827424041e
2016-07-11 Hale Wang <hale.wang@arm.com> Andre Vieira <andre.simoesdiasvieira@arm.com> * config/arm/lib1funcs.S: Add new wrapper. Co-Authored-By: Andre Vieira <andre.simoesdiasvieira@arm.com> From-SVN: r238215
2187 lines
46 KiB
ArmAsm
2187 lines
46 KiB
ArmAsm
@ libgcc routines for ARM cpu.
|
|
@ Division routines, written by Richard Earnshaw, (rearnsha@armltd.co.uk)
|
|
|
|
/* Copyright (C) 1995-2016 Free Software Foundation, Inc.
|
|
|
|
This file is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
This file is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* An executable stack is *not* required for these functions. */
|
|
#if defined(__ELF__) && defined(__linux__)
|
|
.section .note.GNU-stack,"",%progbits
|
|
.previous
|
|
#endif /* __ELF__ and __linux__ */
|
|
|
|
#ifdef __ARM_EABI__
|
|
/* Some attributes that are common to all routines in this file. */
|
|
/* Tag_ABI_align_needed: This code does not require 8-byte
|
|
alignment from the caller. */
|
|
/* .eabi_attribute 24, 0 -- default setting. */
|
|
/* Tag_ABI_align_preserved: This code preserves 8-byte
|
|
alignment in any callee. */
|
|
.eabi_attribute 25, 1
|
|
#endif /* __ARM_EABI__ */
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
/* We need to know what prefix to add to function names. */
|
|
|
|
#ifndef __USER_LABEL_PREFIX__
|
|
#error __USER_LABEL_PREFIX__ not defined
|
|
#endif
|
|
|
|
/* ANSI concatenation macros. */
|
|
|
|
#define CONCAT1(a, b) CONCAT2(a, b)
|
|
#define CONCAT2(a, b) a ## b
|
|
|
|
/* Use the right prefix for global labels. */
|
|
|
|
#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
|
|
|
|
#ifdef __ELF__
|
|
#ifdef __thumb__
|
|
#define __PLT__ /* Not supported in Thumb assembler (for now). */
|
|
#elif defined __vxworks && !defined __PIC__
|
|
#define __PLT__ /* Not supported by the kernel loader. */
|
|
#else
|
|
#define __PLT__ (PLT)
|
|
#endif
|
|
#define TYPE(x) .type SYM(x),function
|
|
#define SIZE(x) .size SYM(x), . - SYM(x)
|
|
#define LSYM(x) .x
|
|
#else
|
|
#define __PLT__
|
|
#define TYPE(x)
|
|
#define SIZE(x)
|
|
#define LSYM(x) x
|
|
#endif
|
|
|
|
/* Function end macros. Variants for interworking. */
|
|
|
|
#if defined(__ARM_ARCH_2__)
|
|
# define __ARM_ARCH__ 2
|
|
#endif
|
|
|
|
#if defined(__ARM_ARCH_3__)
|
|
# define __ARM_ARCH__ 3
|
|
#endif
|
|
|
|
#if defined(__ARM_ARCH_3M__) || defined(__ARM_ARCH_4__) \
|
|
|| defined(__ARM_ARCH_4T__)
|
|
/* We use __ARM_ARCH__ set to 4 here, but in reality it's any processor with
|
|
long multiply instructions. That includes v3M. */
|
|
# define __ARM_ARCH__ 4
|
|
#endif
|
|
|
|
#if defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) \
|
|
|| defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) \
|
|
|| defined(__ARM_ARCH_5TEJ__)
|
|
# define __ARM_ARCH__ 5
|
|
#endif
|
|
|
|
#if defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \
|
|
|| defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \
|
|
|| defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) \
|
|
|| defined(__ARM_ARCH_6M__)
|
|
# define __ARM_ARCH__ 6
|
|
#endif
|
|
|
|
#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \
|
|
|| defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \
|
|
|| defined(__ARM_ARCH_7EM__)
|
|
# define __ARM_ARCH__ 7
|
|
#endif
|
|
|
|
#if defined(__ARM_ARCH_8A__) || defined(__ARM_ARCH_8M_BASE__) \
|
|
|| defined(__ARM_ARCH_8M_MAIN__)
|
|
# define __ARM_ARCH__ 8
|
|
#endif
|
|
|
|
#ifndef __ARM_ARCH__
|
|
#error Unable to determine architecture.
