1f161c48ed
2018-05-28 Jerry DeLisle <jvdelisle@gcc.gnu.org> PR libgfortran/85840 * io/write.c (write_real, write_real_g0, write_complex): Use separate local variables for the float string length. From-SVN: r260851
2420 lines
53 KiB
C
2420 lines
53 KiB
C
/* Copyright (C) 2002-2018 Free Software Foundation, Inc.
|
|
Contributed by Andy Vaught
|
|
Namelist output contributed by Paul Thomas
|
|
F2003 I/O support contributed by Jerry DeLisle
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "io.h"
|
|
#include "fbuf.h"
|
|
#include "format.h"
|
|
#include "unix.h"
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
|
|
#define star_fill(p, n) memset(p, '*', n)
|
|
|
|
typedef unsigned char uchar;
|
|
|
|
/* Helper functions for character(kind=4) internal units. These are needed
|
|
by write_float.def. */
|
|
|
|
static void
|
|
memcpy4 (gfc_char4_t *dest, const char *source, int k)
|
|
{
|
|
int j;
|
|
|
|
const char *p = source;
|
|
for (j = 0; j < k; j++)
|
|
*dest++ = (gfc_char4_t) *p++;
|
|
}
|
|
|
|
/* This include contains the heart and soul of formatted floating point. */
|
|
#include "write_float.def"
|
|
|
|
/* Write out default char4. */
|
|
|
|
static void
|
|
write_default_char4 (st_parameter_dt *dtp, const gfc_char4_t *source,
|
|
int src_len, int w_len)
|
|
{
|
|
char *p;
|
|
int j, k = 0;
|
|
gfc_char4_t c;
|
|
uchar d;
|
|
|
|
/* Take care of preceding blanks. */
|
|
if (w_len > src_len)
|
|
{
|
|
k = w_len - src_len;
|
|
p = write_block (dtp, k);
|
|
if (p == NULL)
|
|
return;
|
|
if (is_char4_unit (dtp))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
memset4 (p4, ' ', k);
|
|
}
|
|
else
|
|
memset (p, ' ', k);
|
|
}
|
|
|
|
/* Get ready to handle delimiters if needed. */
|
|
switch (dtp->u.p.current_unit->delim_status)
|
|
{
|
|
case DELIM_APOSTROPHE:
|
|
d = '\'';
|
|
break;
|
|
case DELIM_QUOTE:
|
|
d = '"';
|
|
break;
|
|
default:
|
|
d = ' ';
|
|
break;
|
|
}
|
|
|
|
/* Now process the remaining characters, one at a time. */
|
|
for (j = 0; j < src_len; j++)
|
|
{
|
|
c = source[j];
|
|
if (is_char4_unit (dtp))
|
|
{
|
|
gfc_char4_t *q;
|
|
/* Handle delimiters if any. */
|
|
if (c == d && d != ' ')
|
|
{
|
|
p = write_block (dtp, 2);
|
|
if (p == NULL)
|
|
return;
|
|
q = (gfc_char4_t *) p;
|
|
*q++ = c;
|
|
}
|
|
else
|
|
{
|
|
p = write_block (dtp, 1);
|
|
if (p == NULL)
|
|
return;
|
|
q = (gfc_char4_t *) p;
|
|
}
|
|
*q = c;
|
|
}
|
|
else
|
|
{
|
|
/* Handle delimiters if any. */
|
|
if (c == d && d != ' ')
|
|
{
|
|
p = write_block (dtp, 2);
|
|
if (p == NULL)
|
|
return;
|
|
*p++ = (uchar) c;
|
|
}
|
|
else
|
|
{
|
|
p = write_block (dtp, 1);
|
|
if (p == NULL)
|
|
return;
|
|
}
|
|
*p = c > 255 ? '?' : (uchar) c;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Write out UTF-8 converted from char4. */
|
|
|
|
static void
|
|
write_utf8_char4 (st_parameter_dt *dtp, gfc_char4_t *source,
|
|
int src_len, int w_len)
|
|
{
|
|
char *p;
|
|
int j, k = 0;
|
|
gfc_char4_t c;
|
|
static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
|
|
static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
|
|
int nbytes;
|
|
uchar buf[6], d, *q;
|
|
|
|
/* Take care of preceding blanks. */
|
|
if (w_len > src_len)
|
|
{
|
|
k = w_len - src_len;
|
|
p = write_block (dtp, k);
|
|
if (p == NULL)
|
|
return;
|
|
memset (p, ' ', k);
|
|
}
|
|
|
|
/* Get ready to handle delimiters if needed. */
|
|
switch (dtp->u.p.current_unit->delim_status)
|
|
{
|
|
case DELIM_APOSTROPHE:
|
|
d = '\'';
|
|
break;
|
|
case DELIM_QUOTE:
|
|
d = '"';
|
|
break;
|
|
default:
|
|
d = ' ';
|
|
break;
|
|
}
|
|
|
|
/* Now process the remaining characters, one at a time. */
|
|
for (j = k; j < src_len; j++)
|
|
{
|
|
c = source[j];
|
|
if (c < 0x80)
|
|
{
|
|
/* Handle the delimiters if any. */
|
|
if (c == d && d != ' ')
|
|
{
|
|
p = write_block (dtp, 2);
|
|
if (p == NULL)
|
|
return;
|
|
*p++ = (uchar) c;
|
|
}
|
|
else
|
|
{
|
|
p = write_block (dtp, 1);
|
|
if (p == NULL)
|
|
return;
|
|
}
|
|
*p = (uchar) c;
|
|
}
|
|
else
|
|
{
|
|
/* Convert to UTF-8 sequence. */
|
|
nbytes = 1;
|
|
q = &buf[6];
|
|
|
|
do
|
|
{
|
|
*--q = ((c & 0x3F) | 0x80);
|
|
c >>= 6;
|
|
nbytes++;
|
|
}
|
|
while (c >= 0x3F || (c & limits[nbytes-1]));
|
|
|
|
*--q = (c | masks[nbytes-1]);
|
|
|
|
p = write_block (dtp, nbytes);
|
|
if (p == NULL)
|
|
return;
|
|
|
|
while (q < &buf[6])
|
|
*p++ = *q++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Check the first character in source if we are using CC_FORTRAN
|
|
and set the cc.type appropriately. The cc.type is used later by write_cc
|
|
to determine the output start-of-record, and next_record_cc to determine the
|
|
output end-of-record.
|
|
This function is called before the output buffer is allocated, so alloc_len
|
|
is set to the appropriate size to allocate. */
|
|
|
|
static void
|
|
write_check_cc (st_parameter_dt *dtp, const char **source, size_t *alloc_len)
|
|
{
|
|
/* Only valid for CARRIAGECONTROL=FORTRAN. */
|
|
if (dtp->u.p.current_unit->flags.cc != CC_FORTRAN
|
|
|| alloc_len == NULL || source == NULL)
|
|
return;
|
|
|
|
/* Peek at the first character. */
|
|
int c = (*alloc_len > 0) ? (*source)[0] : EOF;
|
|
if (c != EOF)
|
|
{
|
|
/* The start-of-record character which will be printed. */
|
|
dtp->u.p.cc.u.start = '\n';
|
|
/* The number of characters to print at the start-of-record.
|
|
len > 1 means copy the SOR character multiple times.
|
|
len == 0 means no SOR will be output. */
|
|
dtp->u.p.cc.len = 1;
|
|
|
|
switch (c)
|
|
{
|
|
case '+':
|
|
dtp->u.p.cc.type = CCF_OVERPRINT;
|
|
dtp->u.p.cc.len = 0;
|
|
break;
|
|
case '-':
|
|
dtp->u.p.cc.type = CCF_ONE_LF;
|
|
dtp->u.p.cc.len = 1;
|
|
break;
|
|
case '0':
|
|
dtp->u.p.cc.type = CCF_TWO_LF;
|
|
dtp->u.p.cc.len = 2;
|
|
break;
|
|
case '1':
|
|
dtp->u.p.cc.type = CCF_PAGE_FEED;
|
|
dtp->u.p.cc.len = 1;
|
|
dtp->u.p.cc.u.start = '\f';
|
|
break;
|
|
case '$':
|
|
dtp->u.p.cc.type = CCF_PROMPT;
|
|
dtp->u.p.cc.len = 1;
|
|
break;
|
|
case '\0':
|
|
dtp->u.p.cc.type = CCF_OVERPRINT_NOA;
|
|
dtp->u.p.cc.len = 0;
|
|
break;
|
|
default:
|
|
/* In the default case we copy ONE_LF. */
|
|
dtp->u.p.cc.type = CCF_DEFAULT;
|
|
dtp->u.p.cc.len = 1;
|
|
break;
|
|
}
|
|
|
|
/* We add n-1 to alloc_len so our write buffer is the right size.
|
|
We are replacing the first character, and possibly prepending some
|
|
additional characters. Note for n==0, we actually subtract one from
|
|
alloc_len, which is correct, since that character is skipped. */
|
|
if (*alloc_len > 0)
|
|
{
|
|
*source += 1;
|
|
*alloc_len += dtp->u.p.cc.len - 1;
|
|
}
|
|
/* If we have no input, there is no first character to replace. Make
|
|
sure we still allocate enough space for the start-of-record string. */
|
|
else
|
|
*alloc_len = dtp->u.p.cc.len;
|
|
}
|
|
}
|
|
|
|
|
|
/* Write the start-of-record character(s) for CC_FORTRAN.
