Tobias Burnus f0c2df63c6 re PR fortran/46625 (libquadmath: Mangle internal symbols; rename __float128 <-> string functions)
2010-12-13  Tobias Burnus  <burnus@net-b.de>

        PR fortran/46625
        * gdtoa/gdtoaimp.h: Mangle internal functions by
        prefixing them with __quadmath. Don't use gdtoa's strcp(y).
        * gdtoa/g_Qfmt.c (g_Qfmt): Use strcpy instead of strcp.
        * gdtoa/misc.c (strcpy): Renamed from strcp and only use
        if NO_STRING_H is set.
        * quadmath-imp.h (__quadmath_rem_pio2q,
        * __quadmath_kernel_sincosq
        __quadmath_kernel_sinq, __quadmath_kernel_cosq): Added
        __quadmath prefix to internal functions.
        * math/cosq.c (cosq): Ditto.
        * math/sinq.c (cosq): Ditto.
        * math/tanq.c (tanq,__quadmath_kernel_tanq): Ditto.
        * math/rem_pio2q.c (rem_pio2, __quadmath_kernel_rem_pio2):
        * Ditto.
        * math/sinq_kernel.c (__quadmath_kernel_sinq): Ditto.
        * math/cosq_kernel.c (__quadmath_kernel_cosq): Ditto.

From-SVN: r167768
2010-12-13 20:44:38 +01:00

83 lines
2.1 KiB
C

/* s_sinl.c -- long double version of s_sin.c.
* Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* sinl(x)
* Return sine function of x.
*
* kernel function:
* __kernel_sinl ... sine function on [-pi/4,pi/4]
* __kernel_cosl ... cose function on [-pi/4,pi/4]
* __ieee754_rem_pio2l ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "quadmath-imp.h"
__float128
sinq (__float128 x)
{
__float128 y[2],z=0.0Q;
int64_t n, ix;
/* High word of x. */
GET_FLT128_MSW64(ix,x);
/* |x| ~< pi/4 */
ix &= 0x7fffffffffffffffLL;
if(ix <= 0x3ffe921fb54442d1LL)
return __quadmath_kernel_sinq(x,z,0);
/* sin(Inf or NaN) is NaN */
else if (ix>=0x7fff000000000000LL) {
if (ix == 0x7fff000000000000LL) {
GET_FLT128_LSW64(n,x);
}
return x-x;
}
/* argument reduction needed */
else {
n = __quadmath_rem_pio2q(x,y);
switch(n&3) {
case 0: return __quadmath_kernel_sinq(y[0],y[1],1);
case 1: return __quadmath_kernel_cosq(y[0],y[1]);
case 2: return -__quadmath_kernel_sinq(y[0],y[1],1);
default:
return -__quadmath_kernel_cosq(y[0],y[1]);
}
}
}