|
|
#endif
|
|
|
|
/* There are times when we might prefer Thumb1 code even if ARM code is
|
|
permitted, for example, the code might be smaller, or there might be
|
|
interworking problems with switching to ARM state if interworking is
|
|
disabled. */
|
|
#if (defined(__thumb__) \
|
|
&& !defined(__thumb2__) \
|
|
&& (!defined(__THUMB_INTERWORK__) \
|
|
|| defined (__OPTIMIZE_SIZE__) \
|
|
|| !__ARM_ARCH_ISA_ARM))
|
|
# define __prefer_thumb__
|
|
#endif
|
|
|
|
#if !__ARM_ARCH_ISA_ARM && __ARM_ARCH_ISA_THUMB == 1
|
|
#define NOT_ISA_TARGET_32BIT 1
|
|
#endif
|
|
|
|
/* How to return from a function call depends on the architecture variant. */
|
|
|
|
#if (__ARM_ARCH__ > 4) || defined(__ARM_ARCH_4T__)
|
|
|
|
# define RET bx lr
|
|
# define RETc(x) bx##x lr
|
|
|
|
/* Special precautions for interworking on armv4t. */
|
|
# if (__ARM_ARCH__ == 4)
|
|
|
|
/* Always use bx, not ldr pc. */
|
|
# if (defined(__thumb__) || defined(__THUMB_INTERWORK__))
|
|
# define __INTERWORKING__
|
|
# endif /* __THUMB__ || __THUMB_INTERWORK__ */
|
|
|
|
/* Include thumb stub before arm mode code. */
|
|
# if defined(__thumb__) && !defined(__THUMB_INTERWORK__)
|
|
# define __INTERWORKING_STUBS__
|
|
# endif /* __thumb__ && !__THUMB_INTERWORK__ */
|
|
|
|
#endif /* __ARM_ARCH == 4 */
|
|
|
|
#else
|
|
|
|
# define RET mov pc, lr
|
|
# define RETc(x) mov##x pc, lr
|
|
|
|
#endif
|
|
|
|
.macro cfi_pop advance, reg, cfa_offset
|
|
#ifdef __ELF__
|
|
.pushsection .debug_frame
|
|
.byte 0x4 /* DW_CFA_advance_loc4 */
|
|
.4byte \advance
|
|
.byte (0xc0 | \reg) /* DW_CFA_restore */
|
|
.byte 0xe /* DW_CFA_def_cfa_offset */
|
|
.uleb128 \cfa_offset
|
|
.popsection
|
|
#endif
|
|
.endm
|
|
.macro cfi_push advance, reg, offset, cfa_offset
|
|
#ifdef __ELF__
|
|
.pushsection .debug_frame
|
|
.byte 0x4 /* DW_CFA_advance_loc4 */
|
|
.4byte \advance
|
|
.byte (0x80 | \reg) /* DW_CFA_offset */
|
|
.uleb128 (\offset / -4)
|
|
.byte 0xe /* DW_CFA_def_cfa_offset */
|
|
.uleb128 \cfa_offset
|
|
.popsection
|
|
#endif
|
|
.endm
|
|
.macro cfi_start start_label, end_label
|
|
#ifdef __ELF__
|
|
.pushsection .debug_frame
|
|
LSYM(Lstart_frame):
|
|
.4byte LSYM(Lend_cie) - LSYM(Lstart_cie) @ Length of CIE
|
|
LSYM(Lstart_cie):
|
|
.4byte 0xffffffff @ CIE Identifier Tag
|
|
.byte 0x1 @ CIE Version
|
|
.ascii "\0" @ CIE Augmentation
|
|
.uleb128 0x1 @ CIE Code Alignment Factor
|
|
.sleb128 -4 @ CIE Data Alignment Factor
|
|
.byte 0xe @ CIE RA Column
|
|
.byte 0xc @ DW_CFA_def_cfa
|
|
.uleb128 0xd
|
|
.uleb128 0x0
|
|
|
|
.align 2
|
|
LSYM(Lend_cie):
|
|
.4byte LSYM(Lend_fde)-LSYM(Lstart_fde) @ FDE Length
|
|
LSYM(Lstart_fde):
|
|
.4byte LSYM(Lstart_frame) @ FDE CIE offset
|
|
.4byte \start_label @ FDE initial location
|
|
.4byte \end_label-\start_label @ FDE address range
|
|