|
|
Also adjusts the 'cc' struct to contain the end-of-record character
|
|
for next_record_cc.
|
|
The source_len is set to the remaining length to copy from the source,
|
|
after the start-of-record string was inserted. */
|
|
|
|
static char *
|
|
write_cc (st_parameter_dt *dtp, char *p, size_t *source_len)
|
|
{
|
|
/* Only valid for CARRIAGECONTROL=FORTRAN. */
|
|
if (dtp->u.p.current_unit->flags.cc != CC_FORTRAN || source_len == NULL)
|
|
return p;
|
|
|
|
/* Write the start-of-record string to the output buffer. Note that len is
|
|
never more than 2. */
|
|
if (dtp->u.p.cc.len > 0)
|
|
{
|
|
*(p++) = dtp->u.p.cc.u.start;
|
|
if (dtp->u.p.cc.len > 1)
|
|
*(p++) = dtp->u.p.cc.u.start;
|
|
|
|
/* source_len comes from write_check_cc where it is set to the full
|
|
allocated length of the output buffer. Therefore we subtract off the
|
|
length of the SOR string to obtain the remaining source length. */
|
|
*source_len -= dtp->u.p.cc.len;
|
|
}
|
|
|
|
/* Common case. */
|
|
dtp->u.p.cc.len = 1;
|
|
dtp->u.p.cc.u.end = '\r';
|
|
|
|
/* Update end-of-record character for next_record_w. */
|
|
switch (dtp->u.p.cc.type)
|
|
{
|
|
case CCF_PROMPT:
|
|
case CCF_OVERPRINT_NOA:
|
|
/* No end-of-record. */
|
|
dtp->u.p.cc.len = 0;
|
|
dtp->u.p.cc.u.end = '\0';
|
|
break;
|
|
case CCF_OVERPRINT:
|
|
case CCF_ONE_LF:
|
|
case CCF_TWO_LF:
|
|
case CCF_PAGE_FEED:
|
|
case CCF_DEFAULT:
|
|
default:
|
|
/* Carriage return. */
|
|
dtp->u.p.cc.len = 1;
|
|
dtp->u.p.cc.u.end = '\r';
|
|
break;
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
void
|
|
|
|
write_a (st_parameter_dt *dtp, const fnode *f, const char *source, size_t len)
|
|
{
|
|
size_t wlen;
|
|
char *p;
|
|
|
|
wlen = f->u.string.length < 0
|
|
|| (f->format == FMT_G && f->u.string.length == 0)
|
|
? len : (size_t) f->u.string.length;
|
|
|
|
#ifdef HAVE_CRLF
|
|
/* If this is formatted STREAM IO convert any embedded line feed characters
|
|
to CR_LF on systems that use that sequence for newlines. See F2003
|
|
Standard sections 10.6.3 and 9.9 for further information. */
|
|
if (is_stream_io (dtp))
|
|
{
|
|
const char crlf[] = "\r\n";
|
|
size_t q, bytes;
|
|
q = bytes = 0;
|
|
|
|
/* Write out any padding if needed. */
|
|
if (len < wlen)
|
|
{
|
|
p = write_block (dtp, wlen - len);
|
|
if (p == NULL)
|
|
return;
|
|
memset (p, ' ', wlen - len);
|
|
}
|
|
|
|
/* Scan the source string looking for '\n' and convert it if found. */
|
|
for (size_t i = 0; i < wlen; i++)
|
|
{
|
|
if (source[i] == '\n')
|
|
{
|
|
/* Write out the previously scanned characters in the string. */
|
|
if (bytes > 0)
|
|
{
|
|
p = write_block (dtp, bytes);
|
|
if (p == NULL)
|
|
return;
|
|
memcpy (p, &source[q], bytes);
|
|
q += bytes;
|
|
bytes = 0;
|
|
}
|
|
|
|
/* Write out the CR_LF sequence. */
|
|
q++;
|
|
p = write_block (dtp, 2);
|
|
if (p == NULL)
|
|
return;
|
|
memcpy (p, crlf, 2);
|
|
}
|
|
else
|
|
bytes++;
|
|
}
|
|
|
|
/* Write out any remaining bytes if no LF was found. */
|
|
if (bytes > 0)
|
|
{
|
|
p = write_block (dtp, bytes);
|
|
if (p == NULL)
|
|
return;
|
|
memcpy (p, &source[q], bytes);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#endif
|
|
if (dtp->u.p.current_unit->flags.cc == CC_FORTRAN)
|
|
write_check_cc (dtp, &source, &wlen);
|
|
|
|
p = write_block (dtp, wlen);
|
|
if (p == NULL)
|
|
return;
|
|
|
|
if (dtp->u.p.current_unit->flags.cc == CC_FORTRAN)
|
|
p = write_cc (dtp, p, &wlen);
|
|
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
if (wlen < len)
|
|
memcpy4 (p4, source, wlen);
|
|
else
|
|
{
|
|
memset4 (p4, ' ', wlen - len);
|
|
memcpy4 (p4 + wlen - len, source, len);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (wlen < len)
|
|
memcpy (p, source, wlen);
|
|
else
|
|
{
|
|
memset (p, ' ', wlen - len);
|
|
memcpy (p + wlen - len, source, len);
|
|
}
|
|
#ifdef HAVE_CRLF
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/* The primary difference between write_a_char4 and write_a is that we have to
|
|
deal with writing from the first byte of the 4-byte character and pay
|
|
attention to the most significant bytes. For ENCODING="default" write the
|
|
lowest significant byte. If the 3 most significant bytes contain
|
|
non-zero values, emit a '?'. For ENCODING="utf-8", convert the UCS-32 value
|
|
to the UTF-8 encoded string before writing out. */
|
|
|
|
void
|
|
write_a_char4 (st_parameter_dt *dtp, const fnode *f, const char *source, size_t len)
|
|
{
|
|
size_t wlen;
|
|
gfc_char4_t *q;
|
|
|
|
wlen = f->u.string.length < 0
|
|
|| (f->format == FMT_G && f->u.string.length == 0)
|
|
? len : (size_t) f->u.string.length;
|
|
|
|
q = (gfc_char4_t *) source;
|
|
#ifdef HAVE_CRLF
|
|
/* If this is formatted STREAM IO convert any embedded line feed characters
|
|
to CR_LF on systems that use that sequence for newlines. See F2003
|
|
Standard sections 10.6.3 and 9.9 for further information. */
|
|
if (is_stream_io (dtp))
|
|
{
|
|
const gfc_char4_t crlf[] = {0x000d,0x000a};
|
|
size_t bytes;
|
|
gfc_char4_t *qq;
|
|
bytes = 0;
|
|
|
|
/* Write out any padding if needed. */
|
|
if (len < wlen)
|
|
{
|
|
char *p;
|
|
p = write_block (dtp, wlen - len);
|
|
if (p == NULL)
|
|
return;
|
|
memset (p, ' ', wlen - len);
|
|
}
|
|
|
|
/* Scan the source string looking for '\n' and convert it if found. */
|
|
qq = (gfc_char4_t *) source;
|
|
for (size_t i = 0; i < wlen; i++)
|
|
{
|
|
if (qq[i] == '\n')
|
|
{
|
|
/* Write out the previously scanned characters in the string. */
|
|
if (bytes > 0)
|
|
{
|
|
if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
|
|
write_utf8_char4 (dtp, q, bytes, 0);
|
|
else
|
|
write_default_char4 (dtp, q, bytes, 0);
|
|
bytes = 0;
|
|
}
|
|
|
|
/* Write out the CR_LF sequence. */
|
|
write_default_char4 (dtp, crlf, 2, 0);
|
|
}
|
|
else
|
|
bytes++;
|
|
}
|
|
|
|
/* Write out any remaining bytes if no LF was found. */
