b31ede6e37
PR 94856 is a call graph verifier error. We have a method which (in the course of IPA-CP) loses its this pointer because it is unused and the pass then does not clone all the this adjusting thunks and just makes the calls go straight to the new clone - and then the verifier complains that the edge does not seem to point to a clone of what it used to. This looked weird because the verifier actually has logic detecting this case but it turns out that it is confused by inliner body-saving mechanism which invents a new decl for the base function. Making the inlining body-saving mechanism to correctly set former_clone_of allows us to detect this case too. Then we pass this particular round of verification but the subsequent one fails because we have inlined the function into its former thunk - which subsequently does not have any callees, but the verifier still access them and segfaults. Therefore the patch also adds a test whether the a former hunk even has any call. 2020-04-30 Martin Jambor <mjambor@suse.cz> PR ipa/94856 * cgraph.c (clone_of_p): Also consider thunks whih had their bodies saved by the inliner and thunks which had their call inlined. * ipa-inline-transform.c (save_inline_function_body): Fill in former_clone_of of new body holders. PR ipa/94856 * g++.dg/ipa/pr94856.C: New test.
750 lines
25 KiB
C
750 lines
25 KiB
C
/* Callgraph transformations to handle inlining
|
|
Copyright (C) 2003-2020 Free Software Foundation, Inc.
|
|
Contributed by Jan Hubicka
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* The inline decisions are stored in callgraph in "inline plan" and
|
|
applied later.
|
|
|
|
To mark given call inline, use inline_call function.
|
|
The function marks the edge inlinable and, if necessary, produces
|
|
virtual clone in the callgraph representing the new copy of callee's
|
|
function body.
|
|
|
|
The inline plan is applied on given function body by inline_transform. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "function.h"
|
|
#include "tree.h"
|
|
#include "alloc-pool.h"
|
|
#include "tree-pass.h"
|
|
#include "cgraph.h"
|
|
#include "tree-cfg.h"
|
|
#include "symbol-summary.h"
|
|
#include "tree-vrp.h"
|
|
#include "ipa-prop.h"
|
|
#include "ipa-fnsummary.h"
|
|
#include "ipa-inline.h"
|
|
#include "tree-inline.h"
|
|
#include "function.h"
|
|
#include "cfg.h"
|
|
#include "basic-block.h"
|
|
#include "ipa-utils.h"
|
|
|
|
int ncalls_inlined;
|
|
int nfunctions_inlined;
|
|
|
|
/* Scale counts of NODE edges by NUM/DEN. */
|
|
|
|
static void
|
|
update_noncloned_counts (struct cgraph_node *node,
|
|
profile_count num, profile_count den)
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
profile_count::adjust_for_ipa_scaling (&num, &den);
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
if (!e->inline_failed)
|
|
update_noncloned_counts (e->callee, num, den);
|
|
e->count = e->count.apply_scale (num, den);
|
|
}
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
e->count = e->count.apply_scale (num, den);
|
|
node->count = node->count.apply_scale (num, den);
|
|
}
|
|
|
|
/* We removed or are going to remove the last call to NODE.
|
|
Return true if we can and want proactively remove the NODE now.
|
|
This is important to do, since we want inliner to know when offline
|
|
copy of function was removed. */
|
|
|
|
static bool
|
|
can_remove_node_now_p_1 (struct cgraph_node *node, struct cgraph_edge *e)
|
|
{
|
|
ipa_ref *ref;
|
|
|
|
FOR_EACH_ALIAS (node, ref)
|
|
{
|
|
cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
|
|
if ((alias->callers && alias->callers != e)
|
|
|| !can_remove_node_now_p_1 (alias, e))
|
|
return false;
|
|
}
|
|
/* FIXME: When address is taken of DECL_EXTERNAL function we still
|
|
can remove its offline copy, but we would need to keep unanalyzed node in
|
|
the callgraph so references can point to it.