.popsection
|
|
#endif
|
|
.endm
|
|
.macro cfi_end end_label
|
|
#ifdef __ELF__
|
|
.pushsection .debug_frame
|
|
.align 2
|
|
LSYM(Lend_fde):
|
|
.popsection
|
|
\end_label:
|
|
#endif
|
|
.endm
|
|
|
|
/* Don't pass dirn, it's there just to get token pasting right. */
|
|
|
|
.macro RETLDM regs=, cond=, unwind=, dirn=ia
|
|
#if defined (__INTERWORKING__)
|
|
.ifc "\regs",""
|
|
ldr\cond lr, [sp], #8
|
|
.else
|
|
# if defined(__thumb2__)
|
|
pop\cond {\regs, lr}
|
|
# else
|
|
ldm\cond\dirn sp!, {\regs, lr}
|
|
# endif
|
|
.endif
|
|
.ifnc "\unwind", ""
|
|
/* Mark LR as restored. */
|
|
97: cfi_pop 97b - \unwind, 0xe, 0x0
|
|
.endif
|
|
bx\cond lr
|
|
#else
|
|
/* Caller is responsible for providing IT instruction. */
|
|
.ifc "\regs",""
|
|
ldr\cond pc, [sp], #8
|
|
.else
|
|
# if defined(__thumb2__)
|
|
pop\cond {\regs, pc}
|
|
# else
|
|
ldm\cond\dirn sp!, {\regs, pc}
|
|
# endif
|
|
.endif
|
|
#endif
|
|
.endm
|
|
|
|
/* The Unified assembly syntax allows the same code to be assembled for both
|
|
ARM and Thumb-2. However this is only supported by recent gas, so define
|
|
a set of macros to allow ARM code on older assemblers. */
|
|
#if defined(__thumb2__)
|
|
.macro do_it cond, suffix=""
|
|
it\suffix \cond
|
|
.endm
|
|
.macro shift1 op, arg0, arg1, arg2
|
|
\op \arg0, \arg1, \arg2
|
|
.endm
|
|
#define do_push push
|
|
#define do_pop pop
|
|
#define COND(op1, op2, cond) op1 ## op2 ## cond
|
|
/* Perform an arithmetic operation with a variable shift operand. This
|
|
requires two instructions and a scratch register on Thumb-2. */
|
|
.macro shiftop name, dest, src1, src2, shiftop, shiftreg, tmp
|
|
\shiftop \tmp, \src2, \shiftreg
|
|
\name \dest, \src1, \tmp
|
|
.endm
|
|
#else
|
|
.macro do_it cond, suffix=""
|
|
.endm
|
|
.macro shift1 op, arg0, arg1, arg2
|
|
mov \arg0, \arg1, \op \arg2
|
|
.endm
|
|
#define do_push stmfd sp!,
|
|
#define do_pop ldmfd sp!,
|
|
#define COND(op1, op2, cond) op1 ## cond ## op2
|
|
.macro shiftop name, dest, src1, src2, shiftop, shiftreg, tmp
|
|
\name \dest, \src1, \src2, \shiftop \shiftreg
|
|
.endm
|
|
#endif
|
|
|
|
#ifdef __ARM_EABI__
|
|
.macro ARM_LDIV0 name signed
|
|
cmp r0, #0
|
|
.ifc \signed, unsigned
|
|
movne r0, #0xffffffff
|
|
.else
|
|
movgt r0, #0x7fffffff
|
|
movlt r0, #0x80000000
|
|
.endif
|
|
b SYM (__aeabi_idiv0) __PLT__
|
|
.endm
|
|
#else
|
|
.macro ARM_LDIV0 name signed
|
|
str lr, [sp, #-8]!
|
|
98: cfi_push 98b - __\name, 0xe, -0x8, 0x8
|
|
bl SYM (__div0) __PLT__
|
|
mov r0, #0 @ About as wrong as it could be.
|
|
RETLDM unwind=98b
|
|
.endm
|
|
#endif
|
|
|
|
|
|
#ifdef __ARM_EABI__
|
|
.macro THUMB_LDIV0 name signed
|
|
#ifdef NOT_ISA_TARGET_32BIT
|
|
|
|
push {r0, lr}
|
|
mov r0, #0
|
|
bl SYM(__aeabi_idiv0)
|
|
@ We know we are not on armv4t, so pop pc is safe.
