_.m)
|
|
|
|
runqput(_p_, newg, true)
|
|
|
|
if mainStarted {
|
|
wakep()
|
|
}
|
|
|
|
return newg
|
|
}
|
|
|
|
// expectedSystemGoroutines counts the number of goroutines expected
|
|
// to mark themselves as system goroutines. After they mark themselves
|
|
// by calling setSystemGoroutine, this is decremented. NumGoroutines
|
|
// uses this to wait for all system goroutines to mark themselves
|
|
// before it counts them.
|
|
var expectedSystemGoroutines uint32
|
|
|
|
// expectSystemGoroutine is called when starting a goroutine that will
|
|
// call setSystemGoroutine. It increments expectedSystemGoroutines.
|
|
func expectSystemGoroutine() {
|
|
atomic.Xadd(&expectedSystemGoroutines, +1)
|
|
}
|
|
|
|
// waitForSystemGoroutines waits for all currently expected system
|
|
// goroutines to register themselves.
|
|
func waitForSystemGoroutines() {
|
|
for atomic.Load(&expectedSystemGoroutines) > 0 {
|
|
Gosched()
|
|
osyield()
|
|
}
|
|
}
|
|
|
|
// setSystemGoroutine marks this goroutine as a "system goroutine".
|
|
// In the gc toolchain this is done by comparing startpc to a list of
|
|
// saved special PCs. In gccgo that approach does not work as startpc
|
|
// is often a thunk that invokes the real function with arguments,
|
|
// so the thunk address never matches the saved special PCs. Instead,
|
|
// since there are only a limited number of "system goroutines",
|
|
// we force each one to mark itself as special.
|
|
func setSystemGoroutine() {
|
|
getg().isSystemGoroutine = true
|
|
atomic.Xadd(&sched.ngsys, +1)
|
|
atomic.Xadd(&expectedSystemGoroutines, -1)
|
|
}
|
|
|
|
// saveAncestors copies previous ancestors of the given caller g and
|
|
// includes infor for the current caller into a new set of tracebacks for
|
|
// a g being created.
|
|
func saveAncestors(callergp *g) *[]ancestorInfo {
|
|
// Copy all prior info, except for the root goroutine (goid 0).
|
|
if debug.tracebackancestors <= 0 || callergp.goid == 0 {
|
|
return nil
|
|
}
|
|
var callerAncestors []ancestorInfo
|
|
if callergp.ancestors != nil {
|
|
callerAncestors = *callergp.ancestors
|
|
}
|
|
n := int32(len(callerAncestors)) + 1
|
|
if n > debug.tracebackancestors {
|
|
n = debug.tracebackancestors
|
|
}
|
|
ancestors := make([]ancestorInfo, n)
|
|
copy(ancestors[1:], callerAncestors)
|
|
|
|
var pcs [_TracebackMaxFrames]uintptr
|
|
// FIXME: This should get a traceback of callergp.
|
|
// npcs := gcallers(callergp, 0, pcs[:])
|
|
npcs := 0
|
|
ipcs := make([]uintptr, npcs)
|
|
copy(ipcs, pcs[:])
|
|
ancestors[0] = ancestorInfo{
|
|
pcs: ipcs,
|
|
goid: callergp.goid,
|
|
gopc: callergp.gopc,
|
|
}
|
|
|
|
ancestorsp := new([]ancestorInfo)
|
|
*ancestorsp = ancestors
|
|
return ancestorsp
|
|
}
|
|
|
|
// Put on gfree list.
|
|
// If local list is too long, transfer a batch to the global list.
|
|
func gfput(_p_ *p, gp *g) {
|
|
if readgstatus(gp) != _Gdead {
|
|
throw("gfput: bad status (not Gdead)")
|
|
}
|
|
|
|
_p_.gFree.push(gp)
|
|
_p_.gFree.n++
|
|
if _p_.gFree.n >= 64 {
|
|
var (
|
|
inc int32
|
|
noStackQ gQueue
|
|
)
|
|
for _p_.gFree.n >= 32 {
|
|
gp = _p_.gFree.pop()
|
|
_p_.gFree.n--
|
|
noStackQ.push(gp)
|
|
inc++
|
|
}
|
|
lock(&sched.gFree.lock)
|
|
sched.gFree.list.pushAll(noStackQ)
|
|
sched.gFree.n += inc
|
|
unlock(&sched.gFree.lock)
|
|
}
|
|
}
|
|
|
|
// Get from gfree list.
|
|
// If local list is empty, grab a batch from global list.
|
|
func gfget(_p_ *p) *g {
|
|
retry:
|
|
if _p_.gFree.empty() && !sched.gFree.list.empty() {
|
|
lock(&sched.gFree.lock)
|
|
// Move a batch of free Gs to the P.
|
|
for _p_.gFree.n < 32 {
|
|
gp := sched.gFree.list.pop()
|
|
if gp == nil {
|
|
break
|
|
}
|
|
sched.gFree.n--
|
|
_p_.gFree.push(gp)
|
|
_p_.gFree.n++
|
|
}
|
|
unlock(&sched.gFree.lock)
|
|
goto retry
|
|
}
|
|
gp := _p_.gFree.pop()
|
|
if gp == nil {
|
|
return nil
|
|
}
|
|
_p_.gFree.n--
|
|
return gp
|
|
}
|
|
|
|
// Purge all cached G's from gfree list to the global list.
|
|
func gfpurge(_p_ *p) {
|
|
var (
|
|
inc int32
|
|
noStackQ gQueue
|
|
)
|
|
for !_p_.gFree.empty() {
|
|
gp := _p_.gFree.pop()
|
|
_p_.gFree.n--
|
|
noStackQ.push(gp)
|
|
inc++
|
|
}
|
|
lock(&sched.gFree.lock)
|
|
sched.gFree.list.pushAll(noStackQ)
|
|
sched.gFree.n += inc
|
|
unlock(&sched.gFree.lock)
|
|
}
|
|
|
|
// Breakpoint executes a breakpoint trap.
|
|
func Breakpoint() {
|
|
breakpoint()
|
|
}
|
|
|
|
// dolockOSThread is called by LockOSThread and lockOSThread below
|
|
// after they modify m.locked. Do not allow preemption during this call,
|
|
// or else the m might be different in this function than in the caller.
|
|
//go:nosplit
|
|
func dolockOSThread() {
|
|
if GOARCH == "wasm" {
|
|
return // no threads on wasm yet
|
|
}
|
|
_g_ := getg()
|
|
_g_.m.lockedg.set(_g_)
|
|
_g_.lockedm.set(_g_.m)
|
|
}
|
|
|
|
//go:nosplit
|
|
|
|
// LockOSThread wires the calling goroutine to its current operating system thread.
|
|
// The calling goroutine will always execute in that thread,
|
|
// and no other goroutine will execute in it,
|
|
// until the calling goroutine has made as many calls to
|
|
// UnlockOSThread as to LockOSThread.
|
|
// If the calling goroutine exits without unlocking the thread,
|
|
// the thread will be terminated.
|
|
//
|
|
// All init functions are run on the startup thread. Calling LockOSThread
|
|
// from an init function will cause the main function to be invoked on
|
|
// that thread.
|
|
//
|
|
// A goroutine should call LockOSThread before calling OS services or
|
|
// non-Go library functions that depend on per-thread state.
|
|
func LockOSThread() {
|
|
if atomic.Load(&newmHandoff.haveTemplateThread) == 0 && GOOS != "plan9" {
|
|
// If we need to start a new thread from the locked
|
|
// thread, we need the template thread. Start it now
|
|
// while we're in a known-good state.
|
|
startTemplateThread()
|
|
}
|
|
_g_ := getg()
|
|
_g_.m.lockedExt++
|
|
if _g_.m.lockedExt == 0 {
|
|
_g_.m.lockedExt--
|
|
panic("LockOSThread nesting overflow")
|
|
}
|
|
dolockOSThread()
|
|
}
|
|
|
|
//go:nosplit
|
|
func lockOSThread() {
|
|
getg().m.lockedInt++
|
|
dolockOSThread()
|
|
}
|
|
|
|
// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
|
|
// after they update m->locked. Do not allow preemption during this call,
|
|
// or else the m might be in different in this function than in the caller.
|
|
//go:nosplit
|
|
func dounlockOSThread() {
|
|
if GOARCH == "wasm" {
|
|
return // no threads on wasm yet
|
|
}
|
|
_g_ := getg()
|
|
if _g_.m.lockedInt != 0 || _g_.m.lockedExt != 0 {
|
|
return
|
|
}
|
|
_g_.m.lockedg = 0
|
|
_g_.lockedm = 0
|
|
}
|
|
|
|
//go:nosplit
|
|
|
|
// UnlockOSThread undoes an earlier call to LockOSThread.
|
|
// If this drops the number of active LockOSThread calls on the
|
|
// calling goroutine to zero, it unwires the calling goroutine from
|
|
// its fixed operating system thread.
|
|
// If there are no active LockOSThread calls, this is a no-op.
|
|
//
|
|
// Before calling UnlockOSThread, the caller must ensure that the OS
|
|
// thread is suitable for running other goroutines. If the caller made
|
|
// any permanent changes to the state of the thread that would affect
|
|
// other goroutines, it should not call this function and thus leave
|
|
// the goroutine locked to the OS thread until the goroutine (and
|
|
// hence the thread) exits.