|
|
|
|
Also for comdat group we can ignore references inside a group as we
|
|
want to prove the group as a whole to be dead. */
|
|
return (!node->address_taken
|
|
&& node->can_remove_if_no_direct_calls_and_refs_p ()
|
|
/* Inlining might enable more devirtualizing, so we want to remove
|
|
those only after all devirtualizable virtual calls are processed.
|
|
Lacking may edges in callgraph we just preserve them post
|
|
inlining. */
|
|
&& (!DECL_VIRTUAL_P (node->decl)
|
|
|| !opt_for_fn (node->decl, flag_devirtualize))
|
|
/* During early inlining some unanalyzed cgraph nodes might be in the
|
|
callgraph and they might refer the function in question. */
|
|
&& !cgraph_new_nodes.exists ());
|
|
}
|
|
|
|
/* We are going to eliminate last direct call to NODE (or alias of it) via edge E.
|
|
Verify that the NODE can be removed from unit and if it is contained in comdat
|
|
group that the whole comdat group is removable. */
|
|
|
|
static bool
|
|
can_remove_node_now_p (struct cgraph_node *node, struct cgraph_edge *e)
|
|
{
|
|
struct cgraph_node *next;
|
|
if (!can_remove_node_now_p_1 (node, e))
|
|
return false;
|
|
|
|
/* When we see same comdat group, we need to be sure that all
|
|
items can be removed. */
|
|
if (!node->same_comdat_group || !node->externally_visible)
|
|
return true;
|
|
for (next = dyn_cast<cgraph_node *> (node->same_comdat_group);
|
|
next != node; next = dyn_cast<cgraph_node *> (next->same_comdat_group))
|
|
{
|
|
if (next->alias)
|
|
continue;
|
|
if ((next->callers && next->callers != e)
|
|
|| !can_remove_node_now_p_1 (next, e))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return true if NODE is a master clone with non-inline clones. */
|
|
|
|
static bool
|
|
master_clone_with_noninline_clones_p (struct cgraph_node *node)
|
|
{
|
|
if (node->clone_of)
|
|
return false;
|
|
|
|
for (struct cgraph_node *n = node->clones; n; n = n->next_sibling_clone)
|
|
if (n->decl != node->decl)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* E is expected to be an edge being inlined. Clone destination node of
|
|
the edge and redirect it to the new clone.
|
|
DUPLICATE is used for bookkeeping on whether we are actually creating new
|
|
clones or re-using node originally representing out-of-line function call.
|
|
By default the offline copy is removed, when it appears dead after inlining.
|
|
UPDATE_ORIGINAL prevents this transformation.
|
|
If OVERALL_SIZE is non-NULL, the size is updated to reflect the
|
|
transformation. */
|
|
|
|
void
|
|
clone_inlined_nodes (struct cgraph_edge *e, bool duplicate,
|
|
bool update_original, int *overall_size)
|
|
{
|
|
struct cgraph_node *inlining_into;
|
|
struct cgraph_edge *next;
|
|
|
|
if (e->caller->inlined_to)
|
|
inlining_into = e->caller->inlined_to;
|
|
else
|
|
inlining_into = e->caller;
|
|
|
|
if (duplicate)
|
|
{
|
|
/* We may eliminate the need for out-of-line copy to be output.
|
|
In that case just go ahead and re-use it. This is not just an
|
|
memory optimization. Making offline copy of function disappear
|
|
from the program will improve future decisions on inlining. */
|
|
if (!e->callee->callers->next_caller
|
|
/* Recursive inlining never wants the master clone to
|
|
be overwritten. */
|
|
&& update_original
|
|
&& can_remove_node_now_p (e->callee, e)
|
|
/* We cannot overwrite a master clone with non-inline clones
|
|
until after these clones are materialized. */
|
|
&& !master_clone_with_noninline_clones_p (e->callee))
|
|
{
|
|
/* TODO: When callee is in a comdat group, we could remove all of it,
|
|
including all inline clones inlined into it. That would however
|
|
need small function inlining to register edge removal hook to
|
|
maintain the priority queue.