|
|
pop {r1, pc}
|
|
|
|
#elif defined(__thumb2__)
|
|
.syntax unified
|
|
.ifc \signed, unsigned
|
|
cbz r0, 1f
|
|
mov r0, #0xffffffff
|
|
1:
|
|
.else
|
|
cmp r0, #0
|
|
do_it gt
|
|
movgt r0, #0x7fffffff
|
|
do_it lt
|
|
movlt r0, #0x80000000
|
|
.endif
|
|
b.w SYM(__aeabi_idiv0) __PLT__
|
|
#else
|
|
.align 2
|
|
bx pc
|
|
nop
|
|
.arm
|
|
cmp r0, #0
|
|
.ifc \signed, unsigned
|
|
movne r0, #0xffffffff
|
|
.else
|
|
movgt r0, #0x7fffffff
|
|
movlt r0, #0x80000000
|
|
.endif
|
|
b SYM(__aeabi_idiv0) __PLT__
|
|
.thumb
|
|
#endif
|
|
.endm
|
|
#else
|
|
.macro THUMB_LDIV0 name signed
|
|
push { r1, lr }
|
|
98: cfi_push 98b - __\name, 0xe, -0x4, 0x8
|
|
bl SYM (__div0)
|
|
mov r0, #0 @ About as wrong as it could be.
|
|
#if defined (__INTERWORKING__)
|
|
pop { r1, r2 }
|
|
bx r2
|
|
#else
|
|
pop { r1, pc }
|
|
#endif
|
|
.endm
|
|
#endif
|
|
|
|
.macro FUNC_END name
|
|
SIZE (__\name)
|
|
.endm
|
|
|
|
.macro DIV_FUNC_END name signed
|
|
cfi_start __\name, LSYM(Lend_div0)
|
|
LSYM(Ldiv0):
|
|
#ifdef __thumb__
|
|
THUMB_LDIV0 \name \signed
|
|
#else
|
|
ARM_LDIV0 \name \signed
|
|
#endif
|
|
cfi_end LSYM(Lend_div0)
|
|
FUNC_END \name
|
|
.endm
|
|
|
|
.macro THUMB_FUNC_START name
|
|
.globl SYM (\name)
|
|
TYPE (\name)
|
|
.thumb_func
|
|
SYM (\name):
|
|
.endm
|
|
|
|
/* Function start macros. Variants for ARM and Thumb. */
|
|
|
|
#ifdef __thumb__
|
|
#define THUMB_FUNC .thumb_func
|
|
#define THUMB_CODE .force_thumb
|
|
# if defined(__thumb2__)
|
|
#define THUMB_SYNTAX .syntax divided
|
|
# else
|
|
#define THUMB_SYNTAX
|
|
# endif
|
|
#else
|
|
#define THUMB_FUNC
|
|
#define THUMB_CODE
|
|
#define THUMB_SYNTAX
|
|
#endif
|
|
|
|
.macro FUNC_START name sp_section=
|
|
.ifc \sp_section, function_section
|
|
.section .text.__\name,"ax",%progbits
|
|
.else
|
|
.text
|
|
.endif
|
|
.globl SYM (__\name)
|
|
TYPE (__\name)
|
|
.align 0
|
|
THUMB_CODE
|
|
THUMB_FUNC
|
|
THUMB_SYNTAX
|
|
SYM (__\name):
|
|
.endm
|
|
|
|
.macro ARM_SYM_START name
|
|
TYPE (\name)
|
|
.align 0
|
|
SYM (\name):
|
|
.endm
|
|
|
|
.macro SYM_END name
|
|
SIZE (\name)
|
|
.endm
|
|
|
|
/* Special function that will always be coded in ARM assembly, even if
|
|
in Thumb-only compilation. */
|
|
|
|
#if defined(__thumb2__)
|
|
|
|
/* For Thumb-2 we build everything in thumb mode. */
|
|
.macro ARM_FUNC_START name sp_section=
|
|
FUNC_START \name \sp_section
|
|
.syntax unified
|
|
.endm
|
|
#define EQUIV .thumb_set
|
|
.macro ARM_CALL name
|
|
bl __\name
|
|
.endm
|
|
|
|
#elif defined(__INTERWORKING_STUBS__)
|
|
|
|
.macro ARM_FUNC_START name
|
|
FUNC_START \name
|
|
bx pc
|
|
nop
|
|
.arm
|
|
/* A hook to tell gdb that we've switched to ARM mode. Also used to call
|
|
directly from other local arm routines. */
|
|
_L__\name:
|
|
.endm
|
|
#define EQUIV .thumb_set
|
|
/* Branch directly to a function declared with ARM_FUNC_START.