|
|
func UnlockOSThread() {
|
|
_g_ := getg()
|
|
if _g_.m.lockedExt == 0 {
|
|
return
|
|
}
|
|
_g_.m.lockedExt--
|
|
dounlockOSThread()
|
|
}
|
|
|
|
//go:nosplit
|
|
func unlockOSThread() {
|
|
_g_ := getg()
|
|
if _g_.m.lockedInt == 0 {
|
|
systemstack(badunlockosthread)
|
|
}
|
|
_g_.m.lockedInt--
|
|
dounlockOSThread()
|
|
}
|
|
|
|
func badunlockosthread() {
|
|
throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
|
|
}
|
|
|
|
func gcount() int32 {
|
|
n := int32(atomic.Loaduintptr(&allglen)) - sched.gFree.n - int32(atomic.Load(&sched.ngsys))
|
|
for _, _p_ := range allp {
|
|
n -= _p_.gFree.n
|
|
}
|
|
|
|
// All these variables can be changed concurrently, so the result can be inconsistent.
|
|
// But at least the current goroutine is running.
|
|
if n < 1 {
|
|
n = 1
|
|
}
|
|
return n
|
|
}
|
|
|
|
func mcount() int32 {
|
|
return int32(sched.mnext - sched.nmfreed)
|
|
}
|
|
|
|
var prof struct {
|
|
signalLock uint32
|
|
hz int32
|
|
}
|
|
|
|
func _System() { _System() }
|
|
func _ExternalCode() { _ExternalCode() }
|
|
func _LostExternalCode() { _LostExternalCode() }
|
|
func _GC() { _GC() }
|
|
func _LostSIGPROFDuringAtomic64() { _LostSIGPROFDuringAtomic64() }
|
|
func _VDSO() { _VDSO() }
|
|
|
|
var _SystemPC = funcPC(_System)
|
|
var _ExternalCodePC = funcPC(_ExternalCode)
|
|
var _LostExternalCodePC = funcPC(_LostExternalCode)
|
|
var _GCPC = funcPC(_GC)
|
|
var _LostSIGPROFDuringAtomic64PC = funcPC(_LostSIGPROFDuringAtomic64)
|
|
|
|
// Called if we receive a SIGPROF signal.
|
|
// Called by the signal handler, may run during STW.
|
|
//go:nowritebarrierrec
|
|
func sigprof(pc uintptr, gp *g, mp *m) {
|
|
if prof.hz == 0 {
|
|
return
|
|
}
|
|
|
|
// If mp.profilehz is 0, then profiling is not enabled for this thread.
|
|
// We must check this to avoid a deadlock between setcpuprofilerate
|
|
// and the call to cpuprof.add, below.
|
|
if mp != nil && mp.profilehz == 0 {
|
|
return
|
|
}
|
|
// Profiling runs concurrently with GC, so it must not allocate.
|
|
// Set a trap in case the code does allocate.
|
|
// Note that on windows, one thread takes profiles of all the
|
|
// other threads, so mp is usually not getg().m.
|
|
// In fact mp may not even be stopped.
|
|
// See golang.org/issue/17165.
|
|
getg().m.mallocing++
|
|
|
|
traceback := true
|
|
|
|
// If SIGPROF arrived while already fetching runtime callers
|
|
// we can have trouble on older systems because the unwind
|
|
// library calls dl_iterate_phdr which was not reentrant in
|
|
// the past. alreadyInCallers checks for that.
|
|
if gp == nil || alreadyInCallers() {
|
|
traceback = false
|
|
}
|
|
|
|
var stk [maxCPUProfStack]uintptr
|
|
n := 0
|
|
if traceback {
|
|
var stklocs [maxCPUProfStack]location
|
|
n = callers(0, stklocs[:])
|
|
|
|
// Issue 26595: the stack trace we've just collected is going
|
|
// to include frames that we don't want to report in the CPU
|
|
// profile, including signal handler frames. Here is what we
|
|
// might typically see at the point of "callers" above for a
|
|
// signal delivered to the application routine "interesting"
|
|
// called by "main".
|
|
//
|
|
// 0: runtime.sigprof
|
|
// 1: runtime.sighandler
|
|
// 2: runtime.sigtrampgo
|
|
// 3: runtime.sigtramp
|
|
// 4: <signal handler called>
|
|
// 5: main.interesting_routine
|
|
// 6: main.main
|
|
//
|
|
// To ensure a sane profile, walk through the frames in
|
|
// "stklocs" until we find the "runtime.sigtramp" frame, then
|
|
// report only those frames below the frame one down from
|
|
// that. On systems that don't split stack, "sigtramp" can
|
|
// do a sibling call to "sigtrampgo", so use "sigtrampgo"
|
|
// if we don't find "sigtramp". If for some reason
|
|
// neither "runtime.sigtramp" nor "runtime.sigtrampgo" is
|
|
// present, don't make any changes.
|
|
framesToDiscard := 0
|
|
for i := 0; i < n; i++ {
|
|
if stklocs[i].function == "runtime.sigtrampgo" && i+2 < n {
|
|
framesToDiscard = i + 2
|
|
}
|
|
if stklocs[i].function == "runtime.sigtramp" && i+2 < n {
|
|
framesToDiscard = i + 2
|
|
break
|
|
}
|
|
}
|
|
n -= framesToDiscard
|
|
for i := 0; i < n; i++ {
|
|
stk[i] = stklocs[i+framesToDiscard].pc
|
|
}
|
|
}
|
|
|
|
if n <= 0 {
|
|
// Normal traceback is impossible or has failed.
|
|
// Account it against abstract "System" or "GC".
|
|
n = 2
|
|
stk[0] = pc
|
|
if mp.preemptoff != "" {
|
|
stk[1] = _GCPC + sys.PCQuantum
|
|
} else {
|
|
stk[1] = _SystemPC + sys.PCQuantum
|
|
}
|
|
}
|
|
|
|
if prof.hz != 0 {
|
|
cpuprof.add(gp, stk[:n])
|
|
}
|
|
getg().m.mallocing--
|
|
}
|
|
|
|
// Use global arrays rather than using up lots of stack space in the
|
|
// signal handler. This is safe since while we are executing a SIGPROF
|
|
// signal other SIGPROF signals are blocked.
|
|
var nonprofGoStklocs [maxCPUProfStack]location
|
|
var nonprofGoStk [maxCPUProfStack]uintptr
|
|
|
|
// sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread,
|
|
// and the signal handler collected a stack trace in sigprofCallers.
|
|
// When this is called, sigprofCallersUse will be non-zero.
|
|
// g is nil, and what we can do is very limited.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func sigprofNonGo(pc uintptr) {
|
|
if prof.hz != 0 {
|
|
n := callers(0, nonprofGoStklocs[:])
|
|
|
|
for i := 0; i < n; i++ {
|
|
nonprofGoStk[i] = nonprofGoStklocs[i].pc
|
|
}
|
|
|
|
if n <= 0 {
|
|
n = 2
|
|
nonprofGoStk[0] = pc
|
|
nonprofGoStk[1] = _ExternalCodePC + sys.PCQuantum
|
|
}
|
|
|
|
cpuprof.addNonGo(nonprofGoStk[:n])
|
|
}
|
|
}
|
|
|
|
// sigprofNonGoPC is called when a profiling signal arrived on a
|
|
// non-Go thread and we have a single PC value, not a stack trace.
|
|
// g is nil, and what we can do is very limited.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func sigprofNonGoPC(pc uintptr) {
|
|
if prof.hz != 0 {
|
|
stk := []uintptr{
|
|
pc,
|
|
_ExternalCodePC + sys.PCQuantum,
|
|
}
|
|
cpuprof.addNonGo(stk)
|
|
}
|
|
}
|
|
|
|
// setcpuprofilerate sets the CPU profiling rate to hz times per second.
|
|
// If hz <= 0, setcpuprofilerate turns off CPU profiling.
|
|
func setcpuprofilerate(hz int32) {
|
|
// Force sane arguments.
|
|
if hz < 0 {
|
|
hz = 0
|
|
}
|
|
|
|
// Disable preemption, otherwise we can be rescheduled to another thread
|
|
// that has profiling enabled.
|
|
_g_ := getg()
|
|
_g_.m.locks++
|
|
|
|
// Stop profiler on this thread so that it is safe to lock prof.
|
|
// if a profiling signal came in while we had prof locked,
|
|
// it would deadlock.
|
|
setThreadCPUProfiler(0)
|
|
|
|
for !atomic.Cas(&prof.signalLock, 0, 1) {
|
|
osyield()
|
|
}
|
|
if prof.hz != hz {
|
|
setProcessCPUProfiler(hz)
|
|
prof.hz = hz
|
|
}
|
|
atomic.Store(&prof.signalLock, 0)
|
|
|
|
lock(&sched.lock)
|
|
sched.profilehz = hz
|
|
unlock(&sched.lock)
|
|
|
|
if hz != 0 {
|
|
setThreadCPUProfiler(hz)
|
|
}
|
|
|
|
_g_.m.locks--
|
|
}
|
|
|
|
// init initializes pp, which may be a freshly allocated p or a
|
|
// previously destroyed p, and transitions it to status _Pgcstop.
