ac47786e99
gcc/ * vec.h (FOR_EACH_VEC_ELT): Define. * c-decl.c: Use it. * cfgloop.c: Likewise. * cfgloopmanip.c: Likewise. * cgraph.c: Likewise. * cgraphunit.c: Likewise. * combine.c: Likewise. * config/bfin/bfin.c: Likewise. * config/mips/mips.c: Likewise. * config/rs6000/rs6000.c: Likewise. * dbxout.c: Likewise. * df-scan.c: Likewise. * dominance.c: Likewise. * dse.c: Likewise. * dwarf2out.c: Likewise. * except.c: Likewise. * expr.c: Likewise. * function.c: Likewise. * gcse.c: Likewise. * genattr.c: Likewise. * ggc-common.c: Likewise. * gimplify.c: Likewise. * graphite-blocking.c: Likewise. * graphite-clast-to-gimple.c: Likewise. * graphite-dependences.c: Likewise. * graphite-interchange.c: Likewise. * graphite-poly.c: Likewise. * graphite-scop-detection.c: Likewise. * graphite-sese-to-poly.c: Likewise. * graphite.c: Likewise. * haifa-sched.c: Likewise. * ifcvt.c: Likewise. * implicit-zee.c: Likewise. * ipa-prop.c: Likewise. * ipa-struct-reorg.c: Likewise. * ipa.c: Likewise. * ira-build.c: Likewise. * ira-color.c: Likewise. * ira-emit.c: Likewise. * lambda-code.c: Likewise. * loop-invariant.c: Likewise. * loop-unroll.c: Likewise. * lower-subreg.c: Likewise. * lto-cgraph.c: Likewise. * lto-opts.c: Likewise. * lto-streamer-in.c: Likewise. * lto-streamer-out.c: Likewise. * lto-streamer.c: Likewise. * lto-symtab.c: Likewise. * matrix-reorg.c: Likewise. * opts.c: Likewise. * predict.c: Likewise. * print-tree.c: Likewise. * sdbout.c: Likewise. * sel-sched-dump.c: Likewise. * sel-sched-ir.c: Likewise. * sel-sched.c: Likewise. * sese.c: Likewise. * stor-layout.c: Likewise. * tree-cfg.c: Likewise. * tree-cfgcleanup.c: Likewise. * tree-chrec.c: Likewise. * tree-data-ref.c: Likewise. * tree-emutls.c: Likewise. * tree-inline.c: Likewise. * tree-into-ssa.c: Likewise. * tree-loop-distribution.c: Likewise. * tree-loop-linear.c: Likewise. * tree-mudflap.c: Likewise. * tree-outof-ssa.c: Likewise. * tree-parloops.c: Likewise. * tree-predcom.c: Likewise. * tree-pretty-print.c: Likewise. * tree-scalar-evolution.c: Likewise. * tree-ssa-live.c: Likewise. * tree-ssa-loop-im.c: Likewise. * tree-ssa-loop-ivcanon.c: Likewise. * tree-ssa-loop-ivopts.c: Likewise. * tree-ssa-loop-manip.c: Likewise. * tree-ssa-loop-niter.c: Likewise. * tree-ssa-loop-prefetch.c: Likewise. * tree-ssa-phiprop.c: Likewise. * tree-ssa-pre.c: Likewise. * tree-ssa-reassoc.c: Likewise. * tree-ssa-sccvn.c: Likewise. * tree-ssa-structalias.c: Likewise. * tree-ssa.c: Likewise. * tree-vect-data-refs.c: Likewise. * tree-vect-loop-manip.c: Likewise. * tree-vect-loop.c: Likewise. * tree-vect-patterns.c: Likewise. * tree-vect-slp.c: Likewise. * tree-vect-stmts.c: Likewise. * tree-vrp.c: Likewise. * tree.c: Likewise. * value-prof.c: Likewise. * var-tracking.c: Likewise. * varasm.c: Likewise. * vmsdbgout.c: Likewise. gcc/ada/ * gcc-interface/decl.c: Use FOR_EACH_VEC_ELT. * gcc-interface/trans.c: Likewise. * gcc-interface/utils.c: Likewise. gcc/c-family/ * c-common.c: Use FOR_EACH_VEC_ELT. * c-gimplify.c: Likewise. * c-pragma.c: Likewise. gcc/cp/ * call.c: Use FOR_EACH_VEC_ELT. * class.c: Likewise. * decl.c: Likewise. * decl2.c: Likewise. * error.c: Likewise. * except.c: Likewise. * mangle.c: Likewise. * method.c: Likewise. * name-lookup.c: Likewise. * parser.c: Likewise. * pt.c: Likewise. * repo.c: Likewise. * semantics.c: Likewise. * typeck2.c: Likewise. gcc/fortran/ * trans-openmp.c: Use FOR_EACH_VEC_ELT. gcc/java/ * class.c: Use FOR_EACH_VEC_ELT. * expr.c: Likewise. * jcf-parse.c: Likewise. * resource.c: Likewise. gcc/lto/ * lto.c: Use FOR_EACH_VEC_ELT. From-SVN: r163401
1395 lines
36 KiB
C
1395 lines
36 KiB
C
/* Decompose multiword subregs.