|
|
if (bytes > 0)
|
|
{
|
|
if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
|
|
write_utf8_char4 (dtp, q, bytes, 0);
|
|
else
|
|
write_default_char4 (dtp, q, bytes, 0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#endif
|
|
if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
|
|
write_utf8_char4 (dtp, q, len, wlen);
|
|
else
|
|
write_default_char4 (dtp, q, len, wlen);
|
|
#ifdef HAVE_CRLF
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
static GFC_INTEGER_LARGEST
|
|
extract_int (const void *p, int len)
|
|
{
|
|
GFC_INTEGER_LARGEST i = 0;
|
|
|
|
if (p == NULL)
|
|
return i;
|
|
|
|
switch (len)
|
|
{
|
|
case 1:
|
|
{
|
|
GFC_INTEGER_1 tmp;
|
|
memcpy ((void *) &tmp, p, len);
|
|
i = tmp;
|
|
}
|
|
break;
|
|
case 2:
|
|
{
|
|
GFC_INTEGER_2 tmp;
|
|
memcpy ((void *) &tmp, p, len);
|
|
i = tmp;
|
|
}
|
|
break;
|
|
case 4:
|
|
{
|
|
GFC_INTEGER_4 tmp;
|
|
memcpy ((void *) &tmp, p, len);
|
|
i = tmp;
|
|
}
|
|
break;
|
|
case 8:
|
|
{
|
|
GFC_INTEGER_8 tmp;
|
|
memcpy ((void *) &tmp, p, len);
|
|
i = tmp;
|
|
}
|
|
break;
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
case 16:
|
|
{
|
|
GFC_INTEGER_16 tmp;
|
|
memcpy ((void *) &tmp, p, len);
|
|
i = tmp;
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
internal_error (NULL, "bad integer kind");
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
static GFC_UINTEGER_LARGEST
|
|
extract_uint (const void *p, int len)
|
|
{
|
|
GFC_UINTEGER_LARGEST i = 0;
|
|
|
|
if (p == NULL)
|
|
return i;
|
|
|
|
switch (len)
|
|
{
|
|
case 1:
|
|
{
|
|
GFC_INTEGER_1 tmp;
|
|
memcpy ((void *) &tmp, p, len);
|
|
i = (GFC_UINTEGER_1) tmp;
|
|
}
|
|
break;
|
|
case 2:
|
|
{
|
|
GFC_INTEGER_2 tmp;
|
|
memcpy ((void *) &tmp, p, len);
|
|
i = (GFC_UINTEGER_2) tmp;
|
|
}
|
|
break;
|
|
case 4:
|
|
{
|
|
GFC_INTEGER_4 tmp;
|
|
memcpy ((void *) &tmp, p, len);
|
|
i = (GFC_UINTEGER_4) tmp;
|
|
}
|
|
break;
|
|
case 8:
|
|
{
|
|
GFC_INTEGER_8 tmp;
|
|
memcpy ((void *) &tmp, p, len);
|
|
i = (GFC_UINTEGER_8) tmp;
|
|
}
|
|
break;
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
case 10:
|
|
case 16:
|
|
{
|
|
GFC_INTEGER_16 tmp = 0;
|
|
memcpy ((void *) &tmp, p, len);
|
|
i = (GFC_UINTEGER_16) tmp;
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
internal_error (NULL, "bad integer kind");
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
void
|
|
write_l (st_parameter_dt *dtp, const fnode *f, char *source, int len)
|
|
{
|
|
char *p;
|
|
int wlen;
|
|
GFC_INTEGER_LARGEST n;
|
|
|
|
wlen = (f->format == FMT_G && f->u.w == 0) ? 1 : f->u.w;
|
|
|
|
p = write_block (dtp, wlen);
|
|
if (p == NULL)
|
|
return;
|
|
|
|
n = extract_int (source, len);
|
|
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
memset4 (p4, ' ', wlen -1);
|
|
p4[wlen - 1] = (n) ? 'T' : 'F';
|
|
return;
|
|
}
|
|
|
|
memset (p, ' ', wlen -1);
|
|
p[wlen - 1] = (n) ? 'T' : 'F';
|
|
}
|
|
|
|
|
|
static void
|
|
write_boz (st_parameter_dt *dtp, const fnode *f, const char *q, int n)
|
|
{
|
|
int w, m, digits, nzero, nblank;
|
|
char *p;
|
|
|
|
w = f->u.integer.w;
|
|
m = f->u.integer.m;
|
|
|
|
/* Special case: */
|
|
|
|
if (m == 0 && n == 0)
|
|
{
|
|
if (w == 0)
|
|
w = 1;
|
|
|
|
p = write_block (dtp, w);
|
|
if (p == NULL)
|
|
return;
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
memset4 (p4, ' ', w);
|
|
}
|
|
else
|
|
memset (p, ' ', w);
|
|
goto done;
|
|
}
|
|
|
|
digits = strlen (q);
|
|
|
|
/* Select a width if none was specified. The idea here is to always
|
|
print something. */
|
|
|
|
if (w == 0)
|
|
w = ((digits < m) ? m : digits);
|
|
|
|
p = write_block (dtp, w);
|
|
if (p == NULL)
|
|
return;
|
|
|
|
nzero = 0;
|
|
if (digits < m)
|
|
nzero = m - digits;
|
|
|
|
/* See if things will work. */
|
|
|
|
nblank = w - (nzero + digits);
|
|
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
if (nblank < 0)
|
|
{
|
|
memset4 (p4, '*', w);
|
|
return;
|
|
}
|
|
|
|
if (!dtp->u.p.no_leading_blank)
|
|
{
|
|
memset4 (p4, ' ', nblank);
|
|
q += nblank;
|
|
memset4 (p4, '0', nzero);
|
|
q += nzero;
|
|
memcpy4 (p4, q, digits);
|
|
}
|
|
else
|
|
{
|
|
memset4 (p4, '0', nzero);
|
|
q += nzero;
|
|
memcpy4 (p4, q, digits);
|
|
q += digits;
|
|
memset4 (p4, ' ', nblank);
|
|
dtp->u.p.no_leading_blank = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (nblank < 0)
|
|
{
|
|
star_fill (p, w);
|
|
goto done;
|
|
}
|
|
|
|
if (!dtp->u.p.no_leading_blank)
|
|
{
|
|
memset (p, ' ', nblank);
|
|
p += nblank;
|
|
memset (p, '0', nzero);
|
|
p += nzero;
|
|
memcpy (p, q, digits);
|
|
}
|
|
else
|
|
{
|
|
memset (p, '0', nzero);
|
|
p += nzero;
|
|
memcpy (p, q, digits);
|
|
p += digits;
|
|
memset (p, ' ', nblank);
|
|
dtp->u.p.no_leading_blank = 0;
|
|
}
|
|
|
|
done:
|
|
return;
|
|
}
|
|
|
|
static void
|
|
write_decimal (st_parameter_dt *dtp, const fnode *f, const char *source,
|
|
int len,
|
|
const char *(*conv) (GFC_INTEGER_LARGEST, char *, size_t))
|
|
{
|
|
GFC_INTEGER_LARGEST n = 0;
|
|
int w, m, digits, nsign, nzero, nblank;
|
|
char *p;
|
|
const char *q;
|
|
sign_t sign;
|
|
char itoa_buf[GFC_BTOA_BUF_SIZE];
|
|
|
|
w = f->u.integer.w;
|
|
m = f->format == FMT_G ? -1 : f->u.integer.m;
|
|
|
|
n = extract_int (source, len);
|
|
|
|
/* Special case: */
|
|
if (m == 0 && n == 0)
|
|
{
|
|
if (w == 0)
|
|
w = 1;
|
|
|
|
p = write_block (dtp, w);
|
|
if (p == NULL)
|
|
return;
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
memset4 (p4, ' ', w);
|
|
}
|
|
else
|
|
memset (p, ' ', w);
|
|
goto done;
|
|
}
|
|
|
|
sign = calculate_sign (dtp, n < 0);
|
|
if (n < 0)
|
|
n = -n;
|
|
nsign = sign == S_NONE ? 0 : 1;
|
|
|
|
/* conv calls itoa which sets the negative sign needed
|
|
by write_integer. The sign '+' or '-' is set below based on sign
|
|
calculated above, so we just point past the sign in the string
|
|
before proceeding to avoid double signs in corner cases.