|
|
Must be called in arm mode. */
|
|
.macro ARM_CALL name
|
|
bl _L__\name
|
|
.endm
|
|
|
|
#else /* !(__INTERWORKING_STUBS__ || __thumb2__) */
|
|
|
|
#ifdef NOT_ISA_TARGET_32BIT
|
|
#define EQUIV .thumb_set
|
|
#else
|
|
.macro ARM_FUNC_START name sp_section=
|
|
.ifc \sp_section, function_section
|
|
.section .text.__\name,"ax",%progbits
|
|
.else
|
|
.text
|
|
.endif
|
|
.globl SYM (__\name)
|
|
TYPE (__\name)
|
|
.align 0
|
|
.arm
|
|
SYM (__\name):
|
|
.endm
|
|
#define EQUIV .set
|
|
.macro ARM_CALL name
|
|
bl __\name
|
|
.endm
|
|
#endif
|
|
|
|
#endif
|
|
|
|
.macro FUNC_ALIAS new old
|
|
.globl SYM (__\new)
|
|
#if defined (__thumb__)
|
|
.thumb_set SYM (__\new), SYM (__\old)
|
|
#else
|
|
.set SYM (__\new), SYM (__\old)
|
|
#endif
|
|
.endm
|
|
|
|
#ifndef NOT_ISA_TARGET_32BIT
|
|
.macro ARM_FUNC_ALIAS new old
|
|
.globl SYM (__\new)
|
|
EQUIV SYM (__\new), SYM (__\old)
|
|
#if defined(__INTERWORKING_STUBS__)
|
|
.set SYM (_L__\new), SYM (_L__\old)
|
|
#endif
|
|
.endm
|
|
#endif
|
|
|
|
#ifdef __ARMEB__
|
|
#define xxh r0
|
|
#define xxl r1
|
|
#define yyh r2
|
|
#define yyl r3
|
|
#else
|
|
#define xxh r1
|
|
#define xxl r0
|
|
#define yyh r3
|
|
#define yyl r2
|
|
#endif
|
|
|
|
#ifdef __ARM_EABI__
|
|
.macro WEAK name
|
|
.weak SYM (__\name)
|
|
.endm
|
|
#endif
|
|
|
|
#ifdef __thumb__
|
|
/* Register aliases. */
|
|
|
|
work .req r4 @ XXXX is this safe ?
|
|
dividend .req r0
|
|
divisor .req r1
|
|
overdone .req r2
|
|
result .req r2
|
|
curbit .req r3
|
|
#endif
|
|
#if 0
|
|
ip .req r12
|
|
sp .req r13
|
|
lr .req r14
|
|
pc .req r15
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
/* Bodies of the division and modulo routines. */
|
|
/* ------------------------------------------------------------------------ */
|
|
.macro ARM_DIV_BODY dividend, divisor, result, curbit
|
|
|
|
#if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__)
|
|
|
|
#if defined (__thumb2__)
|
|
clz \curbit, \dividend
|
|
clz \result, \divisor
|
|
sub \curbit, \result, \curbit
|
|
rsb \curbit, \curbit, #31
|
|
adr \result, 1f
|
|
add \curbit, \result, \curbit, lsl #4
|
|
mov \result, #0
|
|
mov pc, \curbit
|
|
.p2align 3
|
|
1:
|
|
.set shift, 32
|
|
.rept 32
|
|
.set shift, shift - 1
|
|
cmp.w \dividend, \divisor, lsl #shift
|
|
nop.n
|
|
adc.w \result, \result, \result
|
|
it cs
|
|
subcs.w \dividend, \dividend, \divisor, lsl #shift
|
|
.endr
|
|
#else
|
|
clz \curbit, \dividend
|
|
clz \result, \divisor
|
|
sub \curbit, \result, \curbit
|
|
rsbs \curbit, \curbit, #31
|
|
addne \curbit, \curbit, \curbit, lsl #1
|
|
mov \result, #0
|
|
addne pc, pc, \curbit, lsl #2
|
|
nop
|
|
.set shift, 32
|
|
.rept 32
|
|
.set shift, shift - 1
|
|
cmp \dividend, \divisor, lsl #shift
|
|
adc \result, \result, \result
|
|
subcs \dividend, \dividend, \divisor, lsl #shift
|
|
.endr
|
|
#endif
|
|
|
|
#else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */
|
|
#if __ARM_ARCH__ >= 5
|
|
|
|
clz \curbit, \divisor
|
|
clz \result, \dividend
|
|
sub \result, \curbit, \result
|
|
mov \curbit, #1
|
|
mov \divisor, \divisor, lsl \result
|
|
mov \curbit, \curbit, lsl \result
|
|
mov \result, #0
|
|
|
|
#else /* __ARM_ARCH__ < 5 */
|
|
|
|
@ Initially shift the divisor left 3 bits if possible,
|
|
@ set curbit accordingly. This allows for curbit to be located
|
|
@ at the left end of each 4-bit nibbles in the division loop
|
|
@ to save one loop in most cases.
