ddf41e9db6
2014-01-17 Tim Shen <timshen91@gmail.com> * include/bits/regex_automaton.tcc (_StateSeq<>::_M_clone()): Do not use std::map. * include/bits/regex_automaton.h: Do not use std::set. * include/bits/regex_compiler.h (_BracketMatcher<>::_M_add_char(), _BracketMatcher<>::_M_add_collating_element(), _BracketMatcher<>::_M_add_equivalence_class(), _BracketMatcher<>::_M_make_range()): Likewise. * include/bits/regex_compiler.tcc (_BracketMatcher<>::_M_apply()): Likewise. * include/bits/regex_executor.h: Do not use std::queue. * include/bits/regex_executor.tcc (_Executor<>::_M_main(), _Executor<>::_M_dfs()): Likewise. * include/std/regex: Remove <map>, <set> and <queue>. 2014-01-17 Tim Shen <timshen91@gmail.com> * include/bits/regex.h (__compile_nfa<>(), basic_regex<>::basic_regex(), basic_regex<>::assign()): Change __compile_nfa to accept const _CharT* only. * include/bits/regex_compiler.h: Change _Compiler's template argument from <_FwdIter, _TraitsT> to <_TraitsT>. * include/bits/regex_compiler.tcc: Likewise. 2014-01-17 Tim Shen <timshen91@gmail.com> * include/bits/regex_compiler.h: Change _ScannerT into char-type templated. * include/bits/regex_scanner.h (_Scanner<>::_Scanner()): Separate _ScannerBase from _Scanner; Change _Scanner's template argument from _FwdIter to _CharT. Avoid use of std::map and std::set by using arrays instead. * include/bits/regex_scanner.tcc (_Scanner<>::_Scanner(), _Scanner<>::_M_scan_normal(), _Scanner<>::_M_eat_escape_ecma(), _Scanner<>::_M_eat_escape_posix(), _Scanner<>::_M_eat_escape_awk()): Likewise. * include/std/regex: Add <cstring> for using strchr. 2014-01-17 Tim Shen <timshen91@gmail.com> * bits/regex_automaton.tcc: Indentation fix. * bits/regex_compiler.h (__compile_nfa<>(), _Compiler<>, _RegexTranslator<> _AnyMatcher<>, _CharMatcher<>, _BracketMatcher<>): Add bool option template parameters and specializations to make matching more efficient and space saving. * bits/regex_compiler.tcc: Likewise. From-SVN: r206690
374 lines
11 KiB
C++
374 lines
11 KiB
C++
// class template regex -*- C++ -*-
|
|
|
|
// Copyright (C) 2013-2014 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 3, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
|
// permissions described in the GCC Runtime Library Exception, version
|
|
// 3.1, as published by the Free Software Foundation.
|
|
|
|
// You should have received a copy of the GNU General Public License and
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
// <http://www.gnu.org/licenses/>.
|
|
|
|
/**
|
|
* @file bits/regex_executor.tcc
|
|
* This is an internal header file, included by other library headers.
|
|
* Do not attempt to use it directly. @headername{regex}
|
|
*/
|
|
|
|
namespace std _GLIBCXX_VISIBILITY(default)
|
|
{
|
|
namespace __detail
|
|
{
|
|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
|
|
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_search()
|
|
{
|
|
if (_M_flags & regex_constants::match_continuous)
|
|
return _M_search_from_first();
|
|
auto __cur = _M_begin;
|
|
do
|
|
{
|
|
_M_current = __cur;
|
|
if (_M_main<false>())
|
|
return true;
|
|
}
|
|
// Continue when __cur == _M_end
|
|
while (__cur++ != _M_end);
|
|
return false;
|
|
}
|
|
|
|
// This function operates in different modes, DFS mode or BFS mode, indicated
|
|
// by template parameter __dfs_mode. See _M_main for details.
|
|
//
|
|
// ------------------------------------------------------------
|
|
//
|
|
// DFS mode:
|
|
//
|
|
// It applies a Depth-First-Search (aka backtracking) on given NFA and input
|
|
// string.
|
|
// At the very beginning the executor stands in the start state, then it tries
|
|
// every possible state transition in current state recursively. Some state
|
|
// transitions consume input string, say, a single-char-matcher or a
|
|
// back-reference matcher; some don't, like assertion or other anchor nodes.
|
|
// When the input is exhausted and/or the current state is an accepting state,
|
|
// the whole executor returns true.
|
|
//
|
|
// TODO: This approach is exponentially slow for certain input.
|
|
// Try to compile the NFA to a DFA.
|
|
//
|
|
// Time complexity: o(match_length), O(2^(_M_nfa.size()))
|
|
// Space complexity: \theta(match_results.size() + match_length)
|
|
//
|
|
// ------------------------------------------------------------
|
|
//
|
|
// BFS mode:
|
|
//
|
|
// Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
|
|
// explained this algorithm clearly.