|
||
Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
|
||
Contributed by Richard Henderson <rth@redhat.com>
|
||
Ian Lance Taylor <iant@google.com>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "machmode.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "timevar.h"
|
||
#include "flags.h"
|
||
#include "insn-config.h"
|
||
#include "obstack.h"
|
||
#include "basic-block.h"
|
||
#include "recog.h"
|
||
#include "bitmap.h"
|
||
#include "dce.h"
|
||
#include "expr.h"
|
||
#include "except.h"
|
||
#include "regs.h"
|
||
#include "tree-pass.h"
|
||
#include "df.h"
|
||
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
# undef STACK_GROWS_DOWNWARD
|
||
# define STACK_GROWS_DOWNWARD 1
|
||
#else
|
||
# define STACK_GROWS_DOWNWARD 0
|
||
#endif
|
||
|
||
DEF_VEC_P (bitmap);
|
||
DEF_VEC_ALLOC_P (bitmap,heap);
|
||
|
||
/* Decompose multi-word pseudo-registers into individual
|
||
pseudo-registers when possible. This is possible when all the uses
|
||
of a multi-word register are via SUBREG, or are copies of the
|
||
register to another location. Breaking apart the register permits
|
||
more CSE and permits better register allocation. */
|
||
|
||
/* Bit N in this bitmap is set if regno N is used in a context in
|
||
which we can decompose it. */
|
||
static bitmap decomposable_context;
|
||
|
||
/* Bit N in this bitmap is set if regno N is used in a context in
|
||
which it can not be decomposed. */
|
||
static bitmap non_decomposable_context;
|
||
|
||
/* Bit N in this bitmap is set if regno N is used in a subreg
|
||
which changes the mode but not the size. This typically happens
|
||
when the register accessed as a floating-point value; we want to
|
||
avoid generating accesses to its subwords in integer modes. */
|
||
static bitmap subreg_context;
|
||
|
||
/* Bit N in the bitmap in element M of this array is set if there is a
|
||
copy from reg M to reg N. */
|
||
static VEC(bitmap,heap) *reg_copy_graph;
|
||
|
||
/* Return whether X is a simple object which we can take a word_mode
|
||
subreg of. */
|
||
|
||
static bool
|
||
simple_move_operand (rtx x)
|
||
{
|
||
if (GET_CODE (x) == SUBREG)
|
||
x = SUBREG_REG (x);
|
||
|
||
if (!OBJECT_P (x))
|
||
return false;
|
||
|
||
if (GET_CODE (x) == LABEL_REF
|
||
|| GET_CODE (x) == SYMBOL_REF
|
||
|| GET_CODE (x) == HIGH
|
||
|| GET_CODE (x) == CONST)
|
||
return false;
|
||
|
||
if (MEM_P (x)
|
||
&& (MEM_VOLATILE_P (x)
|
||
|| mode_dependent_address_p (XEXP (x, 0))))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* If INSN is a single set between two objects, return the single set.
|
||
Such an insn can always be decomposed. INSN should have been
|
||
passed to recog and extract_insn before this is called. */
|
||
|
||
static rtx
|
||
simple_move (rtx insn)
|
||
{
|
||
rtx x;
|
||
rtx set;
|
||
enum machine_mode mode;
|
||
|
||
if (recog_data.n_operands != 2)
|
||
return NULL_RTX;
|
||
|
||
set = single_set (insn);
|
||
if (!set)
|
||
return NULL_RTX;
|
||
|
||
x = SET_DEST (set);
|
||
if (x != recog_data.operand[0] && x != recog_data.operand[1])
|
||
return NULL_RTX;
|
||
if (!simple_move_operand (x))
|
||
return NULL_RTX;
|
||
|
||
x = SET_SRC (set);
|
||
if (x != recog_data.operand[0] && x != recog_data.operand[1])
|
||
return NULL_RTX;
|
||
/* For the src we can handle ASM_OPERANDS, and it is beneficial for
|
||
things like x86 rdtsc which returns a DImode value. */
|
||
if (GET_CODE (x) != ASM_OPERANDS
|
||
&& !simple_move_operand (x))
|
||
return NULL_RTX;
|
||
|
||
/* We try to decompose in integer modes, to avoid generating
|
||
inefficient code copying between integer and floating point
|
||
registers. That means that we can't decompose if this is a
|
||
non-integer mode for which there is no integer mode of the same
|
||
size. */
|
||
mode = GET_MODE (SET_SRC (set));
|
||
if (!SCALAR_INT_MODE_P (mode)
|
||
&& (mode_for_size (GET_MODE_SIZE (mode) * BITS_PER_UNIT, MODE_INT, 0)
|
||
== BLKmode))
|
||
return NULL_RTX;
|
||
|
||
/* Reject PARTIAL_INT modes. They are used for processor specific
|
||
purposes and it's probably best not to tamper with them. */
|
||
if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
|
||
return NULL_RTX;
|
||
|
||
return set;
|
||
}
|
||
|
||
/* If SET is a copy from one multi-word pseudo-register to another,
|
||
record that in reg_copy_graph. Return whether it is such a
|
||
copy. */
|
||
|
||
static bool
|
||
find_pseudo_copy (rtx set)
|
||
{
|
||
rtx dest = SET_DEST (set);
|
||
rtx src = SET_SRC (set);
|
||
unsigned int rd, rs;
|
||
bitmap b;
|
||
|
||
if (!REG_P (dest) || !REG_P (src))
|
||
return false;
|
||
|
||
rd = REGNO (dest);
|
||
rs = REGNO (src);
|
||
if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
|
||
return false;
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
|
||
return false;
|
||
|
||
b = VEC_index (bitmap, reg_copy_graph, rs);
|
||
if (b == NULL)
|
||
{
|
||
b = BITMAP_ALLOC (NULL);
|
||
VEC_replace (bitmap, reg_copy_graph, rs, b);
|
||
}
|
||
|
||
bitmap_set_bit (b, rd);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
|
||
where they are copied to another register, add the register to
|
||
which they are copied to DECOMPOSABLE_CONTEXT. Use
|
||
NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
|
||
copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
|
||
|
||
static void
|
||
propagate_pseudo_copies (void)
|
||
{
|
||
bitmap queue, propagate;
|
||
|
||
queue = BITMAP_ALLOC (NULL);
|
||
propagate = BITMAP_ALLOC (NULL);
|
||
|
||
bitmap_copy (queue, decomposable_context);
|
||
do
|
||
{
|
||
bitmap_iterator iter;
|
||
unsigned int i;
|
||
|
||
bitmap_clear (propagate);
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
|
||
{
|
||
bitmap b = VEC_index (bitmap, reg_copy_graph, i);
|
||
if (b)
|
||
bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
|
||
}
|
||
|
||
bitmap_and_compl (queue, propagate, decomposable_context);
|
||
bitmap_ior_into (decomposable_context, propagate);
|
||
}
|
||
while (!bitmap_empty_p (queue));
|
||
|
||
BITMAP_FREE (queue);
|
||
BITMAP_FREE (propagate);
|
||
}
|
||
|
||
/* A pointer to one of these values is passed to
|
||
find_decomposable_subregs via for_each_rtx. */
|
||
|
||
enum classify_move_insn
|
||
{
|
||
/* Not a simple move from one location to another. */
|
||
NOT_SIMPLE_MOVE,
|
||
/* A simple move from one pseudo-register to another. */
|
||
SIMPLE_PSEUDO_REG_MOVE,
|
||
/* A simple move involving a non-pseudo-register. */
|
||
SIMPLE_MOVE
|
||
};
|
||
|
||
/* This is called via for_each_rtx. If we find a SUBREG which we
|
||
could use to decompose a pseudo-register, set a bit in
|
||
DECOMPOSABLE_CONTEXT. If we find an unadorned register which is
|
||
not a simple pseudo-register copy, DATA will point at the type of
|
||
move, and we set a bit in DECOMPOSABLE_CONTEXT or
|
||
NON_DECOMPOSABLE_CONTEXT as appropriate. */
|
||
|
||
static int
|
||
find_decomposable_subregs (rtx *px, void *data)
|
||
{
|
||
enum classify_move_insn *pcmi = (enum classify_move_insn *) data;
|
||
rtx x = *px;
|
||
|
||
if (x == NULL_RTX)
|
||
return 0;
|
||
|
||
if (GET_CODE (x) == SUBREG)
|
||
{
|
||
rtx inner = SUBREG_REG (x);
|
||
unsigned int regno, outer_size, inner_size, outer_words, inner_words;
|
||
|
||
if (!REG_P (inner))
|
||
return 0;
|
||
|
||
regno = REGNO (inner);
|
||
if (HARD_REGISTER_NUM_P (regno))
|
||
return -1;
|
||
|
||
outer_size = GET_MODE_SIZE (GET_MODE (x));
|
||
inner_size = GET_MODE_SIZE (GET_MODE (inner));
|
||
outer_words = (outer_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
inner_words = (inner_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
|
||
/* We only try to decompose single word subregs of multi-word
|
||
registers. When we find one, we return -1 to avoid iterating
|
||
over the inner register.