|
|
|
|
For now we keep the other functions in the group in program until
|
|
cgraph_remove_unreachable_functions gets rid of them. */
|
|
gcc_assert (!e->callee->inlined_to);
|
|
e->callee->remove_from_same_comdat_group ();
|
|
if (e->callee->definition
|
|
&& inline_account_function_p (e->callee))
|
|
{
|
|
gcc_assert (!e->callee->alias);
|
|
if (overall_size)
|
|
*overall_size -= ipa_size_summaries->get (e->callee)->size;
|
|
nfunctions_inlined++;
|
|
}
|
|
duplicate = false;
|
|
e->callee->externally_visible = false;
|
|
update_noncloned_counts (e->callee, e->count, e->callee->count);
|
|
|
|
dump_callgraph_transformation (e->callee, inlining_into,
|
|
"inlining to");
|
|
}
|
|
else
|
|
{
|
|
struct cgraph_node *n;
|
|
|
|
n = e->callee->create_clone (e->callee->decl,
|
|
e->count,
|
|
update_original, vNULL, true,
|
|
inlining_into,
|
|
NULL);
|
|
n->used_as_abstract_origin = e->callee->used_as_abstract_origin;
|
|
e->redirect_callee (n);
|
|
}
|
|
}
|
|
else
|
|
e->callee->remove_from_same_comdat_group ();
|
|
|
|
e->callee->inlined_to = inlining_into;
|
|
|
|
/* Recursively clone all bodies. */
|
|
for (e = e->callee->callees; e; e = next)
|
|
{
|
|
next = e->next_callee;
|
|
if (!e->inline_failed)
|
|
clone_inlined_nodes (e, duplicate, update_original, overall_size);
|
|
}
|
|
}
|
|
|
|
/* Check all speculations in N and if any seem useless, resolve them. When a
|
|
first edge is resolved, pop all edges from NEW_EDGES and insert them to
|
|
EDGE_SET. Then remove each resolved edge from EDGE_SET, if it is there. */
|
|
|
|
static bool
|
|
check_speculations_1 (cgraph_node *n, vec<cgraph_edge *> *new_edges,
|
|
hash_set <cgraph_edge *> *edge_set)
|
|
{
|
|
bool speculation_removed = false;
|
|
cgraph_edge *next;
|
|
|
|
for (cgraph_edge *e = n->callees; e; e = next)
|
|
{
|
|
next = e->next_callee;
|
|
if (e->speculative && !speculation_useful_p (e, true))
|
|
{
|
|
while (new_edges && !new_edges->is_empty ())
|
|
edge_set->add (new_edges->pop ());
|
|
edge_set->remove (e);
|
|
|
|
cgraph_edge::resolve_speculation (e, NULL);
|
|
speculation_removed = true;
|
|
}
|
|
else if (!e->inline_failed)
|
|
speculation_removed |= check_speculations_1 (e->callee, new_edges,
|
|
edge_set);
|
|
}
|
|
return speculation_removed;
|
|
}
|
|
|
|
/* Push E to NEW_EDGES. Called from hash_set traverse method, which
|
|
unfortunately means this function has to have external linkage, otherwise
|
|
the code will not compile with gcc 4.8. */
|
|
|
|
bool
|
|
push_all_edges_in_set_to_vec (cgraph_edge * const &e,
|
|
vec<cgraph_edge *> *new_edges)
|
|
{
|
|
new_edges->safe_push (e);
|
|
return true;
|
|
}
|
|
|
|
/* Check all speculations in N and if any seem useless, resolve them and remove
|
|
them from NEW_EDGES. */
|
|
|
|
static bool
|
|
check_speculations (cgraph_node *n, vec<cgraph_edge *> *new_edges)
|
|
{
|
|
hash_set <cgraph_edge *> edge_set;
|
|
bool res = check_speculations_1 (n, new_edges, &edge_set);
|
|
if (!edge_set.is_empty ())
|
|
edge_set.traverse <vec<cgraph_edge *> *,
|
|
push_all_edges_in_set_to_vec> (new_edges);
|
|
return res;
|
|
}
|
|
|
|
/* Mark all call graph edges coming out of NODE and all nodes that have been
|
|
inlined to it as in_polymorphic_cdtor. */
|
|
|
|
static void
|
|
mark_all_inlined_calls_cdtor (cgraph_node *node)
|
|
{
|
|
for (cgraph_edge *cs = node->callees; cs; cs = cs->next_callee)
|
|
{
|
|
cs->in_polymorphic_cdtor = true;
|
|
if (!cs->inline_failed)
|
|
mark_all_inlined_calls_cdtor (cs->callee);
|
|
}
|
|
for (cgraph_edge *cs = node->indirect_calls; cs; cs = cs->next_callee)
|
|
cs->in_polymorphic_cdtor = true;
|
|
}
|
|
|
|
|
|
/* Mark edge E as inlined and update callgraph accordingly. UPDATE_ORIGINAL
|
|
specify whether profile of original function should be updated. If any new
|
|
indirect edges are discovered in the process, add them to NEW_EDGES, unless
|
|
it is NULL. If UPDATE_OVERALL_SUMMARY is false, do not bother to recompute overall
|
|
size of caller after inlining. Caller is required to eventually do it via
|
|
ipa_update_overall_fn_summary.