|
|
func (pp *p) init(id int32) {
|
|
pp.id = id
|
|
pp.status = _Pgcstop
|
|
pp.sudogcache = pp.sudogbuf[:0]
|
|
pp.deferpool = pp.deferpoolbuf[:0]
|
|
pp.wbBuf.reset()
|
|
if pp.mcache == nil {
|
|
if id == 0 {
|
|
if mcache0 == nil {
|
|
throw("missing mcache?")
|
|
}
|
|
// Use the bootstrap mcache0. Only one P will get
|
|
// mcache0: the one with ID 0.
|
|
pp.mcache = mcache0
|
|
} else {
|
|
pp.mcache = allocmcache()
|
|
}
|
|
}
|
|
if raceenabled && pp.raceprocctx == 0 {
|
|
if id == 0 {
|
|
pp.raceprocctx = raceprocctx0
|
|
raceprocctx0 = 0 // bootstrap
|
|
} else {
|
|
pp.raceprocctx = raceproccreate()
|
|
}
|
|
}
|
|
lockInit(&pp.timersLock, lockRankTimers)
|
|
|
|
// This P may get timers when it starts running. Set the mask here
|
|
// since the P may not go through pidleget (notably P 0 on startup).
|
|
timerpMask.set(id)
|
|
// Similarly, we may not go through pidleget before this P starts
|
|
// running if it is P 0 on startup.
|
|
idlepMask.clear(id)
|
|
}
|
|
|
|
// destroy releases all of the resources associated with pp and
|
|
// transitions it to status _Pdead.
|
|
//
|
|
// sched.lock must be held and the world must be stopped.
|
|
func (pp *p) destroy() {
|
|
assertLockHeld(&sched.lock)
|
|
assertWorldStopped()
|
|
|
|
// Move all runnable goroutines to the global queue
|
|
for pp.runqhead != pp.runqtail {
|
|
// Pop from tail of local queue
|
|
pp.runqtail--
|
|
gp := pp.runq[pp.runqtail%uint32(len(pp.runq))].ptr()
|
|
// Push onto head of global queue
|
|
globrunqputhead(gp)
|
|
}
|
|
if pp.runnext != 0 {
|
|
globrunqputhead(pp.runnext.ptr())
|
|
pp.runnext = 0
|
|
}
|
|
if len(pp.timers) > 0 {
|
|
plocal := getg().m.p.ptr()
|
|
// The world is stopped, but we acquire timersLock to
|
|
// protect against sysmon calling timeSleepUntil.
|
|
// This is the only case where we hold the timersLock of
|
|
// more than one P, so there are no deadlock concerns.
|
|
lock(&plocal.timersLock)
|
|
lock(&pp.timersLock)
|
|
moveTimers(plocal, pp.timers)
|
|
pp.timers = nil
|
|
pp.numTimers = 0
|
|
pp.deletedTimers = 0
|
|
atomic.Store64(&pp.timer0When, 0)
|
|
unlock(&pp.timersLock)
|
|
unlock(&plocal.timersLock)
|
|
}
|
|
// Flush p's write barrier buffer.
|
|
if gcphase != _GCoff {
|
|
wbBufFlush1(pp)
|
|
pp.gcw.dispose()
|
|
}
|
|
for i := range pp.sudogbuf {
|
|
pp.sudogbuf[i] = nil
|
|
}
|
|
pp.sudogcache = pp.sudogbuf[:0]
|
|
for i := range pp.deferpoolbuf {
|
|
pp.deferpoolbuf[i] = nil
|
|
}
|
|
pp.deferpool = pp.deferpoolbuf[:0]
|
|
systemstack(func() {
|
|
for i := 0; i < pp.mspancache.len; i++ {
|
|
// Safe to call since the world is stopped.
|
|
mheap_.spanalloc.free(unsafe.Pointer(pp.mspancache.buf[i]))
|
|
}
|
|
pp.mspancache.len = 0
|
|
lock(&mheap_.lock)
|
|
pp.pcache.flush(&mheap_.pages)
|
|
unlock(&mheap_.lock)
|
|
})
|
|
freemcache(pp.mcache)
|
|
pp.mcache = nil
|
|
gfpurge(pp)
|
|
traceProcFree(pp)
|
|
pp.gcAssistTime = 0
|
|
pp.status = _Pdead
|
|
}
|
|
|
|
// Change number of processors.
|
|
//
|
|
// sched.lock must be held, and the world must be stopped.
|
|
//
|
|
// gcworkbufs must not be being modified by either the GC or the write barrier
|
|
// code, so the GC must not be running if the number of Ps actually changes.
|
|
//
|
|
// Returns list of Ps with local work, they need to be scheduled by the caller.
|
|
func procresize(nprocs int32) *p {
|
|
assertLockHeld(&sched.lock)
|
|
assertWorldStopped()
|
|
|
|
old := gomaxprocs
|
|
if old < 0 || nprocs <= 0 {
|
|
throw("procresize: invalid arg")
|
|
}
|
|
if trace.enabled {
|
|
traceGomaxprocs(nprocs)
|
|
}
|
|
|
|
// update statistics
|
|
now := nanotime()
|
|
if sched.procresizetime != 0 {
|
|
sched.totaltime += int64(old) * (now - sched.procresizetime)
|
|
}
|
|
sched.procresizetime = now
|
|
|
|
maskWords := (nprocs + 31) / 32
|
|
|
|
// Grow allp if necessary.
|
|
if nprocs > int32(len(allp)) {
|
|
// Synchronize with retake, which could be running
|
|
// concurrently since it doesn't run on a P.
|
|
lock(&allpLock)
|
|
if nprocs <= int32(cap(allp)) {
|
|
allp = allp[:nprocs]
|
|
} else {
|
|
nallp := make([]*p, nprocs)
|
|
// Copy everything up to allp's cap so we
|
|
// never lose old allocated Ps.
|
|
copy(nallp, allp[:cap(allp)])
|
|
allp = nallp
|
|
}
|
|
|
|
if maskWords <= int32(cap(idlepMask)) {
|
|
idlepMask = idlepMask[:maskWords]
|
|
timerpMask = timerpMask[:maskWords]
|
|
} else {
|
|
nidlepMask := make([]uint32, maskWords)
|
|
// No need to copy beyond len, old Ps are irrelevant.
|
|
copy(nidlepMask, idlepMask)
|
|
idlepMask = nidlepMask
|
|
|
|
ntimerpMask := make([]uint32, maskWords)
|
|
copy(ntimerpMask, timerpMask)
|
|
timerpMask = ntimerpMask
|
|
}
|
|
unlock(&allpLock)
|
|
}
|
|
|
|
// initialize new P's
|
|
for i := old; i < nprocs; i++ {
|
|
pp := allp[i]
|
|
if pp == nil {
|
|
pp = new(p)
|
|
}
|
|
pp.init(i)
|
|
atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
|
|
}
|
|
|
|
_g_ := getg()
|
|
if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
|
|
// continue to use the current P
|
|
_g_.m.p.ptr().status = _Prunning
|
|
_g_.m.p.ptr().mcache.prepareForSweep()
|
|
} else {
|
|
// release the current P and acquire allp[0].
|
|
//
|
|
// We must do this before destroying our current P
|
|
// because p.destroy itself has write barriers, so we
|
|
// need to do that from a valid P.
|
|
if _g_.m.p != 0 {
|
|
if trace.enabled {
|
|
// Pretend that we were descheduled
|
|
// and then scheduled again to keep
|
|
// the trace sane.
|
|
traceGoSched()
|
|
traceProcStop(_g_.m.p.ptr())
|
|
}
|
|
_g_.m.p.ptr().m = 0
|
|
}
|
|
_g_.m.p = 0
|
|
p := allp[0]
|
|
p.m = 0
|
|
p.status = _Pidle
|
|
acquirep(p)
|
|
if trace.enabled {
|
|
traceGoStart()
|
|
}
|
|
}
|
|
|
|
// g.m.p is now set, so we no longer need mcache0 for bootstrapping.
|
|
mcache0 = nil
|
|
|
|
// release resources from unused P's
|
|
for i := nprocs; i < old; i++ {
|
|
p := allp[i]
|
|
p.destroy()
|
|
// can't free P itself because it can be referenced by an M in syscall
|
|
}
|
|
|
|
// Trim allp.
|
|
if int32(len(allp)) != nprocs {
|
|
lock(&allpLock)
|
|
allp = allp[:nprocs]
|
|
idlepMask = idlepMask[:maskWords]
|
|
timerpMask = timerpMask[:maskWords]
|
|
unlock(&allpLock)
|
|
}
|
|
|
|
var runnablePs *p
|
|
for i := nprocs - 1; i >= 0; i-- {
|
|
p := allp[i]
|
|
if _g_.m.p.ptr() == p {
|
|
continue
|
|
}
|
|
p.status = _Pidle
|
|
if runqempty(p) {
|
|
pidleput(p)
|
|
} else {
|
|
p.m.set(mget())
|
|
p.link.set(runnablePs)
|
|
runnablePs = p
|
|
}
|
|
}
|
|
stealOrder.reset(uint32(nprocs))
|
|
var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
|
|
atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
|
|
return runnablePs
|
|
}
|
|
|
|
// Associate p and the current m.