|
||
|
||
??? This doesn't allow, e.g., DImode subregs of TImode values
|
||
on 32-bit targets. We would need to record the way the
|
||
pseudo-register was used, and only decompose if all the uses
|
||
were the same number and size of pieces. Hopefully this
|
||
doesn't happen much. */
|
||
|
||
if (outer_words == 1 && inner_words > 1)
|
||
{
|
||
bitmap_set_bit (decomposable_context, regno);
|
||
return -1;
|
||
}
|
||
|
||
/* If this is a cast from one mode to another, where the modes
|
||
have the same size, and they are not tieable, then mark this
|
||
register as non-decomposable. If we decompose it we are
|
||
likely to mess up whatever the backend is trying to do. */
|
||
if (outer_words > 1
|
||
&& outer_size == inner_size
|
||
&& !MODES_TIEABLE_P (GET_MODE (x), GET_MODE (inner)))
|
||
{
|
||
bitmap_set_bit (non_decomposable_context, regno);
|
||
bitmap_set_bit (subreg_context, regno);
|
||
return -1;
|
||
}
|
||
}
|
||
else if (REG_P (x))
|
||
{
|
||
unsigned int regno;
|
||
|
||
/* We will see an outer SUBREG before we see the inner REG, so
|
||
when we see a plain REG here it means a direct reference to
|
||
the register.
|
||
|
||
If this is not a simple copy from one location to another,
|
||
then we can not decompose this register. If this is a simple
|
||
copy from one pseudo-register to another, and the mode is right
|
||
then we mark the register as decomposable.
|
||
Otherwise we don't say anything about this register --
|
||
it could be decomposed, but whether that would be
|
||
profitable depends upon how it is used elsewhere.
|
||
|
||
We only set bits in the bitmap for multi-word
|
||
pseudo-registers, since those are the only ones we care about
|
||
and it keeps the size of the bitmaps down. */
|
||
|
||
regno = REGNO (x);
|
||
if (!HARD_REGISTER_NUM_P (regno)
|
||
&& GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
|
||
{
|
||
switch (*pcmi)
|
||
{
|
||
case NOT_SIMPLE_MOVE:
|
||
bitmap_set_bit (non_decomposable_context, regno);
|
||
break;
|
||
case SIMPLE_PSEUDO_REG_MOVE:
|
||
if (MODES_TIEABLE_P (GET_MODE (x), word_mode))
|
||
bitmap_set_bit (decomposable_context, regno);
|
||
break;
|
||
case SIMPLE_MOVE:
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
else if (MEM_P (x))
|
||
{
|
||
enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
|
||
|
||
/* Any registers used in a MEM do not participate in a
|
||
SIMPLE_MOVE or SIMPLE_PSEUDO_REG_MOVE. Do our own recursion
|
||
here, and return -1 to block the parent's recursion. */
|
||
for_each_rtx (&XEXP (x, 0), find_decomposable_subregs, &cmi_mem);
|
||
return -1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Decompose REGNO into word-sized components. We smash the REG node
|
||
in place. This ensures that (1) something goes wrong quickly if we
|
||
fail to make some replacement, and (2) the debug information inside
|
||
the symbol table is automatically kept up to date. */
|
||
|
||
static void
|
||
decompose_register (unsigned int regno)
|
||
{
|
||
rtx reg;
|
||
unsigned int words, i;
|
||
rtvec v;
|
||
|
||
reg = regno_reg_rtx[regno];
|
||
|
||
regno_reg_rtx[regno] = NULL_RTX;
|
||
|
||
words = GET_MODE_SIZE (GET_MODE (reg));
|
||
words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
|
||
v = rtvec_alloc (words);
|
||
for (i = 0; i < words; ++i)
|
||
RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
|
||
|
||
PUT_CODE (reg, CONCATN);
|
||
XVEC (reg, 0) = v;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "; Splitting reg %u ->", regno);
|
||
for (i = 0; i < words; ++i)
|
||
fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
|
||
fputc ('\n', dump_file);
|
||
}
|
||
}
|
||
|
||
/* Get a SUBREG of a CONCATN. */
|
||
|
||
static rtx
|
||
simplify_subreg_concatn (enum machine_mode outermode, rtx op,
|
||
unsigned int byte)
|
||
{
|
||
unsigned int inner_size;
|
||
enum machine_mode innermode;
|
||
rtx part;
|
||
unsigned int final_offset;
|
||
|
||
gcc_assert (GET_CODE (op) == CONCATN);
|
||
gcc_assert (byte % GET_MODE_SIZE (outermode) == 0);
|
||
|
||
innermode = GET_MODE (op);
|
||
gcc_assert (byte < GET_MODE_SIZE (innermode));
|
||
gcc_assert (GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (innermode));
|
||
|
||
inner_size = GET_MODE_SIZE (innermode) / XVECLEN (op, 0);
|
||
part = XVECEXP (op, 0, byte / inner_size);
|
||
final_offset = byte % inner_size;
|
||
if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
|
||
return NULL_RTX;
|
||
|
||
return simplify_gen_subreg (outermode, part, GET_MODE (part), final_offset);
|
||
}
|
||
|
||
/* Wrapper around simplify_gen_subreg which handles CONCATN. */
|
||
|
||
static rtx
|
||
simplify_gen_subreg_concatn (enum machine_mode outermode, rtx op,
|
||
enum machine_mode innermode, unsigned int byte)
|
||
{
|
||
rtx ret;
|
||
|
||
/* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
|
||
If OP is a SUBREG of a CONCATN, then it must be a simple mode
