gcc/libgfortran/generated/count_1_l.c
2021-01-04 10:26:59 +01:00

215 lines
5.4 KiB
C

/* Implementation of the COUNT intrinsic
Copyright (C) 2002-2021 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#if defined (HAVE_GFC_INTEGER_1)
extern void count_1_l (gfc_array_i1 * const restrict,
gfc_array_l1 * const restrict, const index_type * const restrict);
export_proto(count_1_l);
void
count_1_l (gfc_array_i1 * const restrict retarray,
gfc_array_l1 * const restrict array,
const index_type * const restrict pdim)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
const GFC_LOGICAL_1 * restrict base;
GFC_INTEGER_1 * restrict dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type dim;
int src_kind;
int continue_loop;
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
src_kind = GFC_DESCRIPTOR_SIZE (array);
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len < 0)
len = 0;
delta = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim);
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n + 1);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n + 1);
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->base_addr == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype.rank = rank;
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_1));
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" COUNT intrinsic: is %ld, should be %ld",
(long int) GFC_DESCRIPTOR_RANK (retarray),
(long int) rank);
if (unlikely (compile_options.bounds_check))
{
for (n=0; n < rank; n++)
{
index_type ret_extent;
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
if (extent[n] != ret_extent)
runtime_error ("Incorrect extent in return value of"
" COUNT intrinsic in dimension %d:"
" is %ld, should be %ld", (int) n + 1,
(long int) ret_extent, (long int) extent[n]);
}
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
return;
}
base = array->base_addr;
if (src_kind == 1 || src_kind == 2 || src_kind == 4 || src_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| src_kind == 16
#endif
)
{
if (base)
base = GFOR_POINTER_TO_L1 (base, src_kind);
}
else
internal_error (NULL, "Funny sized logical array in COUNT intrinsic");
dest = retarray->base_addr;
continue_loop = 1;
while (continue_loop)
{
const GFC_LOGICAL_1 * restrict src;
GFC_INTEGER_1 result;
src = base;
{
result = 0;
if (len <= 0)
*dest = 0;
else
{
for (n = 0; n < len; n++, src += delta)
{
if (*src)
result++;
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n >= rank)
{
/* Break out of the loop. */
continue_loop = 0;
break;
}
else
{
count[n]++;
base += sstride[n];
dest += dstride[n];
}
}
}
}
#endif