|
|
//
|
|
// This function is allowed to have write barriers even if the caller
|
|
// isn't because it immediately acquires _p_.
|
|
//
|
|
//go:yeswritebarrierrec
|
|
func acquirep(_p_ *p) {
|
|
// Do the part that isn't allowed to have write barriers.
|
|
wirep(_p_)
|
|
|
|
// Have p; write barriers now allowed.
|
|
|
|
// Perform deferred mcache flush before this P can allocate
|
|
// from a potentially stale mcache.
|
|
_p_.mcache.prepareForSweep()
|
|
|
|
if trace.enabled {
|
|
traceProcStart()
|
|
}
|
|
}
|
|
|
|
// wirep is the first step of acquirep, which actually associates the
|
|
// current M to _p_. This is broken out so we can disallow write
|
|
// barriers for this part, since we don't yet have a P.
|
|
//
|
|
//go:nowritebarrierrec
|
|
//go:nosplit
|
|
func wirep(_p_ *p) {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.p != 0 {
|
|
throw("wirep: already in go")
|
|
}
|
|
if _p_.m != 0 || _p_.status != _Pidle {
|
|
id := int64(0)
|
|
if _p_.m != 0 {
|
|
id = _p_.m.ptr().id
|
|
}
|
|
print("wirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
|
|
throw("wirep: invalid p state")
|
|
}
|
|
_g_.m.p.set(_p_)
|
|
_p_.m.set(_g_.m)
|
|
_p_.status = _Prunning
|
|
}
|
|
|
|
// Disassociate p and the current m.
|
|
func releasep() *p {
|
|
_g_ := getg()
|
|
|
|
if _g_.m.p == 0 {
|
|
throw("releasep: invalid arg")
|
|
}
|
|
_p_ := _g_.m.p.ptr()
|
|
if _p_.m.ptr() != _g_.m || _p_.status != _Prunning {
|
|
print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", hex(_p_.m), " p->status=", _p_.status, "\n")
|
|
throw("releasep: invalid p state")
|
|
}
|
|
if trace.enabled {
|
|
traceProcStop(_g_.m.p.ptr())
|
|
}
|
|
_g_.m.p = 0
|
|
_p_.m = 0
|
|
_p_.status = _Pidle
|
|
return _p_
|
|
}
|
|
|
|
func incidlelocked(v int32) {
|
|
lock(&sched.lock)
|
|
sched.nmidlelocked += v
|
|
if v > 0 {
|
|
checkdead()
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// Check for deadlock situation.
|
|
// The check is based on number of running M's, if 0 -> deadlock.
|
|
// sched.lock must be held.
|
|
func checkdead() {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
// For -buildmode=c-shared or -buildmode=c-archive it's OK if
|
|
// there are no running goroutines. The calling program is
|
|
// assumed to be running.
|
|
if islibrary || isarchive {
|
|
return
|
|
}
|
|
|
|
// If we are dying because of a signal caught on an already idle thread,
|
|
// freezetheworld will cause all running threads to block.
|
|
// And runtime will essentially enter into deadlock state,
|
|
// except that there is a thread that will call exit soon.
|
|
if panicking > 0 {
|
|
return
|
|
}
|
|
|
|
// If we are not running under cgo, but we have an extra M then account
|
|
// for it. (It is possible to have an extra M on Windows without cgo to
|
|
// accommodate callbacks created by syscall.NewCallback. See issue #6751
|
|
// for details.)
|
|
var run0 int32
|
|
if !iscgo && cgoHasExtraM {
|
|
mp := lockextra(true)
|
|
haveExtraM := extraMCount > 0
|
|
unlockextra(mp)
|
|
if haveExtraM {
|
|
run0 = 1
|
|
}
|
|
}
|
|
|
|
run := mcount() - sched.nmidle - sched.nmidlelocked - sched.nmsys
|
|
if run > run0 {
|
|
return
|
|
}
|
|
if run < 0 {
|
|
print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", mcount(), " nmsys=", sched.nmsys, "\n")
|
|
throw("checkdead: inconsistent counts")
|
|
}
|
|
|
|
grunning := 0
|
|
forEachG(func(gp *g) {
|
|
if isSystemGoroutine(gp, false) {
|
|
return
|
|
}
|
|
s := readgstatus(gp)
|
|
switch s &^ _Gscan {
|
|
case _Gwaiting,
|
|
_Gpreempted:
|
|
grunning++
|
|
case _Grunnable,
|
|
_Grunning,
|
|
_Gsyscall:
|
|
print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
|
|
throw("checkdead: runnable g")
|
|
}
|
|
})
|
|
if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
|
|
unlock(&sched.lock) // unlock so that GODEBUG=scheddetail=1 doesn't hang
|
|
throw("no goroutines (main called runtime.Goexit) - deadlock!")
|
|
}
|
|
|
|
// Maybe jump time forward for playground.
|
|
if faketime != 0 {
|
|
when, _p_ := timeSleepUntil()
|
|
if _p_ != nil {
|
|
faketime = when
|
|
for pp := &sched.pidle; *pp != 0; pp = &(*pp).ptr().link {
|
|
if (*pp).ptr() == _p_ {
|
|
*pp = _p_.link
|
|
break
|
|
}
|
|
}
|
|
mp := mget()
|
|
if mp == nil {
|
|
// There should always be a free M since
|
|
// nothing is running.
|
|
throw("checkdead: no m for timer")
|
|
}
|
|
mp.nextp.set(_p_)
|
|
notewakeup(&mp.park)
|
|
return
|
|
}
|
|
}
|
|
|
|
// There are no goroutines running, so we can look at the P's.
|
|
for _, _p_ := range allp {
|
|
if len(_p_.timers) > 0 {
|
|
return
|
|
}
|
|
}
|
|
|
|
getg().m.throwing = -1 // do not dump full stacks
|
|
unlock(&sched.lock) // unlock so that GODEBUG=scheddetail=1 doesn't hang
|
|
throw("all goroutines are asleep - deadlock!")
|
|
}
|
|
|
|
// forcegcperiod is the maximum time in nanoseconds between garbage
|
|
// collections. If we go this long without a garbage collection, one
|
|
// is forced to run.
|
|
//
|
|
// This is a variable for testing purposes. It normally doesn't change.
|
|
var forcegcperiod int64 = 2 * 60 * 1e9
|
|
|
|
// Always runs without a P, so write barriers are not allowed.
|
|
//
|
|
//go:nowritebarrierrec
|
|
func sysmon() {
|
|
lock(&sched.lock)
|
|
sched.nmsys++
|
|
checkdead()
|
|
unlock(&sched.lock)
|
|
|
|
// For syscall_runtime_doAllThreadsSyscall, sysmon is
|
|
// sufficiently up to participate in fixups.
|
|
atomic.Store(&sched.sysmonStarting, 0)
|
|
|
|
lasttrace := int64(0)
|
|
idle := 0 // how many cycles in succession we had not wokeup somebody
|
|
delay := uint32(0)
|
|
|
|
for {
|
|
if idle == 0 { // start with 20us sleep...
|
|
delay = 20
|
|
} else if idle > 50 { // start doubling the sleep after 1ms...
|
|
delay *= 2
|
|
}
|
|
if delay > 10*1000 { // up to 10ms
|
|
delay = 10 * 1000
|
|
}
|
|
usleep(delay)
|
|
mDoFixup()
|
|
|
|
// sysmon should not enter deep sleep if schedtrace is enabled so that
|
|
// it can print that information at the right time.
|
|
//
|
|
// It should also not enter deep sleep if there are any active P's so
|
|
// that it can retake P's from syscalls, preempt long running G's, and
|
|
// poll the network if all P's are busy for long stretches.
|
|
//
|
|
// It should wakeup from deep sleep if any P's become active either due
|
|
// to exiting a syscall or waking up due to a timer expiring so that it
|
|
// can resume performing those duties. If it wakes from a syscall it
|
|
// resets idle and delay as a bet that since it had retaken a P from a
|
|
// syscall before, it may need to do it again shortly after the
|
|
// application starts work again. It does not reset idle when waking
|
|
// from a timer to avoid adding system load to applications that spend
|
|
// most of their time sleeping.
|
|
now := nanotime()
|
|
if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) {
|
|
lock(&sched.lock)
|
|
if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
|
|
syscallWake := false
|
|
next, _ := timeSleepUntil()
|
|
if next > now {
|
|
atomic.Store(&sched.sysmonwait, 1)
|
|
unlock(&sched.lock)
|
|
// Make wake-up period small enough
|
|
// for the sampling to be correct.
|
|
sleep := forcegcperiod / 2
|
|
if next-now < sleep {
|
|
sleep = next - now
|
|
}
|
|
shouldRelax := sleep >= osRelaxMinNS
|
|
if shouldRelax {
|
|
osRelax(true)
|
|
}
|
|
syscallWake = notetsleep(&sched.sysmonnote, sleep)
|
|
mDoFixup()
|
|
if shouldRelax {
|
|
osRelax(false)
|
|
}
|
|
lock(&sched.lock)
|
|
atomic.Store(&sched.sysmonwait, 0)
|
|
noteclear(&sched.sysmonnote)
|
|
}
|
|
if syscallWake {
|
|
idle = 0
|
|
delay = 20
|
|
}
|
|
}
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
lock(&sched.sysmonlock)
|
|
// Update now in case we blocked on sysmonnote or spent a long time
|
|
// blocked on schedlock or sysmonlock above.