|
||
change with the same size and offset 0, or it must extract a
|
||
part. We shouldn't see anything else here. */
|
||
if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
|
||
{
|
||
rtx op2;
|
||
|
||
if ((GET_MODE_SIZE (GET_MODE (op))
|
||
== GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
|
||
&& SUBREG_BYTE (op) == 0)
|
||
return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
|
||
GET_MODE (SUBREG_REG (op)), byte);
|
||
|
||
op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
|
||
SUBREG_BYTE (op));
|
||
if (op2 == NULL_RTX)
|
||
{
|
||
/* We don't handle paradoxical subregs here. */
|
||
gcc_assert (GET_MODE_SIZE (outermode)
|
||
<= GET_MODE_SIZE (GET_MODE (op)));
|
||
gcc_assert (GET_MODE_SIZE (GET_MODE (op))
|
||
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))));
|
||
op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
|
||
byte + SUBREG_BYTE (op));
|
||
gcc_assert (op2 != NULL_RTX);
|
||
return op2;
|
||
}
|
||
|
||
op = op2;
|
||
gcc_assert (op != NULL_RTX);
|
||
gcc_assert (innermode == GET_MODE (op));
|
||
}
|
||
|
||
if (GET_CODE (op) == CONCATN)
|
||
return simplify_subreg_concatn (outermode, op, byte);
|
||
|
||
ret = simplify_gen_subreg (outermode, op, innermode, byte);
|
||
|
||
/* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
|
||
resolve_simple_move will ask for the high part of the paradoxical
|
||
subreg, which does not have a value. Just return a zero. */
|
||
if (ret == NULL_RTX
|
||
&& GET_CODE (op) == SUBREG
|
||
&& SUBREG_BYTE (op) == 0
|
||
&& (GET_MODE_SIZE (innermode)
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))))
|
||
return CONST0_RTX (outermode);
|
||
|
||
gcc_assert (ret != NULL_RTX);
|
||
return ret;
|
||
}
|
||
|
||
/* Return whether we should resolve X into the registers into which it
|
||
was decomposed. */
|
||
|
||
static bool
|
||
resolve_reg_p (rtx x)
|
||
{
|
||
return GET_CODE (x) == CONCATN;
|
||
}
|
||
|
||
/* Return whether X is a SUBREG of a register which we need to
|
||
resolve. */
|
||
|
||
static bool
|
||
resolve_subreg_p (rtx x)
|
||
{
|
||
if (GET_CODE (x) != SUBREG)
|
||
return false;
|
||
return resolve_reg_p (SUBREG_REG (x));
|
||
}
|
||
|
||
/* This is called via for_each_rtx. Look for SUBREGs which need to be
|
||
decomposed. */
|
||
|
||
static int
|
||
resolve_subreg_use (rtx *px, void *data)
|
||
{
|
||
rtx insn = (rtx) data;
|
||
rtx x = *px;
|
||
|
||
if (x == NULL_RTX)
|
||
return 0;
|
||
|
||
if (resolve_subreg_p (x))
|
||
{
|
||
x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
|
||
SUBREG_BYTE (x));
|
||
|
||
/* It is possible for a note to contain a reference which we can
|
||
decompose. In this case, return 1 to the caller to indicate
|
||
that the note must be removed. */
|
||
if (!x)
|
||
{
|
||
gcc_assert (!insn);
|
||
return 1;
|
||
}
|
||
|
||
validate_change (insn, px, x, 1);
|
||
return -1;
|
||
}
|
||
|
||
if (resolve_reg_p (x))
|
||
{
|
||
/* Return 1 to the caller to indicate that we found a direct
|
||
reference to a register which is being decomposed. This can
|
||
happen inside notes, multiword shift or zero-extend
|
||
instructions. */
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This is called via for_each_rtx. Look for SUBREGs which can be
|
||
decomposed and decomposed REGs that need copying. */
|
||
|
||
static int
|
||
adjust_decomposed_uses (rtx *px, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
rtx x = *px;
|
||
|
||
if (x == NULL_RTX)
|
||
return 0;
|
||
|
||
if (resolve_subreg_p (x))
|
||
{
|
||
x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
|
||
SUBREG_BYTE (x));
|
||
|
||
if (x)
|
||
*px = x;
|
||
else
|
||
x = copy_rtx (*px);
|
||
}
|
||
|
||
if (resolve_reg_p (x))
|
||
*px = copy_rtx (x);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Resolve any decomposed registers which appear in register notes on
|
||
INSN. */
|
||
|
||
static void
|
||
resolve_reg_notes (rtx insn)
|
||
{
|
||
rtx *pnote, note;
|
||
|
||
note = find_reg_equal_equiv_note (insn);
|
||
if (note)
|
||
{
|
||
int old_count = num_validated_changes ();
|
||
if (for_each_rtx (&XEXP (note, 0), resolve_subreg_use, NULL))
|
||
remove_note (insn, note);
|
||
else
|
||
if (old_count != num_validated_changes ())
|
||
df_notes_rescan (insn);
|
||
}
|
||
|
||
pnote = ®_NOTES (insn);
|
||
while (*pnote != NULL_RTX)
|
||
{
|
||
bool del = false;
|
||
|
||
note = *pnote;
|
||
switch (REG_NOTE_KIND (note))
|
||
{
|
||
case REG_DEAD:
|
||
case REG_UNUSED:
|
||
if (resolve_reg_p (XEXP (note, 0)))
|
||
del = true;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (del)
|
||
*pnote = XEXP (note, 1);
|
||
else
|
||
pnote = &XEXP (note, 1);
|
||
}
|
||
}
|
||
|
||
/* Return whether X can be decomposed into subwords. */
|
||
|
||
static bool
|
||
can_decompose_p (rtx x)
|
||
{
|
||
if (REG_P (x))
|
||
{
|
||
unsigned int regno = REGNO (x);
|
||
|
||
if (HARD_REGISTER_NUM_P (regno))