|
|
tst \divisor, #0xe0000000
|
|
moveq \divisor, \divisor, lsl #3
|
|
moveq \curbit, #8
|
|
movne \curbit, #1
|
|
|
|
@ Unless the divisor is very big, shift it up in multiples of
|
|
@ four bits, since this is the amount of unwinding in the main
|
|
@ division loop. Continue shifting until the divisor is
|
|
@ larger than the dividend.
|
|
1: cmp \divisor, #0x10000000
|
|
cmplo \divisor, \dividend
|
|
movlo \divisor, \divisor, lsl #4
|
|
movlo \curbit, \curbit, lsl #4
|
|
blo 1b
|
|
|
|
@ For very big divisors, we must shift it a bit at a time, or
|
|
@ we will be in danger of overflowing.
|
|
1: cmp \divisor, #0x80000000
|
|
cmplo \divisor, \dividend
|
|
movlo \divisor, \divisor, lsl #1
|
|
movlo \curbit, \curbit, lsl #1
|
|
blo 1b
|
|
|
|
mov \result, #0
|
|
|
|
#endif /* __ARM_ARCH__ < 5 */
|
|
|
|
@ Division loop
|
|
1: cmp \dividend, \divisor
|
|
do_it hs, t
|
|
subhs \dividend, \dividend, \divisor
|
|
orrhs \result, \result, \curbit
|
|
cmp \dividend, \divisor, lsr #1
|
|
do_it hs, t
|
|
subhs \dividend, \dividend, \divisor, lsr #1
|
|
orrhs \result, \result, \curbit, lsr #1
|
|
cmp \dividend, \divisor, lsr #2
|
|
do_it hs, t
|
|
subhs \dividend, \dividend, \divisor, lsr #2
|
|
orrhs \result, \result, \curbit, lsr #2
|
|
cmp \dividend, \divisor, lsr #3
|
|
do_it hs, t
|
|
subhs \dividend, \dividend, \divisor, lsr #3
|
|
orrhs \result, \result, \curbit, lsr #3
|
|
cmp \dividend, #0 @ Early termination?
|
|
do_it ne, t
|
|
movnes \curbit, \curbit, lsr #4 @ No, any more bits to do?