|
|
If callee_removed is non-NULL, set it to true if we removed callee node.
|
|
|
|
Return true iff any new callgraph edges were discovered as a
|
|
result of inlining. */
|
|
|
|
bool
|
|
inline_call (struct cgraph_edge *e, bool update_original,
|
|
vec<cgraph_edge *> *new_edges,
|
|
int *overall_size, bool update_overall_summary,
|
|
bool *callee_removed)
|
|
{
|
|
int old_size = 0, new_size = 0;
|
|
struct cgraph_node *to = NULL;
|
|
struct cgraph_edge *curr = e;
|
|
bool comdat_local = e->callee->comdat_local_p ();
|
|
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
|
|
bool new_edges_found = false;
|
|
|
|
int estimated_growth = 0;
|
|
if (! update_overall_summary)
|
|
estimated_growth = estimate_edge_growth (e);
|
|
/* This is used only for assert bellow. */
|
|
#if 0
|
|
bool predicated = inline_edge_summary (e)->predicate != NULL;
|
|
#endif
|
|
|
|
/* Don't inline inlined edges. */
|
|
gcc_assert (e->inline_failed);
|
|
/* Don't even think of inlining inline clone. */
|
|
gcc_assert (!callee->inlined_to);
|
|
|
|
to = e->caller;
|
|
if (to->inlined_to)
|
|
to = to->inlined_to;
|
|
if (to->thunk.thunk_p)
|
|
{
|
|
struct cgraph_node *target = to->callees->callee;
|
|
thunk_expansion = true;
|
|
symtab->call_cgraph_removal_hooks (to);
|
|
if (in_lto_p)
|
|
to->get_untransformed_body ();
|
|
to->expand_thunk (false, true);
|
|
/* When thunk is instrumented we may have multiple callees. */
|
|
for (e = to->callees; e && e->callee != target; e = e->next_callee)
|
|
;
|
|
symtab->call_cgraph_insertion_hooks (to);
|
|
thunk_expansion = false;
|
|
gcc_assert (e);
|
|
}
|
|
|
|
|
|
e->inline_failed = CIF_OK;
|
|
DECL_POSSIBLY_INLINED (callee->decl) = true;
|
|
|
|
if (DECL_FUNCTION_PERSONALITY (callee->decl))
|
|
DECL_FUNCTION_PERSONALITY (to->decl)
|
|
= DECL_FUNCTION_PERSONALITY (callee->decl);
|
|
|
|
bool reload_optimization_node = false;
|
|
if (!opt_for_fn (callee->decl, flag_strict_aliasing)
|
|
&& opt_for_fn (to->decl, flag_strict_aliasing))
|
|
{
|
|
struct gcc_options opts = global_options;
|
|
|
|
cl_optimization_restore (&opts, opts_for_fn (to->decl));
|
|
opts.x_flag_strict_aliasing = false;
|
|
if (dump_file)
|
|
fprintf (dump_file, "Dropping flag_strict_aliasing on %s\n",
|
|
to->dump_name ());
|
|
DECL_FUNCTION_SPECIFIC_OPTIMIZATION (to->decl)
|
|
= build_optimization_node (&opts);
|
|
reload_optimization_node = true;
|
|
}
|
|
|
|
ipa_fn_summary *caller_info = ipa_fn_summaries->get (to);
|
|
ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
|
|
if (!caller_info->fp_expressions && callee_info->fp_expressions)
|
|
{
|
|
caller_info->fp_expressions = true;
|
|
if (opt_for_fn (callee->decl, flag_rounding_math)
|
|
!= opt_for_fn (to->decl, flag_rounding_math)
|
|
|| opt_for_fn (callee->decl, flag_trapping_math)
|
|
!= opt_for_fn (to->decl, flag_trapping_math)