|
||
return (validate_subreg (word_mode, GET_MODE (x), x, UNITS_PER_WORD)
|
||
&& HARD_REGNO_MODE_OK (regno, word_mode));
|
||
else
|
||
return !bitmap_bit_p (subreg_context, regno);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decompose the registers used in a simple move SET within INSN. If
|
||
we don't change anything, return INSN, otherwise return the start
|
||
of the sequence of moves. */
|
||
|
||
static rtx
|
||
resolve_simple_move (rtx set, rtx insn)
|
||
{
|
||
rtx src, dest, real_dest, insns;
|
||
enum machine_mode orig_mode, dest_mode;
|
||
unsigned int words;
|
||
bool pushing;
|
||
|
||
src = SET_SRC (set);
|
||
dest = SET_DEST (set);
|
||
orig_mode = GET_MODE (dest);
|
||
|
||
words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
if (words <= 1)
|
||
return insn;
|
||
|
||
start_sequence ();
|
||
|
||
/* We have to handle copying from a SUBREG of a decomposed reg where
|
||
the SUBREG is larger than word size. Rather than assume that we
|
||
can take a word_mode SUBREG of the destination, we copy to a new
|
||
register and then copy that to the destination. */
|
||
|
||
real_dest = NULL_RTX;
|
||
|
||
if (GET_CODE (src) == SUBREG
|
||
&& resolve_reg_p (SUBREG_REG (src))
|
||
&& (SUBREG_BYTE (src) != 0
|
||
|| (GET_MODE_SIZE (orig_mode)
|
||
!= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
|
||
{
|
||
real_dest = dest;
|
||
dest = gen_reg_rtx (orig_mode);
|
||
if (REG_P (real_dest))
|
||
REG_ATTRS (dest) = REG_ATTRS (real_dest);
|
||
}
|
||
|
||
/* Similarly if we are copying to a SUBREG of a decomposed reg where
|
||
the SUBREG is larger than word size. */
|
||
|
||
if (GET_CODE (dest) == SUBREG
|
||
&& resolve_reg_p (SUBREG_REG (dest))
|
||
&& (SUBREG_BYTE (dest) != 0
|
||
|| (GET_MODE_SIZE (orig_mode)
|
||
!= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
|
||
{
|
||
rtx reg, minsn, smove;
|
||
|
||
reg = gen_reg_rtx (orig_mode);
|
||
minsn = emit_move_insn (reg, src);
|
||
smove = single_set (minsn);
|
||
gcc_assert (smove != NULL_RTX);
|
||
resolve_simple_move (smove, minsn);
|
||
src = reg;
|
||
}
|
||
|
||
/* If we didn't have any big SUBREGS of decomposed registers, and
|
||
neither side of the move is a register we are decomposing, then
|
||
we don't have to do anything here. */
|
||
|
||
if (src == SET_SRC (set)
|
||
&& dest == SET_DEST (set)
|
||
&& !resolve_reg_p (src)
|
||
&& !resolve_subreg_p (src)
|
||
&& !resolve_reg_p (dest)
|
||
&& !resolve_subreg_p (dest))
|
||
{
|
||
end_sequence ();
|
||
return insn;
|
||
}
|
||
|
||
/* It's possible for the code to use a subreg of a decomposed
|
||
register while forming an address. We need to handle that before
|
||
passing the address to emit_move_insn. We pass NULL_RTX as the
|
||
insn parameter to resolve_subreg_use because we can not validate
|
||
the insn yet. */
|
||
if (MEM_P (src) || MEM_P (dest))
|
||
{
|
||
int acg;
|
||
|
||
if (MEM_P (src))
|
||
for_each_rtx (&XEXP (src, 0), resolve_subreg_use, NULL_RTX);
|
||
if (MEM_P (dest))
|
||
for_each_rtx (&XEXP (dest, 0), resolve_subreg_use, NULL_RTX);
|
||
acg = apply_change_group ();
|
||
gcc_assert (acg);
|
||
}
|
||
|
||
/* If SRC is a register which we can't decompose, or has side
|
||
effects, we need to move via a temporary register. */
|
||
|
||
if (!can_decompose_p (src)
|
||
|| side_effects_p (src)
|
||
|| GET_CODE (src) == ASM_OPERANDS)
|
||
{
|
||
rtx reg;
|
||
|
||
reg = gen_reg_rtx (orig_mode);
|
||
emit_move_insn (reg, src);
|
||
src = reg;
|
||
}
|
||
|
||
/* If DEST is a register which we can't decompose, or has side
|
||
effects, we need to first move to a temporary register. We
|
||
handle the common case of pushing an operand directly. We also
|
||
go through a temporary register if it holds a floating point
|
||
value. This gives us better code on systems which can't move
|
||
data easily between integer and floating point registers. */
|
||
|
||
dest_mode = orig_mode;
|
||
pushing = push_operand (dest, dest_mode);
|
||
if (!can_decompose_p (dest)
|
||
|| (side_effects_p (dest) && !pushing)
|
||
|| (!SCALAR_INT_MODE_P (dest_mode)
|
||
&& !resolve_reg_p (dest)
|
||
&& !resolve_subreg_p (dest)))
|
||
{
|
||
if (real_dest == NULL_RTX)
|
||
real_dest = dest;
|
||
if (!SCALAR_INT_MODE_P (dest_mode))
|
||
{
|
||
dest_mode = mode_for_size (GET_MODE_SIZE (dest_mode) * BITS_PER_UNIT,
|
||
MODE_INT, 0);
|
||
gcc_assert (dest_mode != BLKmode);
|
||
}
|
||
dest = gen_reg_rtx (dest_mode);
|
||
if (REG_P (real_dest))
|
||
REG_ATTRS (dest) = REG_ATTRS (real_dest);
|
||
}
|
||
|
||
if (pushing)
|
||
{
|
||
unsigned int i, j, jinc;
|
||
|
||
gcc_assert (GET_MODE_SIZE (orig_mode) % UNITS_PER_WORD == 0);
|
||
gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
|
||
gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
|
||
|
||
if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
|
||
{
|
||
j = 0;
|
||
jinc = 1;
|
||
}
|
||
else
|
||
{
|
||
j = words - 1;