|
|
(see PR38504) */
|
|
q = conv (n, itoa_buf, sizeof (itoa_buf));
|
|
if (*q == '-')
|
|
q++;
|
|
|
|
digits = strlen (q);
|
|
|
|
/* Select a width if none was specified. The idea here is to always
|
|
print something. */
|
|
|
|
if (w == 0)
|
|
w = ((digits < m) ? m : digits) + nsign;
|
|
|
|
p = write_block (dtp, w);
|
|
if (p == NULL)
|
|
return;
|
|
|
|
nzero = 0;
|
|
if (digits < m)
|
|
nzero = m - digits;
|
|
|
|
/* See if things will work. */
|
|
|
|
nblank = w - (nsign + nzero + digits);
|
|
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *)p;
|
|
if (nblank < 0)
|
|
{
|
|
memset4 (p4, '*', w);
|
|
goto done;
|
|
}
|
|
|
|
if (!dtp->u.p.namelist_mode)
|
|
{
|
|
memset4 (p4, ' ', nblank);
|
|
p4 += nblank;
|
|
}
|
|
|
|
switch (sign)
|
|
{
|
|
case S_PLUS:
|
|
*p4++ = '+';
|
|
break;
|
|
case S_MINUS:
|
|
*p4++ = '-';
|
|
break;
|
|
case S_NONE:
|
|
break;
|
|
}
|
|
|
|
memset4 (p4, '0', nzero);
|
|
p4 += nzero;
|
|
|
|
memcpy4 (p4, q, digits);
|
|
return;
|
|
|
|
if (dtp->u.p.namelist_mode)
|
|
{
|
|
p4 += digits;
|
|
memset4 (p4, ' ', nblank);
|
|
}
|
|
}
|
|
|
|
if (nblank < 0)
|
|
{
|
|
star_fill (p, w);
|
|
goto done;
|
|
}
|
|
|
|
if (!dtp->u.p.namelist_mode)
|
|
{
|
|
memset (p, ' ', nblank);
|
|
p += nblank;
|
|
}
|
|
|
|
switch (sign)
|
|
{
|
|
case S_PLUS:
|
|
*p++ = '+';
|
|
break;
|
|
case S_MINUS:
|
|
*p++ = '-';
|
|
break;
|
|
case S_NONE:
|
|
break;
|
|
}
|
|
|
|
memset (p, '0', nzero);
|
|
p += nzero;
|
|
|
|
memcpy (p, q, digits);
|
|
|
|
if (dtp->u.p.namelist_mode)
|
|
{
|
|
p += digits;
|
|
memset (p, ' ', nblank);
|
|
}
|
|
|
|
done:
|
|
return;
|
|
}
|
|
|
|
|
|
/* Convert unsigned octal to ascii. */
|
|
|
|
static const char *
|
|
otoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
|
|
{
|
|
char *p;
|
|
|
|
assert (len >= GFC_OTOA_BUF_SIZE);
|
|
|
|
if (n == 0)
|
|
return "0";
|
|
|
|
p = buffer + GFC_OTOA_BUF_SIZE - 1;
|
|
*p = '\0';
|
|
|
|
while (n != 0)
|
|
{
|
|
*--p = '0' + (n & 7);
|
|
n >>= 3;
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
/* Convert unsigned binary to ascii. */
|
|
|
|
static const char *
|
|
btoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
|
|
{
|
|
char *p;
|
|
|
|
assert (len >= GFC_BTOA_BUF_SIZE);
|
|
|
|
if (n == 0)
|
|
return "0";
|
|
|
|
p = buffer + GFC_BTOA_BUF_SIZE - 1;
|
|
*p = '\0';
|
|
|
|
while (n != 0)
|
|
{
|
|
*--p = '0' + (n & 1);
|
|
n >>= 1;
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/* The following three functions, btoa_big, otoa_big, and ztoa_big, are needed
|
|
to convert large reals with kind sizes that exceed the largest integer type
|
|
available on certain platforms. In these cases, byte by byte conversion is
|
|
performed. Endianess is taken into account. */
|
|
|
|
/* Conversion to binary. */
|
|
|
|
static const char *
|
|
btoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
|
|
{
|
|
char *q;
|
|
int i, j;
|
|
|
|
q = buffer;
|
|
if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
|
{
|
|
const char *p = s;
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
char c = *p;
|
|
|
|
/* Test for zero. Needed by write_boz later. */
|
|
if (*p != 0)
|
|
*n = 1;
|
|
|
|
for (j = 0; j < 8; j++)
|
|
{
|
|
*q++ = (c & 128) ? '1' : '0';
|
|
c <<= 1;
|
|
}
|
|
p++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const char *p = s + len - 1;
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
char c = *p;
|
|
|
|
/* Test for zero. Needed by write_boz later. */
|
|
if (*p != 0)
|
|
*n = 1;
|
|
|
|
for (j = 0; j < 8; j++)
|
|
{
|
|
*q++ = (c & 128) ? '1' : '0';
|
|
c <<= 1;
|
|
}
|
|
p--;
|
|
}
|
|
}
|
|
|
|
*q = '\0';
|
|
|
|
if (*n == 0)
|
|
return "0";
|
|
|
|
/* Move past any leading zeros. */
|
|
while (*buffer == '0')
|
|
buffer++;
|
|
|
|
return buffer;
|
|
|
|
}
|
|
|
|
/* Conversion to octal. */
|
|
|
|
static const char *
|
|
otoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
|
|
{
|
|
char *q;
|
|
int i, j, k;
|
|
uint8_t octet;
|
|
|
|
q = buffer + GFC_OTOA_BUF_SIZE - 1;
|
|
*q = '\0';
|
|
i = k = octet = 0;
|
|
|
|
if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
|
{
|
|
const char *p = s + len - 1;
|
|
char c = *p;
|
|
while (i < len)
|
|
{
|
|
/* Test for zero. Needed by write_boz later. */
|
|
if (*p != 0)
|
|
*n = 1;
|
|
|
|
for (j = 0; j < 3 && i < len; j++)
|
|
{
|
|
octet |= (c & 1) << j;
|
|
c >>= 1;
|
|
if (++k > 7)
|
|
{
|
|
i++;
|
|
k = 0;
|
|
c = *--p;
|
|
}
|
|
}
|
|
*--q = '0' + octet;
|
|
octet = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const char *p = s;
|
|
char c = *p;
|
|
while (i < len)
|
|
{
|
|
/* Test for zero. Needed by write_boz later. */
|
|
if (*p != 0)
|
|
*n = 1;
|
|
|
|
for (j = 0; j < 3 && i < len; j++)
|
|
{
|
|
octet |= (c & 1) << j;
|
|
c >>= 1;
|
|
if (++k > 7)
|
|
{
|
|
i++;
|
|
k = 0;
|
|
c = *++p;
|
|
}
|
|
}
|
|
*--q = '0' + octet;
|
|
octet = 0;
|
|
}
|
|
}
|
|
|
|
if (*n == 0)
|
|
return "0";
|
|
|
|
/* Move past any leading zeros. */
|
|
while (*q == '0')
|
|
q++;
|
|
|
|
return q;
|
|
}
|
|
|
|
/* Conversion to hexidecimal. */
|
|
|
|
static const char *
|
|
ztoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
|
|
{
|
|
static char a[16] = {'0', '1', '2', '3', '4', '5', '6', '7',
|
|
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
|
|
|
|
char *q;
|
|
uint8_t h, l;
|
|
int i;
|
|
|
|
q = buffer;
|
|
|
|
if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
|
{
|
|
const char *p = s;
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
/* Test for zero. Needed by write_boz later. */
|
|
if (*p != 0)
|
|
*n = 1;
|
|
|
|
h = (*p >> 4) & 0x0F;
|
|
l = *p++ & 0x0F;
|
|
*q++ = a[h];
|
|
*q++ = a[l];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const char *p = s + len - 1;
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
/* Test for zero. Needed by write_boz later. */
|
|
if (*p != 0)
|
|
*n = 1;
|
|
|
|
h = (*p >> 4) & 0x0F;
|
|
l = *p-- & 0x0F;
|
|
*q++ = a[h];
|
|
*q++ = a[l];
|
|
}
|
|
}
|
|
|
|
*q = '\0';
|
|
|
|
if (*n == 0)
|
|
return "0";
|
|
|
|
/* Move past any leading zeros. */
|
|
while (*buffer == '0')
|
|
buffer++;
|
|
|
|
return buffer;
|
|
}
|
|
|
|
|
|
void
|
|
write_i (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
|
|
{
|
|
write_decimal (dtp, f, p, len, (void *) gfc_itoa);
|
|
}
|
|
|
|
|
|
void
|
|
write_b (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
|
|
{
|
|
const char *p;
|
|
char itoa_buf[GFC_BTOA_BUF_SIZE];
|
|
GFC_UINTEGER_LARGEST n = 0;
|
|
|
|
if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
|
|
{
|
|
p = btoa_big (source, itoa_buf, len, &n);
|
|
write_boz (dtp, f, p, n);
|
|
}
|
|
else
|
|
{
|
|
n = extract_uint (source, len);
|
|
p = btoa (n, itoa_buf, sizeof (itoa_buf));
|
|
write_boz (dtp, f, p, n);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
write_o (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
|
|
{
|
|
const char *p;
|
|
char itoa_buf[GFC_OTOA_BUF_SIZE];
|
|
GFC_UINTEGER_LARGEST n = 0;
|
|
|
|
if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
|
|
{
|
|
p = otoa_big (source, itoa_buf, len, &n);
|
|
write_boz (dtp, f, p, n);
|
|
}
|
|
else
|
|
{
|
|
n = extract_uint (source, len);
|
|
p = otoa (n, itoa_buf, sizeof (itoa_buf));
|
|
write_boz (dtp, f, p, n);
|
|
}
|
|
}
|
|
|
|
void
|
|
write_z (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
|
|
{
|
|
const char *p;
|
|
char itoa_buf[GFC_XTOA_BUF_SIZE];
|
|
GFC_UINTEGER_LARGEST n = 0;
|
|
|
|
if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
|
|
{
|
|
p = ztoa_big (source, itoa_buf, len, &n);
|
|
write_boz (dtp, f, p, n);
|
|
}
|
|
else
|
|
{
|
|
n = extract_uint (source, len);
|
|
p = gfc_xtoa (n, itoa_buf, sizeof (itoa_buf));
|
|
write_boz (dtp, f, p, n);
|
|
}
|
|
}
|
|
|
|
/* Take care of the X/TR descriptor. */
|
|
|
|
void
|
|
write_x (st_parameter_dt *dtp, int len, int nspaces)
|
|
{
|
|
char *p;
|
|
|
|
p = write_block (dtp, len);
|
|
if (p == NULL)
|
|
return;
|
|
if (nspaces > 0 && len - nspaces >= 0)
|
|
{
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
memset4 (&p4[len - nspaces], ' ', nspaces);
|
|
}
|
|
else
|
|
memset (&p[len - nspaces], ' ', nspaces);
|
|
}
|
|
}
|
|
|
|
|
|
/* List-directed writing. */
|
|
|
|
|
|
/* Write a single character to the output. Returns nonzero if