|
|
//
|
|
// It first computes epsilon closure for every state that's still matching,
|
|
// using the same DFS algorithm, but doesn't reenter states (set true in
|
|
// _M_visited), nor follows _S_opcode_match.
|
|
//
|
|
// Then apply DFS using every _S_opcode_match (in _M_match_queue) as the start
|
|
// state.
|
|
//
|
|
// It significantly reduces potential duplicate states, so has a better
|
|
// upper bound; but it requires more overhead.
|
|
//
|
|
// Time complexity: o(match_length * match_results.size())
|
|
// O(match_length * _M_nfa.size() * match_results.size())
|
|
// Space complexity: o(_M_nfa.size() + match_results.size())
|
|
// O(_M_nfa.size() * match_results.size())
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
template<bool __match_mode>
|
|
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_main()
|
|
{
|
|
if (__dfs_mode)
|
|
{
|
|
_M_has_sol = false;
|
|
_M_cur_results = _M_results;
|
|
_M_dfs<__match_mode>(_M_start_state);
|
|
return _M_has_sol;
|
|
}
|
|
else
|
|
{
|
|
_M_match_queue->push_back(make_pair(_M_start_state, _M_results));
|
|
bool __ret = false;
|
|
while (1)
|
|
{
|
|
_M_has_sol = false;
|
|
if (_M_match_queue->empty())
|
|
break;
|
|
_M_visited->assign(_M_visited->size(), false);
|
|
auto _M_old_queue = std::move(*_M_match_queue);
|
|
for (auto __task : _M_old_queue)
|
|
{
|
|
_M_cur_results = __task.second;
|
|
_M_dfs<__match_mode>(__task.first);
|
|
}
|
|
if (!__match_mode)
|
|
__ret |= _M_has_sol;
|
|
if (_M_current == _M_end)
|
|
break;
|
|
++_M_current;
|
|
}
|
|
if (__match_mode)
|
|
__ret = _M_has_sol;
|
|
return __ret;
|
|
}
|
|
}
|
|
|
|
// Return whether now match the given sub-NFA.
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_lookahead(_State<_TraitsT> __state)
|
|
{
|
|
_ResultsVec __what(_M_cur_results.size());
|
|
auto __sub = std::unique_ptr<_Executor>(new _Executor(_M_current,
|
|
_M_end,
|
|
__what,
|
|
_M_re,
|
|
_M_flags));
|
|
__sub->_M_start_state = __state._M_alt;
|
|
if (__sub->_M_search_from_first())
|
|
{
|
|
for (size_t __i = 0; __i < __what.size(); __i++)
|
|
if (__what[__i].matched)
|
|
_M_cur_results[__i] = __what[__i];
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// TODO: Use a function vector to dispatch, instead of using switch-case.
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
template<bool __match_mode>
|
|
void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_dfs(_StateIdT __i)
|
|
{
|
|
if (!__dfs_mode)
|
|
{
|
|
if ((*_M_visited)[__i])
|
|
return;
|
|
(*_M_visited)[__i] = true;
|
|
}
|
|
|
|
const auto& __state = _M_nfa[__i];
|
|
// Every change on _M_cur_results and _M_current will be rolled back after
|
|
// finishing the recursion step.
|
|
switch (__state._M_opcode)
|
|
{
|
|
// _M_alt branch is "match once more", while _M_next is "get me out
|
|
// of this quantifier". Executing _M_next first or _M_alt first don't
|
|
// mean the same thing, and we need to choose the correct order under
|
|
// given greedy mode.
|
|
case _S_opcode_alternative:
|
|
// Greedy.
|
|
if (!__state._M_neg)
|
|
{
|
|
// "Once more" is preferred in greedy mode.
|
|
_M_dfs<__match_mode>(__state._M_alt);
|
|
// If it's DFS executor and already accepted, we're done.
|
|
if (!__dfs_mode || !_M_has_sol)
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
}
|
|
else // Non-greedy mode
|
|
{
|
|
if (__dfs_mode)
|
|
{
|
|
// vice-versa.
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
if (!_M_has_sol)
|
|
_M_dfs<__match_mode>(__state._M_alt);
|
|
}
|
|
else
|
|
{
|
|
// DON'T attempt anything, because there's already another
|
|
// state with higher priority accepted. This state cannot be
|
|
// better by attempting its next node.
|
|
if (!_M_has_sol)
|
|
{
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
// DON'T attempt anything if it's already accepted. An
|
|
// accepted state *must* be better than a solution that
|
|
// matches a non-greedy quantifier one more time.
|
|
if (!_M_has_sol)
|
|
_M_dfs<__match_mode>(__state._M_alt);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case _S_opcode_subexpr_begin:
|
|
// If there's nothing changed since last visit, do NOT continue.
|
|
// This prevents the executor from get into infinite loop when using
|
|
// "()*" to match "".