|
||
jinc = -1;
|
||
}
|
||
|
||
for (i = 0; i < words; ++i, j += jinc)
|
||
{
|
||
rtx temp;
|
||
|
||
temp = copy_rtx (XEXP (dest, 0));
|
||
temp = adjust_automodify_address_nv (dest, word_mode, temp,
|
||
j * UNITS_PER_WORD);
|
||
emit_move_insn (temp,
|
||
simplify_gen_subreg_concatn (word_mode, src,
|
||
orig_mode,
|
||
j * UNITS_PER_WORD));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
unsigned int i;
|
||
|
||
if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
|
||
emit_clobber (dest);
|
||
|
||
for (i = 0; i < words; ++i)
|
||
emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest,
|
||
dest_mode,
|
||
i * UNITS_PER_WORD),
|
||
simplify_gen_subreg_concatn (word_mode, src,
|
||
orig_mode,
|
||
i * UNITS_PER_WORD));
|
||
}
|
||
|
||
if (real_dest != NULL_RTX)
|
||
{
|
||
rtx mdest, minsn, smove;
|
||
|
||
if (dest_mode == orig_mode)
|
||
mdest = dest;
|
||
else
|
||
mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
|
||
minsn = emit_move_insn (real_dest, mdest);
|
||
|
||
smove = single_set (minsn);
|
||
gcc_assert (smove != NULL_RTX);
|
||
|
||
resolve_simple_move (smove, minsn);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
copy_reg_eh_region_note_forward (insn, insns, NULL_RTX);
|
||
|
||
emit_insn_before (insns, insn);
|
||
|
||
delete_insn (insn);
|
||
|
||
return insns;
|
||
}
|
||
|
||
/* Change a CLOBBER of a decomposed register into a CLOBBER of the
|
||
component registers. Return whether we changed something. */
|
||
|
||
static bool
|
||
resolve_clobber (rtx pat, rtx insn)
|
||
{
|
||
rtx reg;
|
||
enum machine_mode orig_mode;
|
||
unsigned int words, i;
|
||
int ret;
|
||
|
||
reg = XEXP (pat, 0);
|
||
if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
|
||
return false;
|
||
|
||
orig_mode = GET_MODE (reg);
|
||
words = GET_MODE_SIZE (orig_mode);
|
||
words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
|
||
ret = validate_change (NULL_RTX, &XEXP (pat, 0),
|
||
simplify_gen_subreg_concatn (word_mode, reg,
|
||
orig_mode, 0),
|
||
0);
|
||
df_insn_rescan (insn);
|
||
gcc_assert (ret != 0);
|
||
|
||
for (i = words - 1; i > 0; --i)
|
||
{
|
||
rtx x;
|
||
|
||
x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
|
||
i * UNITS_PER_WORD);
|
||
x = gen_rtx_CLOBBER (VOIDmode, x);
|
||
emit_insn_after (x, insn);
|
||
}
|
||
|
||
resolve_reg_notes (insn);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* A USE of a decomposed register is no longer meaningful. Return
|
||
whether we changed something. */
|
||
|
||
static bool
|
||
resolve_use (rtx pat, rtx insn)
|
||
{
|
||
if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
|
||
{
|
||
delete_insn (insn);
|
||
return true;
|
||
}
|
||
|
||
resolve_reg_notes (insn);
|
||
|
||
return false;
|
||
}
|
||
|
||
/* A VAR_LOCATION can be simplified. */
|
||
|
||
static void
|
||
resolve_debug (rtx insn)
|
||
{
|
||
for_each_rtx (&PATTERN (insn), adjust_decomposed_uses, NULL_RTX);
|
||
|
||
df_insn_rescan (insn);
|
||
|
||
resolve_reg_notes (insn);
|
||
}
|
||
|
||
/* Checks if INSN is a decomposable multiword-shift or zero-extend and
|
||
sets the decomposable_context bitmap accordingly. A non-zero value
|
||
is returned if a decomposable insn has been found. */
|
||
|
||
static int
|
||
find_decomposable_shift_zext (rtx insn)
|
||
{
|
||
rtx set;
|
||
rtx op;
|
||
rtx op_operand;
|
||
|
||
set = single_set (insn);
|
||
if (!set)
|
||
return 0;
|
||
|
||
op = SET_SRC (set);
|
||
if (GET_CODE (op) != ASHIFT
|
||
&& GET_CODE (op) != LSHIFTRT
|
||
&& GET_CODE (op) != ZERO_EXTEND)
|
||
return 0;
|
||
|
||
op_operand = XEXP (op, 0);
|
||
if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
|
||
|| HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
|
||
|| HARD_REGISTER_NUM_P (REGNO (op_operand))
|
||
|| !SCALAR_INT_MODE_P (GET_MODE (op)))
|
||
return 0;
|
||
|
||
if (GET_CODE (op) == ZERO_EXTEND)
|
||
{
|
||
if (GET_MODE (op_operand) != word_mode
|
||
|| GET_MODE_BITSIZE (GET_MODE (op)) != 2 * BITS_PER_WORD)
|
||
return 0;
|
||
}
|
||
else /* left or right shift */
|
||
{
|
||
if (!CONST_INT_P (XEXP (op, 1))
|
||
|| INTVAL (XEXP (op, 1)) < BITS_PER_WORD
|
||
|| GET_MODE_BITSIZE (GET_MODE (op_operand)) != 2 * BITS_PER_WORD)
|
||
return 0;
|
||
}
|
||
|
||
bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
|
||
|
||
if (GET_CODE (op) != ZERO_EXTEND)
|
||
bitmap_set_bit (decomposable_context, REGNO (op_operand));
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Decompose a more than word wide shift (in INSN) of a multiword
|
||
pseudo or a multiword zero-extend of a wordmode pseudo into a move
|
||
and 'set to zero' insn. Return a pointer to the new insn when a
|
||
replacement was done. */
|
||
|
||
static rtx
|
||
resolve_shift_zext (rtx insn)
|
||
{
|
||
rtx set;
|
||
rtx op;
|
||
rtx op_operand;
|
||
rtx insns;
|
||
rtx src_reg, dest_reg, dest_zero;
|
||
int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