|
|
now = nanotime()
|
|
|
|
// trigger libc interceptors if needed
|
|
if *cgo_yield != nil {
|
|
asmcgocall(*cgo_yield, nil)
|
|
}
|
|
// poll network if not polled for more than 10ms
|
|
lastpoll := int64(atomic.Load64(&sched.lastpoll))
|
|
if netpollinited() && lastpoll != 0 && lastpoll+10*1000*1000 < now {
|
|
atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
|
|
list := netpoll(0) // non-blocking - returns list of goroutines
|
|
if !list.empty() {
|
|
// Need to decrement number of idle locked M's
|
|
// (pretending that one more is running) before injectglist.
|
|
// Otherwise it can lead to the following situation:
|
|
// injectglist grabs all P's but before it starts M's to run the P's,
|
|
// another M returns from syscall, finishes running its G,
|
|
// observes that there is no work to do and no other running M's
|
|
// and reports deadlock.
|
|
incidlelocked(-1)
|
|
injectglist(&list)
|
|
incidlelocked(1)
|
|
}
|
|
}
|
|
mDoFixup()
|
|
if GOOS == "netbsd" {
|
|
// netpoll is responsible for waiting for timer
|
|
// expiration, so we typically don't have to worry
|
|
// about starting an M to service timers. (Note that
|
|
// sleep for timeSleepUntil above simply ensures sysmon
|
|
// starts running again when that timer expiration may
|
|
// cause Go code to run again).
|
|
//
|
|
// However, netbsd has a kernel bug that sometimes
|
|
// misses netpollBreak wake-ups, which can lead to
|
|
// unbounded delays servicing timers. If we detect this
|
|
// overrun, then startm to get something to handle the
|
|
// timer.
|
|
//
|
|
// See issue 42515 and
|
|
// https://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=50094.
|
|
if next, _ := timeSleepUntil(); next < now {
|
|
startm(nil, false)
|
|
}
|
|
}
|
|
if atomic.Load(&scavenge.sysmonWake) != 0 {
|
|
// Kick the scavenger awake if someone requested it.
|
|
wakeScavenger()
|
|
}
|
|
// retake P's blocked in syscalls
|
|
// and preempt long running G's
|
|
if retake(now) != 0 {
|
|
idle = 0
|
|
} else {
|
|
idle++
|
|
}
|
|
// check if we need to force a GC
|
|
if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 {
|
|
lock(&forcegc.lock)
|
|
forcegc.idle = 0
|
|
var list gList
|
|
list.push(forcegc.g)
|
|
injectglist(&list)
|
|
unlock(&forcegc.lock)
|
|
}
|
|
if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now {
|
|
lasttrace = now
|
|
schedtrace(debug.scheddetail > 0)
|
|
}
|
|
unlock(&sched.sysmonlock)
|
|
}
|
|
}
|
|
|
|
type sysmontick struct {
|
|
schedtick uint32
|
|
schedwhen int64
|
|
syscalltick uint32
|
|
syscallwhen int64
|
|
}
|
|
|
|
// forcePreemptNS is the time slice given to a G before it is
|
|
// preempted.
|
|
const forcePreemptNS = 10 * 1000 * 1000 // 10ms
|
|
|
|
func retake(now int64) uint32 {
|
|
n := 0
|
|
// Prevent allp slice changes. This lock will be completely
|
|
// uncontended unless we're already stopping the world.
|
|
lock(&allpLock)
|
|
// We can't use a range loop over allp because we may
|
|
// temporarily drop the allpLock. Hence, we need to re-fetch
|
|
// allp each time around the loop.
|
|
for i := 0; i < len(allp); i++ {
|
|
_p_ := allp[i]
|
|
if _p_ == nil {
|
|
// This can happen if procresize has grown
|
|
// allp but not yet created new Ps.
|
|
continue
|
|
}
|
|
pd := &_p_.sysmontick
|
|
s := _p_.status
|
|
sysretake := false
|
|
if s == _Prunning || s == _Psyscall {
|
|
// Preempt G if it's running for too long.
|
|
t := int64(_p_.schedtick)
|
|
if int64(pd.schedtick) != t {
|
|
pd.schedtick = uint32(t)
|
|
pd.schedwhen = now
|
|
} else if pd.schedwhen+forcePreemptNS <= now {
|
|
preemptone(_p_)
|
|
// In case of syscall, preemptone() doesn't
|
|
// work, because there is no M wired to P.
|
|
sysretake = true
|
|
}
|
|
}
|
|
if s == _Psyscall {
|
|
// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
|
|
t := int64(_p_.syscalltick)
|
|
if !sysretake && int64(pd.syscalltick) != t {
|
|
pd.syscalltick = uint32(t)
|
|
pd.syscallwhen = now
|
|
continue
|
|
}
|
|
// On the one hand we don't want to retake Ps if there is no other work to do,
|
|
// but on the other hand we want to retake them eventually
|
|
// because they can prevent the sysmon thread from deep sleep.
|
|
if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
|
|
continue
|
|
}
|
|
// Drop allpLock so we can take sched.lock.
|
|
unlock(&allpLock)
|
|
// Need to decrement number of idle locked M's
|
|
// (pretending that one more is running) before the CAS.
|
|
// Otherwise the M from which we retake can exit the syscall,
|
|
// increment nmidle and report deadlock.
|
|
incidlelocked(-1)
|
|
if atomic.Cas(&_p_.status, s, _Pidle) {
|
|
if trace.enabled {
|
|
traceGoSysBlock(_p_)
|
|
traceProcStop(_p_)
|
|
}
|
|
n++
|
|
_p_.syscalltick++
|
|
handoffp(_p_)
|
|
}
|
|
incidlelocked(1)
|
|
lock(&allpLock)
|
|
}
|
|
}
|
|
unlock(&allpLock)
|
|
return uint32(n)
|
|
}
|
|
|
|
// Tell all goroutines that they have been preempted and they should stop.
|
|
// This function is purely best-effort. It can fail to inform a goroutine if a
|
|
// processor just started running it.
|
|
// No locks need to be held.
|
|
// Returns true if preemption request was issued to at least one goroutine.
|
|
func preemptall() bool {
|
|
res := false
|
|
for _, _p_ := range allp {
|
|
if _p_.status != _Prunning {
|
|
continue
|
|
}
|
|
if preemptone(_p_) {
|
|
res = true
|
|
}
|
|
}
|
|
return res
|
|
}
|
|
|
|
// Tell the goroutine running on processor P to stop.
|
|
// This function is purely best-effort. It can incorrectly fail to inform the
|
|
// goroutine. It can inform the wrong goroutine. Even if it informs the
|
|
// correct goroutine, that goroutine might ignore the request if it is
|
|
// simultaneously executing newstack.
|
|
// No lock needs to be held.
|
|
// Returns true if preemption request was issued.
|
|
// The actual preemption will happen at some point in the future
|
|
// and will be indicated by the gp->status no longer being
|
|
// Grunning
|
|
func preemptone(_p_ *p) bool {
|
|
mp := _p_.m.ptr()
|
|
if mp == nil || mp == getg().m {
|
|
return false
|
|
}
|
|
gp := mp.curg
|
|
if gp == nil || gp == mp.g0 {
|
|
return false
|
|
}
|
|
|
|
gp.preempt = true
|
|
|
|
// At this point the gc implementation sets gp.stackguard0 to
|
|
// a value that causes the goroutine to suspend itself.
|
|
// gccgo has no support for this, and it's hard to support.
|
|
// The split stack code reads a value from its TCB.
|
|
// We have no way to set a value in the TCB of a different thread.
|
|
// And, of course, not all systems support split stack anyhow.
|
|
// Checking the field in the g is expensive, since it requires
|
|
// loading the g from TLS. The best mechanism is likely to be
|
|
// setting a global variable and figuring out a way to efficiently
|
|
// check that global variable.
|
|
//
|
|
// For now we check gp.preempt in schedule, mallocgc, selectgo,
|
|
// and a few other places, which is at least better than doing
|
|
// nothing at all.
|
|
|
|
// Request an async preemption of this P.
|
|
if preemptMSupported && debug.asyncpreemptoff == 0 {
|
|
_p_.preempt = true
|
|
preemptM(mp)
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
var starttime int64
|
|
|
|
func schedtrace(detailed bool) {
|
|
now := nanotime()
|
|
if starttime == 0 {
|
|
starttime = now
|
|
}
|
|
|
|
lock(&sched.lock)
|
|
print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", mcount(), " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
|
|
if detailed {
|
|
print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
|
|
}
|
|
// We must be careful while reading data from P's, M's and G's.
|
|
// Even if we hold schedlock, most data can be changed concurrently.