|
|
something goes wrong. */
|
|
|
|
static int
|
|
write_char (st_parameter_dt *dtp, int c)
|
|
{
|
|
char *p;
|
|
|
|
p = write_block (dtp, 1);
|
|
if (p == NULL)
|
|
return 1;
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
*p4 = c;
|
|
return 0;
|
|
}
|
|
|
|
*p = (uchar) c;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Write a list-directed logical value. */
|
|
|
|
static void
|
|
write_logical (st_parameter_dt *dtp, const char *source, int length)
|
|
{
|
|
write_char (dtp, extract_int (source, length) ? 'T' : 'F');
|
|
}
|
|
|
|
|
|
/* Write a list-directed integer value. */
|
|
|
|
static void
|
|
write_integer (st_parameter_dt *dtp, const char *source, int kind)
|
|
{
|
|
int width;
|
|
fnode f;
|
|
|
|
switch (kind)
|
|
{
|
|
case 1:
|
|
width = 4;
|
|
break;
|
|
|
|
case 2:
|
|
width = 6;
|
|
break;
|
|
|
|
case 4:
|
|
width = 11;
|
|
break;
|
|
|
|
case 8:
|
|
width = 20;
|
|
break;
|
|
|
|
default:
|
|
width = 0;
|
|
break;
|
|
}
|
|
f.u.integer.w = width;
|
|
f.u.integer.m = -1;
|
|
f.format = FMT_NONE;
|
|
write_decimal (dtp, &f, source, kind, (void *) gfc_itoa);
|
|
}
|
|
|
|
|
|
/* Write a list-directed string. We have to worry about delimiting
|
|
the strings if the file has been opened in that mode. */
|
|
|
|
#define DELIM 1
|
|
#define NODELIM 0
|
|
|
|
static void
|
|
write_character (st_parameter_dt *dtp, const char *source, int kind, size_t length, int mode)
|
|
{
|
|
size_t extra;
|
|
char *p, d;
|
|
|
|
if (mode == DELIM)
|
|
{
|
|
switch (dtp->u.p.current_unit->delim_status)
|
|
{
|
|
case DELIM_APOSTROPHE:
|
|
d = '\'';
|
|
break;
|
|
case DELIM_QUOTE:
|
|
d = '"';
|
|
break;
|
|
default:
|
|
d = ' ';
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
d = ' ';
|
|
|
|
if (kind == 1)
|
|
{
|
|
if (d == ' ')
|
|
extra = 0;
|
|
else
|
|
{
|
|
extra = 2;
|
|
|
|
for (size_t i = 0; i < length; i++)
|
|
if (source[i] == d)
|
|
extra++;
|
|
}
|
|
|
|
p = write_block (dtp, length + extra);
|
|
if (p == NULL)
|
|
return;
|
|
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t d4 = (gfc_char4_t) d;
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
|
|
if (d4 == ' ')
|
|
memcpy4 (p4, source, length);
|
|
else
|
|
{
|
|
*p4++ = d4;
|
|
|
|
for (size_t i = 0; i < length; i++)
|
|
{
|
|
*p4++ = (gfc_char4_t) source[i];
|
|
if (source[i] == d)
|
|
*p4++ = d4;
|
|
}
|
|
|
|
*p4 = d4;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (d == ' ')
|
|
memcpy (p, source, length);
|
|
else
|
|
{
|
|
*p++ = d;
|
|
|
|
for (size_t i = 0; i < length; i++)
|
|
{
|
|
*p++ = source[i];
|
|
if (source[i] == d)
|
|
*p++ = d;
|
|
}
|
|
|
|
*p = d;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (d == ' ')
|
|
{
|
|
if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
|
|
write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
|
|
else
|
|
write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
|
|
}
|
|
else
|
|
{
|
|
p = write_block (dtp, 1);
|
|
*p = d;
|
|
|
|
if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
|
|
write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
|
|
else
|
|
write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
|
|
|
|
p = write_block (dtp, 1);
|
|
*p = d;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Floating point helper functions. */
|
|
|
|
#define BUF_STACK_SZ 384
|
|
|
|
static int
|
|
get_precision (st_parameter_dt *dtp, const fnode *f, const char *source, int kind)
|
|
{
|
|
if (f->format != FMT_EN)
|
|
return determine_precision (dtp, f, kind);
|
|
else
|
|
return determine_en_precision (dtp, f, source, kind);
|
|
}
|
|
|
|
/* 4932 is the maximum exponent of long double and quad precision, 3
|
|
extra characters for the sign, the decimal point, and the
|
|
trailing null. Extra digits are added by the calling functions for
|
|
requested precision. Likewise for float and double. F0 editing produces
|
|
full precision output. */
|
|
static int
|
|
size_from_kind (st_parameter_dt *dtp, const fnode *f, int kind)
|
|
{
|
|
int size;
|
|
|
|
if (f->format == FMT_F && f->u.real.w == 0)
|
|
{
|
|
switch (kind)
|
|
{
|
|
case 4:
|
|
size = 38 + 3; /* These constants shown for clarity. */
|
|
break;
|
|
case 8:
|
|
size = 308 + 3;
|
|
break;
|
|
case 10:
|
|
size = 4932 + 3;
|
|
break;
|
|
case 16:
|
|
size = 4932 + 3;
|
|
break;
|
|
default:
|
|
internal_error (&dtp->common, "bad real kind");
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
size = f->u.real.w + 1; /* One byte for a NULL character. */
|
|
|
|
return size;
|
|
}
|
|
|
|
static char *
|
|
select_buffer (st_parameter_dt *dtp, const fnode *f, int precision,
|
|
char *buf, size_t *size, int kind)
|
|
{
|
|
char *result;
|
|
|
|
/* The buffer needs at least one more byte to allow room for
|
|
normalizing and 1 to hold null terminator. */
|
|
*size = size_from_kind (dtp, f, kind) + precision + 1 + 1;
|
|
|
|
if (*size > BUF_STACK_SZ)
|
|
result = xmalloc (*size);
|
|
else
|
|
result = buf;
|
|
return result;
|
|
}
|
|
|
|
static char *
|
|
select_string (st_parameter_dt *dtp, const fnode *f, char *buf, size_t *size,
|
|
int kind)
|
|
{
|
|
char *result;
|
|
*size = size_from_kind (dtp, f, kind) + f->u.real.d + 1;
|
|
if (*size > BUF_STACK_SZ)
|
|
result = xmalloc (*size);
|
|
else
|
|
result = buf;
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
write_float_string (st_parameter_dt *dtp, char *fstr, size_t len)
|
|
{
|
|
char *p = write_block (dtp, len);
|
|
if (p == NULL)
|
|
return;
|
|
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
memcpy4 (p4, fstr, len);
|
|
return;
|
|
}
|
|
memcpy (p, fstr, len);
|
|
}
|
|
|
|
|
|
static void
|
|
write_float_0 (st_parameter_dt *dtp, const fnode *f, const char *source, int kind)
|
|
{
|
|
char buf_stack[BUF_STACK_SZ];
|
|
char str_buf[BUF_STACK_SZ];
|
|
char *buffer, *result;
|
|
size_t buf_size, res_len, flt_str_len;
|
|
|
|
/* Precision for snprintf call. */
|
|
int precision = get_precision (dtp, f, source, kind);
|
|
|
|
/* String buffer to hold final result. */
|
|
result = select_string (dtp, f, str_buf, &res_len, kind);
|
|
|
|
buffer = select_buffer (dtp, f, precision, buf_stack, &buf_size, kind);
|
|
|
|
get_float_string (dtp, f, source , kind, 0, buffer,
|
|
precision, buf_size, result, &flt_str_len);
|
|
write_float_string (dtp, result, flt_str_len);
|
|
|
|
if (buf_size > BUF_STACK_SZ)
|
|
free (buffer);
|
|
if (res_len > BUF_STACK_SZ)
|
|
free (result);
|
|
}
|
|
|
|
void
|
|
write_d (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
|
|
{
|
|
write_float_0 (dtp, f, p, len);
|
|
}
|
|
|
|
|
|
void
|
|
write_e (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
|
|
{
|
|
write_float_0 (dtp, f, p, len);
|
|
}
|
|
|
|
|
|
void
|
|
write_f (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
|
|
{
|
|
write_float_0 (dtp, f, p, len);
|
|
}
|
|
|
|
|
|
void
|
|
write_en (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
|
|
{
|
|
write_float_0 (dtp, f, p, len);
|
|
}
|
|
|
|
|
|
void
|
|
write_es (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
|
|
{
|
|
write_float_0 (dtp, f, p, len);
|
|
}
|
|
|
|
|
|
/* Set an fnode to default format. */
|
|
|
|
static void
|
|
set_fnode_default (st_parameter_dt *dtp, fnode *f, int length)
|
|
{
|
|
f->format = FMT_G;
|
|
switch (length)
|
|
{
|
|
case 4:
|
|
f->u.real.w = 16;
|
|
f->u.real.d = 9;
|
|
f->u.real.e = 2;
|
|
break;
|
|
case 8:
|
|
f->u.real.w = 25;
|
|
f->u.real.d = 17;
|
|
f->u.real.e = 3;
|
|
break;
|
|
case 10:
|
|
f->u.real.w = 30;
|
|
f->u.real.d = 21;
|
|
f->u.real.e = 4;
|
|
break;
|
|
case 16:
|
|
/* Adjust decimal precision depending on binary precision, 106 or 113. */
|
|
#if GFC_REAL_16_DIGITS == 113
|
|
f->u.real.w = 45;
|
|
f->u.real.d = 36;
|
|
f->u.real.e = 4;
|
|
#else
|
|
f->u.real.w = 41;
|
|
f->u.real.d = 32;
|
|
f->u.real.e = 4;
|
|
#endif
|
|
break;
|
|
default:
|
|
internal_error (&dtp->common, "bad real kind");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Output a real number with default format.
|
|
To guarantee that a binary -> decimal -> binary roundtrip conversion
|
|
recovers the original value, IEEE 754-2008 requires 9, 17, 21 and 36
|
|
significant digits for REAL kinds 4, 8, 10, and 16, respectively.