|
|
|| opt_for_fn (callee->decl, flag_unsafe_math_optimizations)
|
|
!= opt_for_fn (to->decl, flag_unsafe_math_optimizations)
|
|
|| opt_for_fn (callee->decl, flag_finite_math_only)
|
|
!= opt_for_fn (to->decl, flag_finite_math_only)
|
|
|| opt_for_fn (callee->decl, flag_signaling_nans)
|
|
!= opt_for_fn (to->decl, flag_signaling_nans)
|
|
|| opt_for_fn (callee->decl, flag_cx_limited_range)
|
|
!= opt_for_fn (to->decl, flag_cx_limited_range)
|
|
|| opt_for_fn (callee->decl, flag_signed_zeros)
|
|
!= opt_for_fn (to->decl, flag_signed_zeros)
|
|
|| opt_for_fn (callee->decl, flag_associative_math)
|
|
!= opt_for_fn (to->decl, flag_associative_math)
|
|
|| opt_for_fn (callee->decl, flag_reciprocal_math)
|
|
!= opt_for_fn (to->decl, flag_reciprocal_math)
|
|
|| opt_for_fn (callee->decl, flag_fp_int_builtin_inexact)
|
|
!= opt_for_fn (to->decl, flag_fp_int_builtin_inexact)
|
|
|| opt_for_fn (callee->decl, flag_errno_math)
|
|
!= opt_for_fn (to->decl, flag_errno_math))
|
|
{
|
|
struct gcc_options opts = global_options;
|
|
|
|
cl_optimization_restore (&opts, opts_for_fn (to->decl));
|
|
opts.x_flag_rounding_math
|
|
= opt_for_fn (callee->decl, flag_rounding_math);
|
|
opts.x_flag_trapping_math
|
|
= opt_for_fn (callee->decl, flag_trapping_math);
|
|
opts.x_flag_unsafe_math_optimizations
|
|
= opt_for_fn (callee->decl, flag_unsafe_math_optimizations);
|
|
opts.x_flag_finite_math_only
|
|
= opt_for_fn (callee->decl, flag_finite_math_only);
|
|
opts.x_flag_signaling_nans
|
|
= opt_for_fn (callee->decl, flag_signaling_nans);
|
|
opts.x_flag_cx_limited_range
|
|
= opt_for_fn (callee->decl, flag_cx_limited_range);
|
|
opts.x_flag_signed_zeros
|
|
= opt_for_fn (callee->decl, flag_signed_zeros);
|
|
opts.x_flag_associative_math
|
|
= opt_for_fn (callee->decl, flag_associative_math);
|
|
opts.x_flag_reciprocal_math
|
|
= opt_for_fn (callee->decl, flag_reciprocal_math);
|
|
opts.x_flag_fp_int_builtin_inexact
|
|
= opt_for_fn (callee->decl, flag_fp_int_builtin_inexact);
|
|
opts.x_flag_errno_math
|
|
= opt_for_fn (callee->decl, flag_errno_math);
|
|
if (dump_file)
|
|
fprintf (dump_file, "Copying FP flags from %s to %s\n",
|
|
callee->dump_name (), to->dump_name ());
|
|
DECL_FUNCTION_SPECIFIC_OPTIMIZATION (to->decl)
|
|
= build_optimization_node (&opts);
|
|
reload_optimization_node = true;
|
|
}
|
|
}
|
|
|
|
/* Reload global optimization flags. */
|
|
if (reload_optimization_node && DECL_STRUCT_FUNCTION (to->decl) == cfun)
|
|
set_cfun (cfun, true);
|
|
|
|
/* If aliases are involved, redirect edge to the actual destination and
|
|
possibly remove the aliases. */
|
|
if (e->callee != callee)
|
|
{
|
|
struct cgraph_node *alias = e->callee, *next_alias;
|
|
e->redirect_callee (callee);
|
|
while (alias && alias != callee)
|
|
{
|
|
if (!alias->callers
|
|
&& can_remove_node_now_p (alias,