|
|
// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
|
|
for i, _p_ := range allp {
|
|
mp := _p_.m.ptr()
|
|
h := atomic.Load(&_p_.runqhead)
|
|
t := atomic.Load(&_p_.runqtail)
|
|
if detailed {
|
|
id := int64(-1)
|
|
if mp != nil {
|
|
id = mp.id
|
|
}
|
|
print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gFree.n, " timerslen=", len(_p_.timers), "\n")
|
|
} else {
|
|
// In non-detailed mode format lengths of per-P run queues as:
|
|
// [len1 len2 len3 len4]
|
|
print(" ")
|
|
if i == 0 {
|
|
print("[")
|
|
}
|
|
print(t - h)
|
|
if i == len(allp)-1 {
|
|
print("]\n")
|
|
}
|
|
}
|
|
}
|
|
|
|
if !detailed {
|
|
unlock(&sched.lock)
|
|
return
|
|
}
|
|
|
|
for mp := allm; mp != nil; mp = mp.alllink {
|
|
_p_ := mp.p.ptr()
|
|
gp := mp.curg
|
|
lockedg := mp.lockedg.ptr()
|
|
id1 := int32(-1)
|
|
if _p_ != nil {
|
|
id1 = _p_.id
|
|
}
|
|
id2 := int64(-1)
|
|
if gp != nil {
|
|
id2 = gp.goid
|
|
}
|
|
id3 := int64(-1)
|
|
if lockedg != nil {
|
|
id3 = lockedg.goid
|
|
}
|
|
print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n")
|
|
}
|
|
|
|
forEachG(func(gp *g) {
|
|
mp := gp.m
|
|
lockedm := gp.lockedm.ptr()
|
|
id1 := int64(-1)
|
|
if mp != nil {
|
|
id1 = mp.id
|
|
}
|
|
id2 := int64(-1)
|
|
if lockedm != nil {
|
|
id2 = lockedm.id
|
|
}
|
|
print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason.String(), ") m=", id1, " lockedm=", id2, "\n")
|
|
})
|
|
unlock(&sched.lock)
|
|
}
|
|
|
|
// schedEnableUser enables or disables the scheduling of user
|
|
// goroutines.
|
|
//
|
|
// This does not stop already running user goroutines, so the caller
|
|
// should first stop the world when disabling user goroutines.
|
|
func schedEnableUser(enable bool) {
|
|
lock(&sched.lock)
|
|
if sched.disable.user == !enable {
|
|
unlock(&sched.lock)
|
|
return
|
|
}
|
|
sched.disable.user = !enable
|
|
if enable {
|
|
n := sched.disable.n
|
|
sched.disable.n = 0
|
|
globrunqputbatch(&sched.disable.runnable, n)
|
|
unlock(&sched.lock)
|
|
for ; n != 0 && sched.npidle != 0; n-- {
|
|
startm(nil, false)
|
|
}
|
|
} else {
|
|
unlock(&sched.lock)
|
|
}
|
|
}
|
|
|
|
// schedEnabled reports whether gp should be scheduled. It returns
|
|
// false is scheduling of gp is disabled.
|
|
//
|
|
// sched.lock must be held.
|
|
func schedEnabled(gp *g) bool {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
if sched.disable.user {
|
|
return isSystemGoroutine(gp, true)
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Put mp on midle list.
|
|
// sched.lock must be held.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func mput(mp *m) {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
mp.schedlink = sched.midle
|
|
sched.midle.set(mp)
|
|
sched.nmidle++
|
|
checkdead()
|
|
}
|
|
|
|
// Try to get an m from midle list.
|
|
// sched.lock must be held.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func mget() *m {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
mp := sched.midle.ptr()
|
|
if mp != nil {
|
|
sched.midle = mp.schedlink
|
|
sched.nmidle--
|
|
}
|
|
return mp
|
|
}
|
|
|
|
// Put gp on the global runnable queue.
|
|
// sched.lock must be held.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func globrunqput(gp *g) {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
sched.runq.pushBack(gp)
|
|
sched.runqsize++
|
|
}
|
|
|
|
// Put gp at the head of the global runnable queue.
|
|
// sched.lock must be held.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func globrunqputhead(gp *g) {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
sched.runq.push(gp)
|
|
sched.runqsize++
|
|
}
|
|
|
|
// Put a batch of runnable goroutines on the global runnable queue.
|
|
// This clears *batch.
|
|
// sched.lock must be held.
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func globrunqputbatch(batch *gQueue, n int32) {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
sched.runq.pushBackAll(*batch)
|
|
sched.runqsize += n
|
|
*batch = gQueue{}
|
|
}
|
|
|
|
// Try get a batch of G's from the global runnable queue.
|
|
// sched.lock must be held.
|
|
func globrunqget(_p_ *p, max int32) *g {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
if sched.runqsize == 0 {
|
|
return nil
|
|
}
|
|
|
|
n := sched.runqsize/gomaxprocs + 1
|
|
if n > sched.runqsize {
|
|
n = sched.runqsize
|
|
}
|
|
if max > 0 && n > max {
|
|
n = max
|
|
}
|
|
if n > int32(len(_p_.runq))/2 {
|
|
n = int32(len(_p_.runq)) / 2
|
|
}
|
|
|
|
sched.runqsize -= n
|
|
|
|
gp := sched.runq.pop()
|
|
n--
|
|
for ; n > 0; n-- {
|
|
gp1 := sched.runq.pop()
|
|
runqput(_p_, gp1, false)
|
|
}
|
|
return gp
|
|
}
|
|
|
|
// pMask is an atomic bitstring with one bit per P.
|
|
type pMask []uint32
|
|
|
|
// read returns true if P id's bit is set.
|
|
func (p pMask) read(id uint32) bool {
|
|
word := id / 32
|
|
mask := uint32(1) << (id % 32)
|
|
return (atomic.Load(&p[word]) & mask) != 0
|
|
}
|
|
|
|
// set sets P id's bit.
|
|
func (p pMask) set(id int32) {
|
|
word := id / 32
|
|
mask := uint32(1) << (id % 32)
|
|
atomic.Or(&p[word], mask)
|
|
}
|
|
|
|
// clear clears P id's bit.
|
|
func (p pMask) clear(id int32) {
|
|
word := id / 32
|
|
mask := uint32(1) << (id % 32)
|
|
atomic.And(&p[word], ^mask)
|
|
}
|
|
|
|
// updateTimerPMask clears pp's timer mask if it has no timers on its heap.
|
|
//
|
|
// Ideally, the timer mask would be kept immediately consistent on any timer
|
|
// operations. Unfortunately, updating a shared global data structure in the
|
|
// timer hot path adds too much overhead in applications frequently switching
|
|
// between no timers and some timers.
|
|
//
|
|
// As a compromise, the timer mask is updated only on pidleget / pidleput. A
|
|
// running P (returned by pidleget) may add a timer at any time, so its mask
|
|
// must be set. An idle P (passed to pidleput) cannot add new timers while
|
|
// idle, so if it has no timers at that time, its mask may be cleared.
|
|
//
|
|
// Thus, we get the following effects on timer-stealing in findrunnable:
|
|
//
|
|
// * Idle Ps with no timers when they go idle are never checked in findrunnable
|
|
// (for work- or timer-stealing; this is the ideal case).
|
|
// * Running Ps must always be checked.
|
|
// * Idle Ps whose timers are stolen must continue to be checked until they run
|
|
// again, even after timer expiration.
|
|
//
|
|
// When the P starts running again, the mask should be set, as a timer may be
|
|
// added at any time.
|
|
//
|
|
// TODO(prattmic): Additional targeted updates may improve the above cases.
|
|
// e.g., updating the mask when stealing a timer.
|
|
func updateTimerPMask(pp *p) {
|
|
if atomic.Load(&pp.numTimers) > 0 {
|
|
return
|
|
}
|
|
|
|
// Looks like there are no timers, however another P may transiently
|
|
// decrement numTimers when handling a timerModified timer in
|
|
// checkTimers. We must take timersLock to serialize with these changes.
|
|
lock(&pp.timersLock)
|
|
if atomic.Load(&pp.numTimers) == 0 {
|
|
timerpMask.clear(pp.id)
|
|
}
|
|
unlock(&pp.timersLock)
|
|
}
|
|
|
|
// pidleput puts p to on the _Pidle list.
|
|
//
|
|
// This releases ownership of p. Once sched.lock is released it is no longer
|
|
// safe to use p.
|
|
//
|
|
// sched.lock must be held.
|
|
//
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func pidleput(_p_ *p) {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
if !runqempty(_p_) {
|
|
throw("pidleput: P has non-empty run queue")
|
|
}
|
|
updateTimerPMask(_p_) // clear if there are no timers.
|
|
idlepMask.set(_p_.id)
|
|
_p_.link = sched.pidle
|
|
sched.pidle.set(_p_)
|
|
atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic
|
|
}
|
|
|
|
// pidleget tries to get a p from the _Pidle list, acquiring ownership.
|
|
//
|
|
// sched.lock must be held.
|
|
//
|
|
// May run during STW, so write barriers are not allowed.
|
|
//go:nowritebarrierrec
|
|
func pidleget() *p {
|
|
assertLockHeld(&sched.lock)
|
|
|
|
_p_ := sched.pidle.ptr()
|
|
if _p_ != nil {
|
|
// Timer may get added at any time now.
|
|
timerpMask.set(_p_.id)
|
|
idlepMask.clear(_p_.id)
|
|
sched.pidle = _p_.link
|
|
atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic
|
|
}
|
|
return _p_
|
|
}
|
|
|
|
// runqempty reports whether _p_ has no Gs on its local run queue.
|
|
// It never returns true spuriously.
|
|
func runqempty(_p_ *p) bool {
|
|
// Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail,
|
|
// 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext.