|
|
Thus, we use 1PG16.9E2 for REAL(4), 1PG25.17E3 for REAL(8), 1PG30.21E4
|
|
for REAL(10) and 1PG45.36E4 for REAL(16). The exception is that the
|
|
Fortran standard requires outputting an extra digit when the scale
|
|
factor is 1 and when the magnitude of the value is such that E
|
|
editing is used. However, gfortran compensates for this, and thus
|
|
for list formatted the same number of significant digits is
|
|
generated both when using F and E editing. */
|
|
|
|
void
|
|
write_real (st_parameter_dt *dtp, const char *source, int kind)
|
|
{
|
|
fnode f ;
|
|
char buf_stack[BUF_STACK_SZ];
|
|
char str_buf[BUF_STACK_SZ];
|
|
char *buffer, *result;
|
|
size_t buf_size, res_len, flt_str_len;
|
|
int orig_scale = dtp->u.p.scale_factor;
|
|
dtp->u.p.scale_factor = 1;
|
|
set_fnode_default (dtp, &f, kind);
|
|
|
|
/* Precision for snprintf call. */
|
|
int precision = get_precision (dtp, &f, source, kind);
|
|
|
|
/* String buffer to hold final result. */
|
|
result = select_string (dtp, &f, str_buf, &res_len, kind);
|
|
|
|
/* Scratch buffer to hold final result. */
|
|
buffer = select_buffer (dtp, &f, precision, buf_stack, &buf_size, kind);
|
|
|
|
get_float_string (dtp, &f, source , kind, 1, buffer,
|
|
precision, buf_size, result, &flt_str_len);
|
|
write_float_string (dtp, result, flt_str_len);
|
|
|
|
dtp->u.p.scale_factor = orig_scale;
|
|
if (buf_size > BUF_STACK_SZ)
|
|
free (buffer);
|
|
if (res_len > BUF_STACK_SZ)
|
|
free (result);
|
|
}
|
|
|
|
/* Similar to list formatted REAL output, for kPG0 where k > 0 we
|
|
compensate for the extra digit. */
|
|
|
|
void
|
|
write_real_g0 (st_parameter_dt *dtp, const char *source, int kind, int d)
|
|
{
|
|
fnode f;
|
|
char buf_stack[BUF_STACK_SZ];
|
|
char str_buf[BUF_STACK_SZ];
|
|
char *buffer, *result;
|
|
size_t buf_size, res_len, flt_str_len;
|
|
int comp_d;
|
|
set_fnode_default (dtp, &f, kind);
|
|
|
|
if (d > 0)
|
|
f.u.real.d = d;
|
|
|
|
/* Compensate for extra digits when using scale factor, d is not
|
|
specified, and the magnitude is such that E editing is used. */
|
|
if (dtp->u.p.scale_factor > 0 && d == 0)
|
|
comp_d = 1;
|
|
else
|
|
comp_d = 0;
|
|
dtp->u.p.g0_no_blanks = 1;
|
|
|
|
/* Precision for snprintf call. */
|
|
int precision = get_precision (dtp, &f, source, kind);
|
|
|
|
/* String buffer to hold final result. */
|
|
result = select_string (dtp, &f, str_buf, &res_len, kind);
|
|
|
|
buffer = select_buffer (dtp, &f, precision, buf_stack, &buf_size, kind);
|
|
|
|
get_float_string (dtp, &f, source , kind, comp_d, buffer,
|
|
precision, buf_size, result, &flt_str_len);
|
|
write_float_string (dtp, result, flt_str_len);
|
|
|
|
dtp->u.p.g0_no_blanks = 0;
|
|
if (buf_size > BUF_STACK_SZ)
|
|
free (buffer);
|
|
if (res_len > BUF_STACK_SZ)
|
|
free (result);
|
|
}
|
|
|
|
|
|
static void
|
|
write_complex (st_parameter_dt *dtp, const char *source, int kind, size_t size)
|
|
{
|
|
char semi_comma =
|
|
dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
|
|
|
|
/* Set for no blanks so we get a string result with no leading
|
|
blanks. We will pad left later. */
|
|
dtp->u.p.g0_no_blanks = 1;
|
|
|
|
fnode f ;
|
|
char buf_stack[BUF_STACK_SZ];
|
|
char str1_buf[BUF_STACK_SZ];
|
|
char str2_buf[BUF_STACK_SZ];
|
|
char *buffer, *result1, *result2;
|
|
size_t buf_size, res_len1, res_len2, flt_str_len1, flt_str_len2;
|
|
int width, lblanks, orig_scale = dtp->u.p.scale_factor;
|
|
|
|
dtp->u.p.scale_factor = 1;
|
|
set_fnode_default (dtp, &f, kind);
|
|
|
|
/* Set width for two values, parenthesis, and comma. */
|
|
width = 2 * f.u.real.w + 3;
|
|
|
|
/* Set for no blanks so we get a string result with no leading
|
|
blanks. We will pad left later. */
|
|
dtp->u.p.g0_no_blanks = 1;
|
|
|
|
/* Precision for snprintf call. */
|
|
int precision = get_precision (dtp, &f, source, kind);
|
|
|
|
/* String buffers to hold final result. */
|
|
result1 = select_string (dtp, &f, str1_buf, &res_len1, kind);
|
|
result2 = select_string (dtp, &f, str2_buf, &res_len2, kind);
|
|
|
|
buffer = select_buffer (dtp, &f, precision, buf_stack, &buf_size, kind);
|
|
|
|
get_float_string (dtp, &f, source , kind, 0, buffer,
|
|
precision, buf_size, result1, &flt_str_len1);
|
|
get_float_string (dtp, &f, source + size / 2 , kind, 0, buffer,
|
|
precision, buf_size, result2, &flt_str_len2);
|
|
if (!dtp->u.p.namelist_mode)
|
|
{
|
|
lblanks = width - flt_str_len1 - flt_str_len2 - 3;
|
|
write_x (dtp, lblanks, lblanks);
|
|
}
|
|
write_char (dtp, '(');
|
|
write_float_string (dtp, result1, flt_str_len1);
|
|
write_char (dtp, semi_comma);
|
|
write_float_string (dtp, result2, flt_str_len2);
|
|
write_char (dtp, ')');
|
|
|
|
dtp->u.p.scale_factor = orig_scale;
|
|
dtp->u.p.g0_no_blanks = 0;
|
|
if (buf_size > BUF_STACK_SZ)
|
|
free (buffer);
|
|
if (res_len1 > BUF_STACK_SZ)
|
|
free (result1);
|
|
if (res_len2 > BUF_STACK_SZ)
|
|
free (result2);
|
|
}
|
|
|
|
|
|
/* Write the separator between items. */
|
|
|
|
static void
|
|
write_separator (st_parameter_dt *dtp)
|
|
{
|
|
char *p;
|
|
|
|
p = write_block (dtp, options.separator_len);
|
|
if (p == NULL)
|
|
return;
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
memcpy4 (p4, options.separator, options.separator_len);
|
|
}
|
|
else
|
|
memcpy (p, options.separator, options.separator_len);
|
|
}
|
|
|
|
|
|
/* Write an item with list formatting.
|
|
TODO: handle skipping to the next record correctly, particularly
|
|
with strings. */
|
|
|
|
static void
|
|
list_formatted_write_scalar (st_parameter_dt *dtp, bt type, void *p, int kind,
|
|
size_t size)
|
|
{
|
|
if (dtp->u.p.current_unit == NULL)
|
|
return;
|
|
|
|
if (dtp->u.p.first_item)
|
|
{
|
|
dtp->u.p.first_item = 0;
|
|
if (dtp->u.p.current_unit->flags.cc != CC_FORTRAN)
|
|
write_char (dtp, ' ');
|
|
}
|
|
else
|
|
{
|
|
if (type != BT_CHARACTER || !dtp->u.p.char_flag ||
|
|
(dtp->u.p.current_unit->delim_status != DELIM_NONE
|
|
&& dtp->u.p.current_unit->delim_status != DELIM_UNSPECIFIED))
|
|
write_separator (dtp);
|
|
}
|
|
|
|
switch (type)
|
|
{
|
|
case BT_INTEGER:
|
|
write_integer (dtp, p, kind);
|
|
break;
|
|
case BT_LOGICAL:
|
|
write_logical (dtp, p, kind);
|
|
break;
|
|
case BT_CHARACTER:
|
|
write_character (dtp, p, kind, size, DELIM);
|
|
break;
|
|
case BT_REAL:
|
|
write_real (dtp, p, kind);
|
|
break;
|
|
case BT_COMPLEX:
|
|
write_complex (dtp, p, kind, size);
|
|
break;
|
|
case BT_CLASS:
|
|
{
|
|
int unit = dtp->u.p.current_unit->unit_number;
|
|
char iotype[] = "LISTDIRECTED";
|
|
gfc_charlen_type iotype_len = 12;
|
|
char tmp_iomsg[IOMSG_LEN] = "";
|
|
char *child_iomsg;
|
|
gfc_charlen_type child_iomsg_len;
|
|
int noiostat;
|
|
int *child_iostat = NULL;
|
|
gfc_full_array_i4 vlist;
|
|
|
|
GFC_DESCRIPTOR_DATA(&vlist) = NULL;
|
|
GFC_DIMENSION_SET(vlist.dim[0],1, 0, 0);
|
|
|
|
/* Set iostat, intent(out). */
|
|
noiostat = 0;
|
|
child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
|
|
dtp->common.iostat : &noiostat;
|
|
|
|
/* Set iomsge, intent(inout). */
|
|
if (dtp->common.flags & IOPARM_HAS_IOMSG)
|
|
{
|
|
child_iomsg = dtp->common.iomsg;
|
|
child_iomsg_len = dtp->common.iomsg_len;
|
|
}
|
|
else
|
|
{
|
|
child_iomsg = tmp_iomsg;
|
|
child_iomsg_len = IOMSG_LEN;
|
|
}
|
|
|
|
/* Call the user defined formatted WRITE procedure. */
|
|
dtp->u.p.current_unit->child_dtio++;
|
|
dtp->u.p.fdtio_ptr (p, &unit, iotype, &vlist,
|
|
child_iostat, child_iomsg,
|
|
iotype_len, child_iomsg_len);
|
|
dtp->u.p.current_unit->child_dtio--;
|
|
}
|
|
break;
|
|
default:
|
|
internal_error (&dtp->common, "list_formatted_write(): Bad type");
|
|
}
|
|
|
|
fbuf_flush_list (dtp->u.p.current_unit, LIST_WRITING);
|
|
dtp->u.p.char_flag = (type == BT_CHARACTER);
|
|
}
|
|
|
|
|
|
void
|
|
list_formatted_write (st_parameter_dt *dtp, bt type, void *p, int kind,
|
|
size_t size, size_t nelems)
|
|
{
|
|
size_t elem;
|
|
char *tmp;
|
|
size_t stride = type == BT_CHARACTER ?