|
|
!e->next_caller && !e->prev_caller ? e : NULL))
|
|
{
|
|
next_alias = alias->get_alias_target ();
|
|
alias->remove ();
|
|
if (callee_removed)
|
|
*callee_removed = true;
|
|
alias = next_alias;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
clone_inlined_nodes (e, true, update_original, overall_size);
|
|
|
|
gcc_assert (curr->callee->inlined_to == to);
|
|
|
|
old_size = ipa_size_summaries->get (to)->size;
|
|
ipa_merge_fn_summary_after_inlining (e);
|
|
if (e->in_polymorphic_cdtor)
|
|
mark_all_inlined_calls_cdtor (e->callee);
|
|
if (opt_for_fn (e->caller->decl, optimize))
|
|
new_edges_found = ipa_propagate_indirect_call_infos (curr, new_edges);
|
|
bool removed_p = check_speculations (e->callee, new_edges);
|
|
if (update_overall_summary)
|
|
ipa_update_overall_fn_summary (to, new_edges_found || removed_p);
|
|
else
|
|
/* Update self size by the estimate so overall function growth limits
|
|
work for further inlining into this function. Before inlining
|
|
the function we inlined to again we expect the caller to update
|
|
the overall summary. */
|
|
ipa_size_summaries->get (to)->size += estimated_growth;
|
|
new_size = ipa_size_summaries->get (to)->size;
|
|
|
|
if (callee->calls_comdat_local)
|
|
to->calls_comdat_local = true;
|
|
else if (to->calls_comdat_local && comdat_local)
|
|
to->calls_comdat_local = to->check_calls_comdat_local_p ();
|
|
|
|
/* FIXME: This assert suffers from roundoff errors, disable it for GCC 5
|
|
and revisit it after conversion to sreals in GCC 6.
|
|
See PR 65654. */
|
|
#if 0
|
|
/* Verify that estimated growth match real growth. Allow off-by-one
|
|
error due to ipa_fn_summary::size_scale roudoff errors. */
|
|
gcc_assert (!update_overall_summary || !overall_size || new_edges_found
|
|
|| abs (estimated_growth - (new_size - old_size)) <= 1
|
|
|| speculation_removed
|
|
/* FIXME: a hack. Edges with false predicate are accounted
|
|
wrong, we should remove them from callgraph. */
|
|
|| predicated);
|
|
#endif
|
|
|
|
/* Account the change of overall unit size; external functions will be
|
|
removed and are thus not accounted. */
|
|
if (overall_size && inline_account_function_p (to))
|
|
*overall_size += new_size - old_size;
|
|
ncalls_inlined++;
|
|
|
|
/* This must happen after ipa_merge_fn_summary_after_inlining that rely on jump
|
|
functions of callee to not be updated. */
|
|
return new_edges_found;
|
|
}
|
|
|
|
/* For each node that was made the holder of function body by
|
|
save_inline_function_body, this summary contains pointer to the previous
|
|
holder of the body. */
|
|
|
|
function_summary <tree *> *ipa_saved_clone_sources;
|
|
|
|
/* Copy function body of NODE and redirect all inline clones to it.
|
|
This is done before inline plan is applied to NODE when there are
|
|
still some inline clones if it.