|
|
// Simply observing that runqhead == runqtail and then observing that runqnext == nil
|
|
// does not mean the queue is empty.
|
|
for {
|
|
head := atomic.Load(&_p_.runqhead)
|
|
tail := atomic.Load(&_p_.runqtail)
|
|
runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext)))
|
|
if tail == atomic.Load(&_p_.runqtail) {
|
|
return head == tail && runnext == 0
|
|
}
|
|
}
|
|
}
|
|
|
|
// To shake out latent assumptions about scheduling order,
|
|
// we introduce some randomness into scheduling decisions
|
|
// when running with the race detector.
|
|
// The need for this was made obvious by changing the
|
|
// (deterministic) scheduling order in Go 1.5 and breaking
|
|
// many poorly-written tests.
|
|
// With the randomness here, as long as the tests pass
|
|
// consistently with -race, they shouldn't have latent scheduling
|
|
// assumptions.
|
|
const randomizeScheduler = raceenabled
|
|
|
|
// runqput tries to put g on the local runnable queue.
|
|
// If next is false, runqput adds g to the tail of the runnable queue.
|
|
// If next is true, runqput puts g in the _p_.runnext slot.
|
|
// If the run queue is full, runnext puts g on the global queue.
|
|
// Executed only by the owner P.
|
|
func runqput(_p_ *p, gp *g, next bool) {
|
|
if randomizeScheduler && next && fastrand()%2 == 0 {
|
|
next = false
|
|
}
|
|
|
|
if next {
|
|
retryNext:
|
|
oldnext := _p_.runnext
|
|
if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
|
|
goto retryNext
|
|
}
|
|
if oldnext == 0 {
|
|
return
|
|
}
|
|
// Kick the old runnext out to the regular run queue.
|
|
gp = oldnext.ptr()
|
|
}
|
|
|
|
retry:
|
|
h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with consumers
|
|
t := _p_.runqtail
|
|
if t-h < uint32(len(_p_.runq)) {
|
|
_p_.runq[t%uint32(len(_p_.runq))].set(gp)
|
|
atomic.StoreRel(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
|
|
return
|
|
}
|
|
if runqputslow(_p_, gp, h, t) {
|
|
return
|
|
}
|
|
// the queue is not full, now the put above must succeed
|
|
goto retry
|
|
}
|
|
|
|
// Put g and a batch of work from local runnable queue on global queue.
|
|
// Executed only by the owner P.
|
|
func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
|
|
var batch [len(_p_.runq)/2 + 1]*g
|
|
|
|
// First, grab a batch from local queue.
|
|
n := t - h
|
|
n = n / 2
|
|
if n != uint32(len(_p_.runq)/2) {
|
|
throw("runqputslow: queue is not full")
|
|
}
|
|
for i := uint32(0); i < n; i++ {
|
|
batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr()
|
|
}
|
|
if !atomic.CasRel(&_p_.runqhead, h, h+n) { // cas-release, commits consume
|
|
return false
|
|
}
|
|
batch[n] = gp
|
|
|
|
if randomizeScheduler {
|
|
for i := uint32(1); i <= n; i++ {
|
|
j := fastrandn(i + 1)
|
|
batch[i], batch[j] = batch[j], batch[i]
|
|
}
|
|
}
|
|
|
|
// Link the goroutines.
|
|
for i := uint32(0); i < n; i++ {
|
|
batch[i].schedlink.set(batch[i+1])
|
|
}
|
|
var q gQueue
|
|
q.head.set(batch[0])
|
|
q.tail.set(batch[n])
|
|
|
|
// Now put the batch on global queue.
|
|
lock(&sched.lock)
|
|
globrunqputbatch(&q, int32(n+1))
|
|
unlock(&sched.lock)
|
|
return true
|
|
}
|
|
|
|
// runqputbatch tries to put all the G's on q on the local runnable queue.
|
|
// If the queue is full, they are put on the global queue; in that case
|
|
// this will temporarily acquire the scheduler lock.
|
|
// Executed only by the owner P.
|
|
func runqputbatch(pp *p, q *gQueue, qsize int) {
|
|
h := atomic.LoadAcq(&pp.runqhead)
|
|
t := pp.runqtail
|
|
n := uint32(0)
|
|
for !q.empty() && t-h < uint32(len(pp.runq)) {
|
|
gp := q.pop()
|
|
pp.runq[t%uint32(len(pp.runq))].set(gp)
|
|
t++
|
|
n++
|
|
}
|
|
qsize -= int(n)
|
|
|
|
if randomizeScheduler {
|
|
off := func(o uint32) uint32 {
|
|
return (pp.runqtail + o) % uint32(len(pp.runq))
|
|
}
|
|
for i := uint32(1); i < n; i++ {
|
|
j := fastrandn(i + 1)
|
|
pp.runq[off(i)], pp.runq[off(j)] = pp.runq[off(j)], pp.runq[off(i)]
|
|
}
|
|
}
|
|
|
|
atomic.StoreRel(&pp.runqtail, t)
|
|
if !q.empty() {
|
|
lock(&sched.lock)
|
|
globrunqputbatch(q, int32(qsize))
|
|
unlock(&sched.lock)
|
|
}
|
|
}
|
|
|
|
// Get g from local runnable queue.
|
|
// If inheritTime is true, gp should inherit the remaining time in the
|
|
// current time slice. Otherwise, it should start a new time slice.
|
|
// Executed only by the owner P.
|
|
func runqget(_p_ *p) (gp *g, inheritTime bool) {
|
|
// If there's a runnext, it's the next G to run.
|
|
for {
|
|
next := _p_.runnext
|
|
if next == 0 {
|
|
break
|
|
}
|
|
if _p_.runnext.cas(next, 0) {
|
|
return next.ptr(), true
|
|
}
|
|
}
|
|
|
|
for {
|
|
h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers
|
|
t := _p_.runqtail
|
|
if t == h {
|
|
return nil, false
|
|
}
|
|
gp := _p_.runq[h%uint32(len(_p_.runq))].ptr()
|
|
if atomic.CasRel(&_p_.runqhead, h, h+1) { // cas-release, commits consume
|
|
return gp, false
|
|
}
|
|
}
|
|
}
|
|
|
|
// runqdrain drains the local runnable queue of _p_ and returns all goroutines in it.
|
|
// Executed only by the owner P.
|
|
func runqdrain(_p_ *p) (drainQ gQueue, n uint32) {
|
|
oldNext := _p_.runnext
|
|
if oldNext != 0 && _p_.runnext.cas(oldNext, 0) {
|
|
drainQ.pushBack(oldNext.ptr())
|
|
n++
|
|
}
|
|
|
|
retry:
|
|
h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers
|
|
t := _p_.runqtail
|
|
qn := t - h
|
|
if qn == 0 {
|
|
return
|
|
}
|
|
if qn > uint32(len(_p_.runq)) { // read inconsistent h and t
|
|
goto retry
|
|
}
|
|
|
|
if !atomic.CasRel(&_p_.runqhead, h, h+qn) { // cas-release, commits consume
|
|
goto retry
|
|
}
|
|
|
|
// We've inverted the order in which it gets G's from the local P's runnable queue
|
|
// and then advances the head pointer because we don't want to mess up the statuses of G's
|
|
// while runqdrain() and runqsteal() are running in parallel.
|
|
// Thus we should advance the head pointer before draining the local P into a gQueue,
|
|
// so that we can update any gp.schedlink only after we take the full ownership of G,
|
|
// meanwhile, other P's can't access to all G's in local P's runnable queue and steal them.
|
|
// See https://groups.google.com/g/golang-dev/c/0pTKxEKhHSc/m/6Q85QjdVBQAJ for more details.
|
|
for i := uint32(0); i < qn; i++ {
|
|
gp := _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr()
|
|
drainQ.pushBack(gp)
|
|
n++
|
|
}
|
|
return
|
|
}
|
|
|
|
// Grabs a batch of goroutines from _p_'s runnable queue into batch.
|
|
// Batch is a ring buffer starting at batchHead.
|
|
// Returns number of grabbed goroutines.
|
|
// Can be executed by any P.
|
|
func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 {
|
|
for {
|
|
h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers
|
|
t := atomic.LoadAcq(&_p_.runqtail) // load-acquire, synchronize with the producer
|
|
n := t - h
|
|
n = n - n/2
|
|
if n == 0 {
|
|
if stealRunNextG {
|
|
// Try to steal from _p_.runnext.
|
|
if next := _p_.runnext; next != 0 {
|
|
if _p_.status == _Prunning {
|
|
// Sleep to ensure that _p_ isn't about to run the g
|
|
// we are about to steal.
|
|
// The important use case here is when the g running
|
|
// on _p_ ready()s another g and then almost
|
|
// immediately blocks. Instead of stealing runnext
|
|
// in this window, back off to give _p_ a chance to
|
|
// schedule runnext. This will avoid thrashing gs
|
|
// between different Ps.
|
|
// A sync chan send/recv takes ~50ns as of time of
|
|
// writing, so 3us gives ~50x overshoot.
|
|
if GOOS != "windows" {
|
|
usleep(3)
|
|
} else {
|
|
// On windows system timer granularity is
|
|
// 1-15ms, which is way too much for this
|
|
// optimization. So just yield.