|
|
size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
|
|
|
|
tmp = (char *) p;
|
|
|
|
/* Big loop over all the elements. */
|
|
for (elem = 0; elem < nelems; elem++)
|
|
{
|
|
dtp->u.p.item_count++;
|
|
list_formatted_write_scalar (dtp, type, tmp + elem * stride, kind, size);
|
|
}
|
|
}
|
|
|
|
/* NAMELIST OUTPUT
|
|
|
|
nml_write_obj writes a namelist object to the output stream. It is called
|
|
recursively for derived type components:
|
|
obj = is the namelist_info for the current object.
|
|
offset = the offset relative to the address held by the object for
|
|
derived type arrays.
|
|
base = is the namelist_info of the derived type, when obj is a
|
|
component.
|
|
base_name = the full name for a derived type, including qualifiers
|
|
if any.
|
|
The returned value is a pointer to the object beyond the last one
|
|
accessed, including nested derived types. Notice that the namelist is
|
|
a linear linked list of objects, including derived types and their
|
|
components. A tree, of sorts, is implied by the compound names of
|
|
the derived type components and this is how this function recurses through
|
|
the list. */
|
|
|
|
/* A generous estimate of the number of characters needed to print
|
|
repeat counts and indices, including commas, asterices and brackets. */
|
|
|
|
#define NML_DIGITS 20
|
|
|
|
static void
|
|
namelist_write_newline (st_parameter_dt *dtp)
|
|
{
|
|
if (!is_internal_unit (dtp))
|
|
{
|
|
#ifdef HAVE_CRLF
|
|
write_character (dtp, "\r\n", 1, 2, NODELIM);
|
|
#else
|
|
write_character (dtp, "\n", 1, 1, NODELIM);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
if (is_array_io (dtp))
|
|
{
|
|
gfc_offset record;
|
|
int finished;
|
|
char *p;
|
|
int length = dtp->u.p.current_unit->bytes_left;
|
|
|
|
p = write_block (dtp, length);
|
|
if (p == NULL)
|
|
return;
|
|
|
|
if (unlikely (is_char4_unit (dtp)))
|
|
{
|
|
gfc_char4_t *p4 = (gfc_char4_t *) p;
|
|
memset4 (p4, ' ', length);
|
|
}
|
|
else
|
|
memset (p, ' ', length);
|
|
|
|
/* Now that the current record has been padded out,
|
|
determine where the next record in the array is. */
|
|
record = next_array_record (dtp, dtp->u.p.current_unit->ls,
|
|
&finished);
|
|
if (finished)
|
|
dtp->u.p.current_unit->endfile = AT_ENDFILE;
|
|
else
|
|
{
|
|
/* Now seek to this record */
|
|
record = record * dtp->u.p.current_unit->recl;
|
|
|
|
if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
|
|
{
|
|
generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
|
|
return;
|
|
}
|
|
|
|
dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
|
|
}
|
|
}
|
|
else
|
|
write_character (dtp, " ", 1, 1, NODELIM);
|
|
}
|
|
|
|
|
|
static namelist_info *
|
|
nml_write_obj (st_parameter_dt *dtp, namelist_info *obj, index_type offset,
|
|
namelist_info *base, char *base_name)
|
|
{
|
|
int rep_ctr;
|
|
int num;
|
|
int nml_carry;
|
|
int len;
|
|
index_type obj_size;
|
|
index_type nelem;
|
|
size_t dim_i;
|
|
size_t clen;
|
|
index_type elem_ctr;
|
|
size_t obj_name_len;
|
|
void *p;
|
|
char cup;
|
|
char *obj_name;
|
|
char *ext_name;
|
|
char *q;
|
|
size_t ext_name_len;
|
|
char rep_buff[NML_DIGITS];
|
|
namelist_info *cmp;
|
|
namelist_info *retval = obj->next;
|
|
size_t base_name_len;
|
|
size_t base_var_name_len;
|
|
size_t tot_len;
|
|
|
|
/* Set the character to be used to separate values
|
|
to a comma or semi-colon. */
|
|
|
|
char semi_comma =
|
|
dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
|
|
|
|
/* Write namelist variable names in upper case. If a derived type,
|
|
nothing is output. If a component, base and base_name are set. */
|
|
|
|
if (obj->type != BT_DERIVED || obj->dtio_sub != NULL)
|
|
{
|
|
namelist_write_newline (dtp);
|
|
write_character (dtp, " ", 1, 1, NODELIM);
|
|
|
|
len = 0;
|
|
if (base)
|
|
{
|
|
len = strlen (base->var_name);
|
|
base_name_len = strlen (base_name);
|
|
for (dim_i = 0; dim_i < base_name_len; dim_i++)
|
|
{
|
|
cup = toupper ((int) base_name[dim_i]);
|
|
write_character (dtp, &cup, 1, 1, NODELIM);
|
|
}
|
|
}
|
|
clen = strlen (obj->var_name);
|
|
for (dim_i = len; dim_i < clen; dim_i++)
|
|
{
|
|
cup = toupper ((int) obj->var_name[dim_i]);
|
|
if (cup == '+')
|
|
cup = '%';
|
|
write_character (dtp, &cup, 1, 1, NODELIM);
|
|
}
|
|
write_character (dtp, "=", 1, 1, NODELIM);
|
|
}
|
|
|
|
/* Counts the number of data output on a line, including names. */
|
|
|
|
num = 1;
|
|
|
|
len = obj->len;
|
|
|
|
switch (obj->type)
|
|
{
|
|
|
|
case BT_REAL:
|
|
obj_size = size_from_real_kind (len);
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
obj_size = size_from_complex_kind (len);
|
|
break;
|
|
|
|
case BT_CHARACTER:
|
|
obj_size = obj->string_length;
|
|
break;
|
|
|
|
default:
|
|
obj_size = len;
|
|
}
|
|
|
|
if (obj->var_rank)
|
|
obj_size = obj->size;
|
|
|
|
/* Set the index vector and count the number of elements. */
|
|
|
|
nelem = 1;
|
|
for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
|
|
{
|
|
obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj, dim_i);
|
|
nelem = nelem * GFC_DESCRIPTOR_EXTENT (obj, dim_i);
|
|
}
|
|
|
|
/* Main loop to output the data held in the object. */
|
|
|
|
rep_ctr = 1;
|
|
for (elem_ctr = 0; elem_ctr < nelem; elem_ctr++)
|
|
{
|
|
|
|
/* Build the pointer to the data value. The offset is passed by
|
|
recursive calls to this function for arrays of derived types.
|
|
Is NULL otherwise. */
|
|
|
|
p = (void *)(obj->mem_pos + elem_ctr * obj_size);
|
|
p += offset;
|
|
|
|
/* Check for repeat counts of intrinsic types. */
|
|
|
|
if ((elem_ctr < (nelem - 1)) &&
|
|
(obj->type != BT_DERIVED) &&
|
|
!memcmp (p, (void *)(p + obj_size ), obj_size ))
|
|
{
|
|
rep_ctr++;
|
|
}
|
|
|
|
/* Execute a repeated output. Note the flag no_leading_blank that
|
|
is used in the functions used to output the intrinsic types. */
|
|
|
|
else
|
|
{
|
|
if (rep_ctr > 1)
|
|
{
|
|
snprintf(rep_buff, NML_DIGITS, " %d*", rep_ctr);
|
|
write_character (dtp, rep_buff, 1, strlen (rep_buff), NODELIM);
|
|
dtp->u.p.no_leading_blank = 1;
|
|
}
|
|
num++;
|
|
|
|
/* Output the data, if an intrinsic type, or recurse into this
|
|
routine to treat derived types. */
|
|
|
|
switch (obj->type)
|
|
{
|
|
|
|
case BT_INTEGER:
|
|
write_integer (dtp, p, len);
|
|
break;
|
|
|
|
case BT_LOGICAL:
|
|
write_logical (dtp, p, len);
|
|
break;
|
|
|
|
case BT_CHARACTER:
|
|
if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
|
|
write_character (dtp, p, 4, obj->string_length, DELIM);
|
|
else
|
|
write_character (dtp, p, 1, obj->string_length, DELIM);
|
|
break;
|
|
|
|
case BT_REAL:
|
|
write_real (dtp, p, len);
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
dtp->u.p.no_leading_blank = 0;
|
|
num++;
|
|
write_complex (dtp, p, len, obj_size);
|
|
break;
|
|
|
|
case BT_DERIVED:
|
|
case BT_CLASS:
|
|
/* To treat a derived type, we need to build two strings:
|
|
ext_name = the name, including qualifiers that prepends
|
|
component names in the output - passed to
|
|
nml_write_obj.