|
|
if (!_M_cur_results[__state._M_subexpr].matched
|
|
|| _M_cur_results[__state._M_subexpr].first != _M_current)
|
|
{
|
|
auto& __res = _M_cur_results[__state._M_subexpr];
|
|
auto __back = __res.first;
|
|
__res.first = _M_current;
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
__res.first = __back;
|
|
}
|
|
break;
|
|
case _S_opcode_subexpr_end:
|
|
if (_M_cur_results[__state._M_subexpr].second != _M_current
|
|
|| _M_cur_results[__state._M_subexpr].matched != true)
|
|
{
|
|
auto& __res = _M_cur_results[__state._M_subexpr];
|
|
auto __back = __res;
|
|
__res.second = _M_current;
|
|
__res.matched = true;
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
__res = __back;
|
|
}
|
|
else
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
break;
|
|
case _S_opcode_line_begin_assertion:
|
|
if (_M_at_begin())
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
break;
|
|
case _S_opcode_line_end_assertion:
|
|
if (_M_at_end())
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
break;
|
|
case _S_opcode_word_boundary:
|
|
if (_M_word_boundary(__state) == !__state._M_neg)
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
break;
|
|
// Here __state._M_alt offers a single start node for a sub-NFA.
|
|
// We recursively invoke our algorithm to match the sub-NFA.
|
|
case _S_opcode_subexpr_lookahead:
|
|
if (_M_lookahead(__state) == !__state._M_neg)
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
break;
|
|
case _S_opcode_match:
|
|
if (__dfs_mode)
|
|
{
|
|
if (_M_current != _M_end && __state._M_matches(*_M_current))
|
|
{
|
|
++_M_current;
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
--_M_current;
|
|
}
|
|
}
|
|
else
|
|
if (__state._M_matches(*_M_current))
|
|
_M_match_queue->push_back(make_pair(__state._M_next,
|
|
_M_cur_results));
|
|
break;
|
|
// First fetch the matched result from _M_cur_results as __submatch;
|
|
// then compare it with
|
|
// (_M_current, _M_current + (__submatch.second - __submatch.first)).
|
|
// If matched, keep going; else just return and try another state.
|
|
case _S_opcode_backref:
|
|
{
|
|
_GLIBCXX_DEBUG_ASSERT(__dfs_mode);
|
|
auto& __submatch = _M_cur_results[__state._M_backref_index];
|
|
if (!__submatch.matched)
|
|
break;
|
|
auto __last = _M_current;
|
|
for (auto __tmp = __submatch.first;
|
|
__last != _M_end && __tmp != __submatch.second;
|
|
++__tmp)
|
|
++__last;
|
|
if (_M_re._M_traits.transform(__submatch.first,
|
|
__submatch.second)
|
|
== _M_re._M_traits.transform(_M_current, __last))
|
|
{
|
|
if (__last != _M_current)
|
|
{
|
|
auto __backup = _M_current;
|
|
_M_current = __last;
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
_M_current = __backup;
|
|
}
|
|
else
|
|
_M_dfs<__match_mode>(__state._M_next);
|
|
}
|
|
}
|
|
break;
|
|
case _S_opcode_accept:
|
|
if (__dfs_mode)
|
|
{
|
|
_GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
|
|
if (__match_mode)
|
|
_M_has_sol = _M_current == _M_end;
|
|
else
|
|
_M_has_sol = true;
|
|
if (_M_current == _M_begin
|
|
&& (_M_flags & regex_constants::match_not_null))
|
|
_M_has_sol = false;
|
|
if (_M_has_sol)
|
|
_M_results = _M_cur_results;
|
|
}
|
|
else
|
|
{
|
|
if (_M_current == _M_begin
|
|
&& (_M_flags & regex_constants::match_not_null))
|
|
break;
|
|
if (!__match_mode || _M_current == _M_end)
|
|
if (!_M_has_sol)
|
|
{
|
|
_M_has_sol = true;
|
|
_M_results = _M_cur_results;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
_GLIBCXX_DEBUG_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
// Return whether now is at some word boundary.
|
|
template<typename _BiIter, typename _Alloc, typename _TraitsT,
|
|
bool __dfs_mode>
|
|
bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
|
|
_M_word_boundary(_State<_TraitsT> __state) const
|
|
{
|
|
// By definition.
|
|
bool __ans = false;
|
|
auto __pre = _M_current;
|
|
--__pre;
|
|
if (!(_M_at_begin() && _M_at_end()))
|
|
{
|
|
if (_M_at_begin())
|
|
__ans = _M_is_word(*_M_current)
|
|
&& !(_M_flags & regex_constants::match_not_bow);
|
|
else if (_M_at_end())
|
|
__ans = _M_is_word(*__pre)
|
|
&& !(_M_flags & regex_constants::match_not_eow);
|
|
else
|
|
__ans = _M_is_word(*_M_current)
|
|
!= _M_is_word(*__pre);
|
|
}
|
|
return __ans;
|
|
}
|
|
|
|
_GLIBCXX_END_NAMESPACE_VERSION
|
|
} // namespace __detail
|
|
} // namespace
|