|
||
|
||
set = single_set (insn);
|
||
if (!set)
|
||
return NULL_RTX;
|
||
|
||
op = SET_SRC (set);
|
||
if (GET_CODE (op) != ASHIFT
|
||
&& GET_CODE (op) != LSHIFTRT
|
||
&& GET_CODE (op) != ZERO_EXTEND)
|
||
return NULL_RTX;
|
||
|
||
op_operand = XEXP (op, 0);
|
||
|
||
if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
|
||
return NULL_RTX;
|
||
|
||
/* src_reg_num is the number of the word mode register which we
|
||
are operating on. For a left shift and a zero_extend on little
|
||
endian machines this is register 0. */
|
||
src_reg_num = GET_CODE (op) == LSHIFTRT ? 1 : 0;
|
||
|
||
if (WORDS_BIG_ENDIAN
|
||
&& GET_MODE_SIZE (GET_MODE (op_operand)) > UNITS_PER_WORD)
|
||
src_reg_num = 1 - src_reg_num;
|
||
|
||
if (GET_CODE (op) == ZERO_EXTEND)
|
||
dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
|
||
else
|
||
dest_reg_num = 1 - src_reg_num;
|
||
|
||
offset1 = UNITS_PER_WORD * dest_reg_num;
|
||
offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
|
||
src_offset = UNITS_PER_WORD * src_reg_num;
|
||
|
||
if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
||
{
|
||
offset1 += UNITS_PER_WORD - 1;
|
||
offset2 += UNITS_PER_WORD - 1;
|
||
src_offset += UNITS_PER_WORD - 1;
|
||
}
|
||
|
||
start_sequence ();
|
||
|
||
dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
|
||
GET_MODE (SET_DEST (set)),
|
||
offset1);
|
||
dest_zero = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
|
||
GET_MODE (SET_DEST (set)),
|
||
offset2);
|
||
src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
|
||
GET_MODE (op_operand),
|
||
src_offset);
|
||
if (GET_CODE (op) != ZERO_EXTEND)
|
||
{
|
||
int shift_count = INTVAL (XEXP (op, 1));
|
||
if (shift_count > BITS_PER_WORD)
|
||
src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
|
||
LSHIFT_EXPR : RSHIFT_EXPR,
|
||
word_mode, src_reg,
|
||
build_int_cst (NULL_TREE,
|
||
shift_count - BITS_PER_WORD),
|
||
dest_reg, 1);
|
||
}
|
||
|
||
if (dest_reg != src_reg)
|
||
emit_move_insn (dest_reg, src_reg);
|
||
emit_move_insn (dest_zero, CONST0_RTX (word_mode));
|
||
insns = get_insns ();
|
||
|
||
end_sequence ();
|
||
|
||
emit_insn_before (insns, insn);
|
||
|
||
if (dump_file)
|
||
{
|
||
rtx in;
|
||
fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
|
||
for (in = insns; in != insn; in = NEXT_INSN (in))
|
||
fprintf (dump_file, "%d ", INSN_UID (in));
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
delete_insn (insn);
|
||
return insns;
|
||
}
|
||
|
||
/* Look for registers which are always accessed via word-sized SUBREGs
|
||
or via copies. Decompose these registers into several word-sized
|
||
pseudo-registers. */
|
||
|
||
static void
|
||
decompose_multiword_subregs (void)
|
||
{
|
||
unsigned int max;
|
||
basic_block bb;
|
||
|
||
if (df)
|
||
df_set_flags (DF_DEFER_INSN_RESCAN);
|
||
|
||
max = max_reg_num ();
|
||
|
||
/* First see if there are any multi-word pseudo-registers. If there
|
||
aren't, there is nothing we can do. This should speed up this
|
||
pass in the normal case, since it should be faster than scanning
|
||
all the insns. */
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
|
||
{
|
||
if (regno_reg_rtx[i] != NULL
|
||
&& GET_MODE_SIZE (GET_MODE (regno_reg_rtx[i])) > UNITS_PER_WORD)
|
||
break;
|
||
}
|
||
if (i == max)
|
||
return;
|
||
}
|
||
|
||
if (df)
|
||
run_word_dce ();
|
||
|
||
/* FIXME: When the dataflow branch is merged, we can change this
|
||
code to look for each multi-word pseudo-register and to find each
|
||
insn which sets or uses that register. That should be faster
|
||
than scanning all the insns. */
|
||
|
||
decomposable_context = BITMAP_ALLOC (NULL);
|
||
non_decomposable_context = BITMAP_ALLOC (NULL);
|
||
subreg_context = BITMAP_ALLOC (NULL);
|
||
|
||
reg_copy_graph = VEC_alloc (bitmap, heap, max);
|
||
VEC_safe_grow (bitmap, heap, reg_copy_graph, max);
|
||
memset (VEC_address (bitmap, reg_copy_graph), 0, sizeof (bitmap) * max);
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
rtx insn;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
rtx set;
|
||
enum classify_move_insn cmi;
|
||
int i, n;
|
||
|
||
if (!INSN_P (insn)
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
||
|| GET_CODE (PATTERN (insn)) == USE)
|
||
continue;
|
||
|
||
if (find_decomposable_shift_zext (insn))
|
||
continue;
|
||
|
||
recog_memoized (insn);
|
||
extract_insn (insn);
|
||
|
||
set = simple_move (insn);
|
||
|
||
if (!set)
|
||
cmi = NOT_SIMPLE_MOVE;
|
||
else
|
||
{
|
||
if (find_pseudo_copy (set))
|
||
cmi = SIMPLE_PSEUDO_REG_MOVE;
|
||
else
|
||
cmi = SIMPLE_MOVE;
|
||
}
|
||
|
||
n = recog_data.n_operands;
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
for_each_rtx (&recog_data.operand[i],
|
||
find_decomposable_subregs,
|
||
&cmi);
|
||
|
||
/* We handle ASM_OPERANDS as a special case to support
|
||
things like x86 rdtsc which returns a DImode value.