|
|
movne \divisor, \divisor, lsr #4
|
|
bne 1b
|
|
|
|
#endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */
|
|
|
|
.endm
|
|
/* ------------------------------------------------------------------------ */
|
|
.macro ARM_DIV2_ORDER divisor, order
|
|
|
|
#if __ARM_ARCH__ >= 5
|
|
|
|
clz \order, \divisor
|
|
rsb \order, \order, #31
|
|
|
|
#else
|
|
|
|
cmp \divisor, #(1 << 16)
|
|
movhs \divisor, \divisor, lsr #16
|
|
movhs \order, #16
|
|
movlo \order, #0
|
|
|
|
cmp \divisor, #(1 << 8)
|
|
movhs \divisor, \divisor, lsr #8
|
|
addhs \order, \order, #8
|
|
|
|
cmp \divisor, #(1 << 4)
|
|
movhs \divisor, \divisor, lsr #4
|
|
addhs \order, \order, #4
|
|
|
|
cmp \divisor, #(1 << 2)
|
|
addhi \order, \order, #3
|
|
addls \order, \order, \divisor, lsr #1
|
|
|
|
#endif
|
|
|
|
.endm
|
|
/* ------------------------------------------------------------------------ */
|
|
.macro ARM_MOD_BODY dividend, divisor, order, spare
|
|
|
|
#if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__)
|
|
|
|
clz \order, \divisor
|
|
clz \spare, \dividend
|
|
sub \order, \order, \spare
|
|
rsbs \order, \order, #31
|
|
addne pc, pc, \order, lsl #3
|
|
nop
|
|
.set shift, 32
|
|
.rept 32
|
|
.set shift, shift - 1
|
|
cmp \dividend, \divisor, lsl #shift
|
|
subcs \dividend, \dividend, \divisor, lsl #shift
|
|
.endr
|
|
|
|
#else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */
|
|
#if __ARM_ARCH__ >= 5
|
|
|
|
clz \order, \divisor
|
|
clz \spare, \dividend
|
|
sub \order, \order, \spare
|
|
mov \divisor, \divisor, lsl \order
|
|
|
|
#else /* __ARM_ARCH__ < 5 */
|
|
|
|
mov \order, #0
|
|
|
|
@ Unless the divisor is very big, shift it up in multiples of
|
|
@ four bits, since this is the amount of unwinding in the main
|
|
@ division loop. Continue shifting until the divisor is
|
|
@ larger than the dividend.
|
|
1: cmp \divisor, #0x10000000
|
|
cmplo \divisor, \dividend
|
|
movlo \divisor, \divisor, lsl #4
|
|
addlo \order, \order, #4
|
|
blo 1b
|
|
|
|
@ For very big divisors, we must shift it a bit at a time, or
|
|
@ we will be in danger of overflowing.
|
|
1: cmp \divisor, #0x80000000
|
|
cmplo \divisor, \dividend
|
|
movlo \divisor, \divisor, lsl #1
|
|
addlo \order, \order, #1
|
|
blo 1b
|
|
|
|
#endif /* __ARM_ARCH__ < 5 */
|
|
|
|
@ Perform all needed substractions to keep only the reminder.
|
|
@ Do comparisons in batch of 4 first.
|
|
subs \order, \order, #3 @ yes, 3 is intended here
|
|
blt 2f
|
|
|
|
1: cmp \dividend, \divisor
|
|
subhs \dividend, \dividend, \divisor
|
|
cmp \dividend, \divisor, lsr #1
|
|
subhs \dividend, \dividend, \divisor, lsr #1
|
|
cmp \dividend, \divisor, lsr #2
|
|
subhs \dividend, \dividend, \divisor, lsr #2
|
|
cmp \dividend, \divisor, lsr #3
|
|
subhs \dividend, \dividend, \divisor, lsr #3
|
|
cmp \dividend, #1
|
|
mov \divisor, \divisor, lsr #4
|
|
subges \order, \order, #4
|
|
bge 1b
|
|
|
|
tst \order, #3
|
|
teqne \dividend, #0
|
|
beq 5f
|
|
|
|
@ Either 1, 2 or 3 comparison/substractions are left.
|
|
2: cmn \order, #2
|
|
blt 4f
|
|
beq 3f
|
|
cmp \dividend, \divisor
|
|
subhs \dividend, \dividend, \divisor
|
|
mov \divisor, \divisor, lsr #1
|
|
3: cmp \dividend, \divisor
|
|
subhs \dividend, \dividend, \divisor
|
|
mov \divisor, \divisor, lsr #1
|
|
4: cmp \dividend, \divisor
|
|
subhs \dividend, \dividend, \divisor
|
|
5:
|
|
|
|
#endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */
|
|
|
|
.endm
|
|
/* ------------------------------------------------------------------------ */
|
|
.macro THUMB_DIV_MOD_BODY modulo
|
|
@ Load the constant 0x10000000 into our work register.
|
|
mov work, #1
|
|
lsl work, #28
|
|
LSYM(Loop1):
|
|
@ Unless the divisor is very big, shift it up in multiples of
|
|
@ four bits, since this is the amount of unwinding in the main
|
|
@ division loop. Continue shifting until the divisor is
|
|
@ larger than the dividend.