|
|
|
|
This is necessary because inline decisions are not really transitive
|
|
and the other inline clones may have different bodies. */
|
|
|
|
static struct cgraph_node *
|
|
save_inline_function_body (struct cgraph_node *node)
|
|
{
|
|
struct cgraph_node *first_clone, *n;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nSaving body of %s for later reuse\n",
|
|
node->dump_name ());
|
|
|
|
gcc_assert (node == cgraph_node::get (node->decl));
|
|
|
|
/* first_clone will be turned into real function. */
|
|
first_clone = node->clones;
|
|
|
|
/* Arrange first clone to not be thunk as those do not have bodies. */
|
|
if (first_clone->thunk.thunk_p)
|
|
{
|
|
while (first_clone->thunk.thunk_p)
|
|
first_clone = first_clone->next_sibling_clone;
|
|
first_clone->prev_sibling_clone->next_sibling_clone
|
|
= first_clone->next_sibling_clone;
|
|
if (first_clone->next_sibling_clone)
|
|
first_clone->next_sibling_clone->prev_sibling_clone
|
|
= first_clone->prev_sibling_clone;
|
|
first_clone->next_sibling_clone = node->clones;
|
|
first_clone->prev_sibling_clone = NULL;
|
|
node->clones->prev_sibling_clone = first_clone;
|
|
node->clones = first_clone;
|
|
}
|
|
first_clone->decl = copy_node (node->decl);
|
|
first_clone->decl->decl_with_vis.symtab_node = first_clone;
|
|
gcc_assert (first_clone == cgraph_node::get (first_clone->decl));
|
|
|
|
/* Now reshape the clone tree, so all other clones descends from
|
|
first_clone. */
|
|
if (first_clone->next_sibling_clone)
|
|
{
|
|
for (n = first_clone->next_sibling_clone; n->next_sibling_clone;
|
|
n = n->next_sibling_clone)
|
|
n->clone_of = first_clone;
|
|
n->clone_of = first_clone;
|
|
n->next_sibling_clone = first_clone->clones;
|
|
if (first_clone->clones)
|
|
first_clone->clones->prev_sibling_clone = n;
|
|
first_clone->clones = first_clone->next_sibling_clone;
|
|
first_clone->next_sibling_clone->prev_sibling_clone = NULL;
|
|
first_clone->next_sibling_clone = NULL;
|
|
gcc_assert (!first_clone->prev_sibling_clone);
|
|
}
|
|
|
|
tree prev_body_holder = node->decl;
|
|
if (!ipa_saved_clone_sources)
|
|
ipa_saved_clone_sources = new function_summary <tree *> (symtab);
|
|
else
|
|
{
|
|
tree *p = ipa_saved_clone_sources->get (node);
|
|
if (p)
|
|
{
|
|
prev_body_holder = *p;
|
|
gcc_assert (prev_body_holder);
|
|
}
|
|
}
|
|
*ipa_saved_clone_sources->get_create (first_clone) = prev_body_holder;
|
|
first_clone->former_clone_of
|
|
= node->former_clone_of ? node->former_clone_of : node->decl;
|
|
first_clone->clone_of = NULL;
|
|
|
|
/* Now node in question has no clones. */
|
|
node->clones = NULL;
|
|
|
|
/* Inline clones share decl with the function they are cloned
|
|
from. Walk the whole clone tree and redirect them all to the
|
|
new decl. */
|
|
if (first_clone->clones)
|
|
for (n = first_clone->clones; n != first_clone;)
|
|
{
|
|
gcc_assert (n->decl == node->decl);
|
|
n->decl = first_clone->decl;
|
|
if (n->clones)
|
|
n = n->clones;
|
|
else if (n->next_sibling_clone)
|
|
n = n->next_sibling_clone;
|
|
else
|
|
{
|
|
while (n != first_clone && !n->next_sibling_clone)
|
|
n = n->clone_of;
|
|
if (n != first_clone)
|
|
n = n->next_sibling_clone;
|
|
}
|
|
}
|
|
|
|
/* Copy the OLD_VERSION_NODE function tree to the new version. */
|
|
tree_function_versioning (node->decl, first_clone->decl,
|
|
NULL, NULL, true, NULL, NULL);
|
|
|
|
/* The function will be short lived and removed after we inline all the clones,
|
|
but make it internal so we won't confuse ourself. */
|
|
DECL_EXTERNAL (first_clone->decl) = 0;
|
|
TREE_PUBLIC (first_clone->decl) = 0;
|
|
DECL_COMDAT (first_clone->decl) = 0;
|
|
first_clone->ipa_transforms_to_apply.release ();
|
|
|
|
/* When doing recursive inlining, the clone may become unnecessary.