|
|
obj_name = the derived type name with no qualifiers but %
|
|
appended. This is used to identify the
|
|
components. */
|
|
|
|
/* First ext_name => get length of all possible components */
|
|
if (obj->dtio_sub != NULL)
|
|
{
|
|
int unit = dtp->u.p.current_unit->unit_number;
|
|
char iotype[] = "NAMELIST";
|
|
gfc_charlen_type iotype_len = 8;
|
|
char tmp_iomsg[IOMSG_LEN] = "";
|
|
char *child_iomsg;
|
|
gfc_charlen_type child_iomsg_len;
|
|
int noiostat;
|
|
int *child_iostat = NULL;
|
|
gfc_full_array_i4 vlist;
|
|
formatted_dtio dtio_ptr = (formatted_dtio)obj->dtio_sub;
|
|
|
|
GFC_DIMENSION_SET(vlist.dim[0],1, 0, 0);
|
|
|
|
/* Set iostat, intent(out). */
|
|
noiostat = 0;
|
|
child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
|
|
dtp->common.iostat : &noiostat;
|
|
|
|
/* Set iomsg, intent(inout). */
|
|
if (dtp->common.flags & IOPARM_HAS_IOMSG)
|
|
{
|
|
child_iomsg = dtp->common.iomsg;
|
|
child_iomsg_len = dtp->common.iomsg_len;
|
|
}
|
|
else
|
|
{
|
|
child_iomsg = tmp_iomsg;
|
|
child_iomsg_len = IOMSG_LEN;
|
|
}
|
|
|
|
/* Call the user defined formatted WRITE procedure. */
|
|
dtp->u.p.current_unit->child_dtio++;
|
|
if (obj->type == BT_DERIVED)
|
|
{
|
|
/* Build a class container. */
|
|
gfc_class list_obj;
|
|
list_obj.data = p;
|
|
list_obj.vptr = obj->vtable;
|
|
list_obj.len = 0;
|
|
dtio_ptr ((void *)&list_obj, &unit, iotype, &vlist,
|
|
child_iostat, child_iomsg,
|
|
iotype_len, child_iomsg_len);
|
|
}
|
|
else
|
|
{
|
|
dtio_ptr (p, &unit, iotype, &vlist,
|
|
child_iostat, child_iomsg,
|
|
iotype_len, child_iomsg_len);
|
|
}
|
|
dtp->u.p.current_unit->child_dtio--;
|
|
|
|
goto obj_loop;
|
|
}
|
|
|
|
base_name_len = base_name ? strlen (base_name) : 0;
|
|
base_var_name_len = base ? strlen (base->var_name) : 0;
|
|
ext_name_len = base_name_len + base_var_name_len
|
|
+ strlen (obj->var_name) + obj->var_rank * NML_DIGITS + 1;
|
|
ext_name = xmalloc (ext_name_len);
|
|
|
|
if (base_name)
|
|
memcpy (ext_name, base_name, base_name_len);
|
|
clen = strlen (obj->var_name + base_var_name_len);
|
|
memcpy (ext_name + base_name_len,
|
|
obj->var_name + base_var_name_len, clen);
|
|
|
|
/* Append the qualifier. */
|
|
|
|
tot_len = base_name_len + clen;
|
|
for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
|
|
{
|
|
if (!dim_i)
|
|
{
|
|
ext_name[tot_len] = '(';
|
|
tot_len++;
|
|
}
|
|
snprintf (ext_name + tot_len, ext_name_len - tot_len, "%d",
|
|
(int) obj->ls[dim_i].idx);
|
|
tot_len += strlen (ext_name + tot_len);
|
|
ext_name[tot_len] = ((int) dim_i == obj->var_rank - 1) ? ')' : ',';
|
|
tot_len++;
|
|
}
|
|
|
|
ext_name[tot_len] = '\0';
|
|
for (q = ext_name; *q; q++)
|
|
if (*q == '+')
|
|
*q = '%';
|
|
|
|
/* Now obj_name. */
|
|
|
|
obj_name_len = strlen (obj->var_name) + 1;
|
|
obj_name = xmalloc (obj_name_len + 1);
|
|
memcpy (obj_name, obj->var_name, obj_name_len-1);
|
|
memcpy (obj_name + obj_name_len-1, "%", 2);
|
|
|
|
/* Now loop over the components. Update the component pointer
|
|
with the return value from nml_write_obj => this loop jumps
|
|
past nested derived types. */
|
|
|
|
for (cmp = obj->next;
|
|
cmp && !strncmp (cmp->var_name, obj_name, obj_name_len);
|
|
cmp = retval)
|
|
{
|
|
retval = nml_write_obj (dtp, cmp,
|
|
(index_type)(p - obj->mem_pos),
|
|
obj, ext_name);
|
|
}
|
|
|
|
free (obj_name);
|
|
free (ext_name);
|
|
goto obj_loop;
|
|
|
|
default:
|
|
internal_error (&dtp->common, "Bad type for namelist write");
|
|
}
|
|
|
|
/* Reset the leading blank suppression, write a comma (or semi-colon)
|
|
and, if 5 values have been output, write a newline and advance
|
|
to column 2. Reset the repeat counter. */
|
|
|
|
dtp->u.p.no_leading_blank = 0;
|
|
if (obj->type == BT_CHARACTER)
|
|
{
|
|
if (dtp->u.p.nml_delim != '\0')
|
|
write_character (dtp, &semi_comma, 1, 1, NODELIM);
|
|
}
|
|
else
|
|
write_character (dtp, &semi_comma, 1, 1, NODELIM);
|
|
if (num > 5)
|
|
{
|
|
num = 0;
|
|
if (dtp->u.p.nml_delim == '\0')
|
|
write_character (dtp, &semi_comma, 1, 1, NODELIM);
|
|
namelist_write_newline (dtp);
|
|
write_character (dtp, " ", 1, 1, NODELIM);
|
|
}
|
|
rep_ctr = 1;
|
|
}
|
|
|
|
/* Cycle through and increment the index vector. */
|
|
|
|
obj_loop:
|
|
|
|
nml_carry = 1;
|
|
for (dim_i = 0; nml_carry && (dim_i < (size_t) obj->var_rank); dim_i++)
|
|
{
|
|
obj->ls[dim_i].idx += nml_carry ;
|
|
nml_carry = 0;
|
|
if (obj->ls[dim_i].idx > GFC_DESCRIPTOR_UBOUND(obj,dim_i))
|
|
{
|
|
obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj,dim_i);
|
|
nml_carry = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return a pointer beyond the furthest object accessed. */
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/* This is the entry function for namelist writes. It outputs the name
|
|
of the namelist and iterates through the namelist by calls to
|
|
nml_write_obj. The call below has dummys in the arguments used in
|
|
the treatment of derived types. */
|
|
|
|
void
|
|
namelist_write (st_parameter_dt *dtp)
|
|
{
|
|
namelist_info *t1, *t2, *dummy = NULL;
|
|
index_type dummy_offset = 0;
|
|
char c;
|
|
char *dummy_name = NULL;
|
|
|
|
/* Set the delimiter for namelist output. */
|
|
switch (dtp->u.p.current_unit->delim_status)
|
|
{
|
|
case DELIM_APOSTROPHE:
|
|
dtp->u.p.nml_delim = '\'';
|
|
break;
|
|
case DELIM_QUOTE:
|
|
case DELIM_UNSPECIFIED:
|
|
dtp->u.p.nml_delim = '"';
|
|
break;
|
|
default:
|
|
dtp->u.p.nml_delim = '\0';
|
|
}
|
|
|
|
write_character (dtp, "&", 1, 1, NODELIM);
|
|
|
|
/* Write namelist name in upper case - f95 std. */
|
|
for (gfc_charlen_type i = 0; i < dtp->namelist_name_len; i++ )
|
|
{
|
|
c = toupper ((int) dtp->namelist_name[i]);
|
|
write_character (dtp, &c, 1 ,1, NODELIM);
|
|
}
|
|
|
|
if (dtp->u.p.ionml != NULL)
|
|
{
|
|
t1 = dtp->u.p.ionml;
|
|
while (t1 != NULL)
|
|
{
|
|
t2 = t1;
|
|
t1 = nml_write_obj (dtp, t2, dummy_offset, dummy, dummy_name);
|
|
}
|
|
}
|
|
|
|
namelist_write_newline (dtp);
|
|
write_character (dtp, " /", 1, 2, NODELIM);
|
|
}
|
|
|
|
#undef NML_DIGITS
|