|
||
We can decompose the output, which will certainly be
|
||
operand 0, but not the inputs. */
|
||
|
||
if (cmi == SIMPLE_MOVE
|
||
&& GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
|
||
{
|
||
gcc_assert (i == 0);
|
||
cmi = NOT_SIMPLE_MOVE;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
bitmap_and_compl_into (decomposable_context, non_decomposable_context);
|
||
if (!bitmap_empty_p (decomposable_context))
|
||
{
|
||
sbitmap sub_blocks;
|
||
unsigned int i;
|
||
sbitmap_iterator sbi;
|
||
bitmap_iterator iter;
|
||
unsigned int regno;
|
||
|
||
propagate_pseudo_copies ();
|
||
|
||
sub_blocks = sbitmap_alloc (last_basic_block);
|
||
sbitmap_zero (sub_blocks);
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
|
||
decompose_register (regno);
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
rtx insn;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
rtx pat;
|
||
|
||
if (!INSN_P (insn))
|
||
continue;
|
||
|
||
pat = PATTERN (insn);
|
||
if (GET_CODE (pat) == CLOBBER)
|
||
resolve_clobber (pat, insn);
|
||
else if (GET_CODE (pat) == USE)
|
||
resolve_use (pat, insn);
|
||
else if (DEBUG_INSN_P (insn))
|
||
resolve_debug (insn);
|
||
else
|
||
{
|
||
rtx set;
|
||
int i;
|
||
|
||
recog_memoized (insn);
|
||
extract_insn (insn);
|
||
|
||
set = simple_move (insn);
|
||
if (set)
|
||
{
|
||
rtx orig_insn = insn;
|
||
bool cfi = control_flow_insn_p (insn);
|
||
|
||
/* We can end up splitting loads to multi-word pseudos
|
||
into separate loads to machine word size pseudos.
|
||
When this happens, we first had one load that can
|
||
throw, and after resolve_simple_move we'll have a
|
||
bunch of loads (at least two). All those loads may
|
||
trap if we can have non-call exceptions, so they
|
||
all will end the current basic block. We split the
|
||
block after the outer loop over all insns, but we
|
||
make sure here that we will be able to split the
|
||
basic block and still produce the correct control
|
||
flow graph for it. */
|
||
gcc_assert (!cfi
|
||
|| (cfun->can_throw_non_call_exceptions
|
||
&& can_throw_internal (insn)));
|
||
|
||
insn = resolve_simple_move (set, insn);
|
||
if (insn != orig_insn)
|
||
{
|
||
recog_memoized (insn);
|
||
extract_insn (insn);
|
||
|
||
if (cfi)
|
||
SET_BIT (sub_blocks, bb->index);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rtx decomposed_shift;
|
||
|
||
decomposed_shift = resolve_shift_zext (insn);
|
||
if (decomposed_shift != NULL_RTX)
|
||
{
|
||
insn = decomposed_shift;
|
||
recog_memoized (insn);
|
||
extract_insn (insn);
|
||
}
|
||
}
|
||
|
||
for (i = recog_data.n_operands - 1; i >= 0; --i)
|
||
for_each_rtx (recog_data.operand_loc[i],
|
||
resolve_subreg_use,
|
||
insn);
|
||
|
||
resolve_reg_notes (insn);
|
||
|
||
if (num_validated_changes () > 0)
|
||
{
|
||
for (i = recog_data.n_dups - 1; i >= 0; --i)
|
||
{
|
||
rtx *pl = recog_data.dup_loc[i];
|
||
int dup_num = recog_data.dup_num[i];
|
||
rtx *px = recog_data.operand_loc[dup_num];
|
||
|
||
validate_unshare_change (insn, pl, *px, 1);
|
||
}
|
||
|
||
i = apply_change_group ();
|
||
gcc_assert (i);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we had insns to split that caused control flow insns in the middle
|
||
of a basic block, split those blocks now. Note that we only handle
|
||
the case where splitting a load has caused multiple possibly trapping
|
||
loads to appear. */
|
||
EXECUTE_IF_SET_IN_SBITMAP (sub_blocks, 0, i, sbi)
|
||
{
|
||
rtx insn, end;
|
||
edge fallthru;
|
||
|
||
bb = BASIC_BLOCK (i);
|
||
insn = BB_HEAD (bb);
|
||
end = BB_END (bb);
|
||
|
||
while (insn != end)
|
||
{
|
||
if (control_flow_insn_p (insn))
|
||
{
|
||
/* Split the block after insn. There will be a fallthru
|
||
edge, which is OK so we keep it. We have to create the
|
||
exception edges ourselves. */
|
||
fallthru = split_block (bb, insn);
|
||
rtl_make_eh_edge (NULL, bb, BB_END (bb));
|
||
bb = fallthru->dest;
|
||
insn = BB_HEAD (bb);
|
||
}
|
||
else
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
}
|
||
|
||
sbitmap_free (sub_blocks);
|
||
}
|
||
|
||
{
|
||
unsigned int i;
|
||
bitmap b;
|
||
|
||
FOR_EACH_VEC_ELT (bitmap, reg_copy_graph, i, b)
|
||
if (b)
|
||
BITMAP_FREE (b);
|
||
}
|
||
|
||
VEC_free (bitmap, heap, reg_copy_graph);
|
||
|
||
BITMAP_FREE (decomposable_context);
|
||
BITMAP_FREE (non_decomposable_context);
|
||
BITMAP_FREE (subreg_context);
|
||
}
|
||
|
||
/* Gate function for lower subreg pass. */
|
||
|
||
static bool
|
||
gate_handle_lower_subreg (void)
|
||
{
|
||
return flag_split_wide_types != 0;
|
||
}
|
||
|
||
/* Implement first lower subreg pass. */
|
||
|
||
static unsigned int
|
||
rest_of_handle_lower_subreg (void)
|
||
{
|
||
decompose_multiword_subregs ();
|
||
return 0;
|
||
}
|
||
|
||
/* Implement second lower subreg pass. */
|
||
|
||
static unsigned int
|
||
rest_of_handle_lower_subreg2 (void)
|
||
{
|
||
decompose_multiword_subregs ();
|
||
return 0;
|
||
}
|
||
|
||
struct rtl_opt_pass pass_lower_subreg =
|
||
{
|
||
{
|
||
RTL_PASS,
|
||
"subreg1", /* name */
|
||
gate_handle_lower_subreg, /* gate */
|
||
rest_of_handle_lower_subreg, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_LOWER_SUBREG, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func |
|
||
TODO_ggc_collect |
|
||
TODO_verify_flow /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
struct rtl_opt_pass pass_lower_subreg2 =
|
||
{
|
||
{
|
||
RTL_PASS,
|
||
"subreg2", /* name */
|
||
gate_handle_lower_subreg, /* gate */
|
||
rest_of_handle_lower_subreg2, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_LOWER_SUBREG, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish | TODO_verify_rtl_sharing |
|
||
TODO_dump_func |
|
||
TODO_ggc_collect |
|
||
TODO_verify_flow /* todo_flags_finish */
|
||
}
|
||
};
|