|
|
osyield()
|
|
}
|
|
}
|
|
if !_p_.runnext.cas(next, 0) {
|
|
continue
|
|
}
|
|
batch[batchHead%uint32(len(batch))] = next
|
|
return 1
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
|
|
continue
|
|
}
|
|
for i := uint32(0); i < n; i++ {
|
|
g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
|
|
batch[(batchHead+i)%uint32(len(batch))] = g
|
|
}
|
|
if atomic.CasRel(&_p_.runqhead, h, h+n) { // cas-release, commits consume
|
|
return n
|
|
}
|
|
}
|
|
}
|
|
|
|
// Steal half of elements from local runnable queue of p2
|
|
// and put onto local runnable queue of p.
|
|
// Returns one of the stolen elements (or nil if failed).
|
|
func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
|
|
t := _p_.runqtail
|
|
n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
|
|
if n == 0 {
|
|
return nil
|
|
}
|
|
n--
|
|
gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr()
|
|
if n == 0 {
|
|
return gp
|
|
}
|
|
h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with consumers
|
|
if t-h+n >= uint32(len(_p_.runq)) {
|
|
throw("runqsteal: runq overflow")
|
|
}
|
|
atomic.StoreRel(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
|
|
return gp
|
|
}
|
|
|
|
// A gQueue is a dequeue of Gs linked through g.schedlink. A G can only
|
|
// be on one gQueue or gList at a time.
|
|
type gQueue struct {
|
|
head guintptr
|
|
tail guintptr
|
|
}
|
|
|
|
// empty reports whether q is empty.
|
|
func (q *gQueue) empty() bool {
|
|
return q.head == 0
|
|
}
|
|
|
|
// push adds gp to the head of q.
|
|
func (q *gQueue) push(gp *g) {
|
|
gp.schedlink = q.head
|
|
q.head.set(gp)
|
|
if q.tail == 0 {
|
|
q.tail.set(gp)
|
|
}
|
|
}
|
|
|
|
// pushBack adds gp to the tail of q.
|
|
func (q *gQueue) pushBack(gp *g) {
|
|
gp.schedlink = 0
|
|
if q.tail != 0 {
|
|
q.tail.ptr().schedlink.set(gp)
|
|
} else {
|
|
q.head.set(gp)
|
|
}
|
|
q.tail.set(gp)
|
|
}
|
|
|
|
// pushBackAll adds all Gs in l2 to the tail of q. After this q2 must
|
|
// not be used.
|
|
func (q *gQueue) pushBackAll(q2 gQueue) {
|
|
if q2.tail == 0 {
|
|
return
|
|
}
|
|
q2.tail.ptr().schedlink = 0
|
|
if q.tail != 0 {
|
|
q.tail.ptr().schedlink = q2.head
|
|
} else {
|
|
q.head = q2.head
|
|
}
|
|
q.tail = q2.tail
|
|
}
|
|
|
|
// pop removes and returns the head of queue q. It returns nil if
|
|
// q is empty.
|
|
func (q *gQueue) pop() *g {
|
|
gp := q.head.ptr()
|
|
if gp != nil {
|
|
q.head = gp.schedlink
|
|
if q.head == 0 {
|
|
q.tail = 0
|
|
}
|
|
}
|
|
return gp
|
|
}
|
|
|
|
// popList takes all Gs in q and returns them as a gList.
|
|
func (q *gQueue) popList() gList {
|
|
stack := gList{q.head}
|
|
*q = gQueue{}
|
|
return stack
|
|
}
|
|
|
|
// A gList is a list of Gs linked through g.schedlink. A G can only be
|
|
// on one gQueue or gList at a time.
|
|
type gList struct {
|
|
head guintptr
|
|
}
|
|
|
|
// empty reports whether l is empty.
|
|
func (l *gList) empty() bool {
|
|
return l.head == 0
|
|
}
|
|
|
|
// push adds gp to the head of l.
|
|
func (l *gList) push(gp *g) {
|
|
gp.schedlink = l.head
|
|
l.head.set(gp)
|
|
}
|
|
|
|
// pushAll prepends all Gs in q to l.
|
|
func (l *gList) pushAll(q gQueue) {
|
|
if !q.empty() {
|
|
q.tail.ptr().schedlink = l.head
|
|
l.head = q.head
|
|
}
|
|
}
|
|
|
|
// pop removes and returns the head of l. If l is empty, it returns nil.
|
|
func (l *gList) pop() *g {
|
|
gp := l.head.ptr()
|
|
if gp != nil {
|
|
l.head = gp.schedlink
|
|
}
|
|
return gp
|
|
}
|
|
|
|
//go:linkname setMaxThreads runtime_1debug.setMaxThreads
|
|
func setMaxThreads(in int) (out int) {
|
|
lock(&sched.lock)
|
|
out = int(sched.maxmcount)
|
|
if in > 0x7fffffff { // MaxInt32
|
|
sched.maxmcount = 0x7fffffff
|
|
} else {
|
|
sched.maxmcount = int32(in)
|
|
}
|
|
checkmcount()
|
|
unlock(&sched.lock)
|
|
return
|
|
}
|
|
|
|
//go:nosplit
|
|
func procPin() int {
|
|
_g_ := getg()
|
|
mp := _g_.m
|
|
|
|
mp.locks++
|
|
return int(mp.p.ptr().id)
|
|
}
|
|
|
|
//go:nosplit
|
|
func procUnpin() {
|
|
_g_ := getg()
|
|
_g_.m.locks--
|
|
}
|
|
|
|
//go:linkname sync_runtime_procPin sync.runtime__procPin
|
|
//go:nosplit
|
|
func sync_runtime_procPin() int {
|
|
return procPin()
|
|
}
|
|
|
|
//go:linkname sync_runtime_procUnpin sync.runtime__procUnpin
|
|
//go:nosplit
|
|
func sync_runtime_procUnpin() {
|
|
procUnpin()
|
|
}
|
|
|
|
//go:linkname sync_atomic_runtime_procPin sync_1atomic.runtime__procPin
|
|
//go:nosplit
|
|
func sync_atomic_runtime_procPin() int {
|
|
return procPin()
|
|
}
|
|
|
|
//go:linkname sync_atomic_runtime_procUnpin sync_1atomic.runtime__procUnpin
|
|
//go:nosplit
|
|
func sync_atomic_runtime_procUnpin() {
|
|
procUnpin()
|
|
}
|
|
|
|
// Active spinning for sync.Mutex.
|
|
//go:linkname sync_runtime_canSpin sync.runtime__canSpin
|
|
//go:nosplit
|
|
func sync_runtime_canSpin(i int) bool {
|
|
// sync.Mutex is cooperative, so we are conservative with spinning.
|
|
// Spin only few times and only if running on a multicore machine and
|
|
// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
|
|
// As opposed to runtime mutex we don't do passive spinning here,
|
|
// because there can be work on global runq or on other Ps.
|
|
if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
|
|
return false
|
|
}
|
|
if p := getg().m.p.ptr(); !runqempty(p) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
//go:linkname sync_runtime_doSpin sync.runtime__doSpin
|
|
//go:nosplit
|
|
func sync_runtime_doSpin() {
|
|
procyield(active_spin_cnt)
|
|
}
|
|
|
|
var stealOrder randomOrder
|
|
|
|
// randomOrder/randomEnum are helper types for randomized work stealing.
|
|
// They allow to enumerate all Ps in different pseudo-random orders without repetitions.
|
|
// The algorithm is based on the fact that if we have X such that X and GOMAXPROCS
|
|
// are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration.
|
|
type randomOrder struct {
|
|
count uint32
|
|
coprimes []uint32
|
|
}
|
|
|
|
type randomEnum struct {
|
|
i uint32
|
|
count uint32
|
|
pos uint32
|
|
inc uint32
|
|
}
|
|
|
|
func (ord *randomOrder) reset(count uint32) {
|
|
ord.count = count
|
|
ord.coprimes = ord.coprimes[:0]
|
|
for i := uint32(1); i <= count; i++ {
|
|
if gcd(i, count) == 1 {
|
|
ord.coprimes = append(ord.coprimes, i)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (ord *randomOrder) start(i uint32) randomEnum {
|
|
return randomEnum{
|
|
count: ord.count,
|
|
pos: i % ord.count,
|
|
inc: ord.coprimes[i%uint32(len(ord.coprimes))],
|
|
}
|
|
}
|
|
|
|
func (enum *randomEnum) done() bool {
|
|
return enum.i == enum.count
|
|
}
|
|
|
|
func (enum *randomEnum) next() {
|
|
enum.i++
|
|
enum.pos = (enum.pos + enum.inc) % enum.count
|
|
}
|
|
|
|
func (enum *randomEnum) position() uint32 {
|
|
return enum.pos
|
|
}
|
|
|
|
func gcd(a, b uint32) uint32 {
|
|
for b != 0 {
|
|
a, b = b, a%b
|
|
}
|
|
return a
|
|
}
|
|
|
|
// inittrace stores statistics for init functions which are
|
|
// updated by malloc and newproc when active is true.
|
|
var inittrace tracestat
|
|
|
|
type tracestat struct {
|
|
active bool // init tracing activation status
|
|
id int64 // init goroutine id
|
|
allocs uint64 // heap allocations
|
|
bytes uint64 // heap allocated bytes
|
|
}
|