|
|
This is possible i.e. in the case when the recursive function is proved to be
|
|
non-throwing and the recursion happens only in the EH landing pad.
|
|
We cannot remove the clone until we are done with saving the body.
|
|
Remove it now. */
|
|
if (!first_clone->callers)
|
|
{
|
|
first_clone->remove_symbol_and_inline_clones ();
|
|
first_clone = NULL;
|
|
}
|
|
else if (flag_checking)
|
|
first_clone->verify ();
|
|
|
|
return first_clone;
|
|
}
|
|
|
|
/* Return true when function body of DECL still needs to be kept around
|
|
for later re-use. */
|
|
static bool
|
|
preserve_function_body_p (struct cgraph_node *node)
|
|
{
|
|
gcc_assert (symtab->global_info_ready);
|
|
gcc_assert (!node->alias && !node->thunk.thunk_p);
|
|
|
|
/* Look if there is any non-thunk clone around. */
|
|
for (node = node->clones; node; node = node->next_sibling_clone)
|
|
if (!node->thunk.thunk_p)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Apply inline plan to function. */
|
|
|
|
unsigned int
|
|
inline_transform (struct cgraph_node *node)
|
|
{
|
|
unsigned int todo = 0;
|
|
struct cgraph_edge *e, *next;
|
|
bool has_inline = false;
|
|
|
|
/* FIXME: Currently the pass manager is adding inline transform more than
|
|
once to some clones. This needs revisiting after WPA cleanups. */
|
|
if (cfun->after_inlining)
|
|
return 0;
|
|
|
|
/* We might need the body of this function so that we can expand
|
|
it inline somewhere else. */
|
|
if (preserve_function_body_p (node))
|
|
save_inline_function_body (node);
|
|
|
|
profile_count num = node->count;
|
|
profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
|
|
bool scale = num.initialized_p () && !(num == den);
|
|
if (scale)
|
|
{
|
|
profile_count::adjust_for_ipa_scaling (&num, &den);
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "Applying count scale ");
|
|
num.dump (dump_file);
|
|
fprintf (dump_file, "/");
|
|
den.dump (dump_file);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
basic_block bb;
|
|
cfun->cfg->count_max = profile_count::uninitialized ();
|
|
FOR_ALL_BB_FN (bb, cfun)
|
|
{
|
|
bb->count = bb->count.apply_scale (num, den);
|
|
cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
|
|
}
|
|
ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
|
|
}
|
|
|
|
for (e = node->callees; e; e = next)
|
|
{
|
|
if (!e->inline_failed)
|
|
has_inline = true;
|
|
next = e->next_callee;
|
|
cgraph_edge::redirect_call_stmt_to_callee (e);
|
|
}
|
|
node->remove_all_references ();
|
|
|
|
timevar_push (TV_INTEGRATION);
|
|
if (node->callees && (opt_for_fn (node->decl, optimize) || has_inline))
|
|
{
|
|
todo = optimize_inline_calls (current_function_decl);
|
|
}
|
|
timevar_pop (TV_INTEGRATION);
|
|
|
|
cfun->always_inline_functions_inlined = true;
|
|
cfun->after_inlining = true;
|
|
todo |= execute_fixup_cfg ();
|
|
|
|
if (!(todo & TODO_update_ssa_any))
|
|
/* Redirecting edges might lead to a need for vops to be recomputed. */
|
|
todo |= TODO_update_ssa_only_virtuals;
|
|
|
|
return todo;
|
|
}
|