|
|
cmp divisor, work
|
|
bhs LSYM(Lbignum)
|
|
cmp divisor, dividend
|
|
bhs LSYM(Lbignum)
|
|
lsl divisor, #4
|
|
lsl curbit, #4
|
|
b LSYM(Loop1)
|
|
LSYM(Lbignum):
|
|
@ Set work to 0x80000000
|
|
lsl work, #3
|
|
LSYM(Loop2):
|
|
@ For very big divisors, we must shift it a bit at a time, or
|
|
@ we will be in danger of overflowing.
|
|
cmp divisor, work
|
|
bhs LSYM(Loop3)
|
|
cmp divisor, dividend
|
|
bhs LSYM(Loop3)
|
|
lsl divisor, #1
|
|
lsl curbit, #1
|
|
b LSYM(Loop2)
|
|
LSYM(Loop3):
|
|
@ Test for possible subtractions ...
|
|
.if \modulo
|
|
@ ... On the final pass, this may subtract too much from the dividend,
|
|
@ so keep track of which subtractions are done, we can fix them up
|
|
@ afterwards.
|
|
mov overdone, #0
|
|
cmp dividend, divisor
|
|
blo LSYM(Lover1)
|
|
sub dividend, dividend, divisor
|
|
LSYM(Lover1):
|
|
lsr work, divisor, #1
|
|
cmp dividend, work
|
|
blo LSYM(Lover2)
|
|
sub dividend, dividend, work
|
|
mov ip, curbit
|
|
mov work, #1
|
|
ror curbit, work
|
|
orr overdone, curbit
|
|
mov curbit, ip
|
|
LSYM(Lover2):
|
|
lsr work, divisor, #2
|
|
cmp dividend, work
|
|
blo LSYM(Lover3)
|
|
sub dividend, dividend, work
|
|
mov ip, curbit
|
|
mov work, #2
|
|
ror curbit, work
|
|
orr overdone, curbit
|
|
mov curbit, ip
|
|
LSYM(Lover3):
|
|
lsr work, divisor, #3
|
|
cmp dividend, work
|
|
blo LSYM(Lover4)
|
|
sub dividend, dividend, work
|
|
mov ip, curbit
|
|
mov work, #3
|
|
ror curbit, work
|
|
orr overdone, curbit
|
|
mov curbit, ip
|
|
LSYM(Lover4):
|
|
mov ip, curbit
|
|
.else
|
|
@ ... and note which bits are done in the result. On the final pass,
|
|
@ this may subtract too much from the dividend, but the result will be ok,
|
|
@ since the "bit" will have been shifted out at the bottom.
|
|
cmp dividend, divisor
|
|
blo LSYM(Lover1)
|
|
sub dividend, dividend, divisor
|
|
orr result, result, curbit
|
|
LSYM(Lover1):
|
|
lsr work, divisor, #1
|
|
cmp dividend, work
|
|
blo LSYM(Lover2)
|
|
sub dividend, dividend, work
|
|
lsr work, curbit, #1
|
|
orr result, work
|
|
LSYM(Lover2):
|
|
lsr work, divisor, #2
|
|
cmp dividend, work
|
|
blo LSYM(Lover3)
|
|
sub dividend, dividend, work
|
|
lsr work, curbit, #2
|
|
orr result, work
|
|
LSYM(Lover3):
|
|
lsr work, divisor, #3
|
|
cmp dividend, work
|
|
blo LSYM(Lover4)
|
|
sub dividend, dividend, work
|
|
lsr work, curbit, #3
|
|
orr result, work
|
|
LSYM(Lover4):
|
|
.endif
|
|
|
|
cmp dividend, #0 @ Early termination?
|
|
beq LSYM(Lover5)
|
|
lsr curbit, #4 @ No, any more bits to do?
|
|
beq LSYM(Lover5)
|
|
lsr divisor, #4
|
|
b LSYM(Loop3)
|
|
LSYM(Lover5):
|
|
.if \modulo
|
|
@ Any subtractions that we should not have done will be recorded in
|
|
@ the top three bits of "overdone". Exactly which were not needed
|
|
@ are governed by the position of the bit, stored in ip.
|
|
mov work, #0xe
|
|
lsl work, #28
|
|
and overdone, work
|
|
beq LSYM(Lgot_result)
|
|
|
|
@ If we terminated early, because dividend became zero, then the
|
|
@ bit in ip will not be in the bottom nibble, and we should not
|
|
@ perform the additions below. We must test for this though
|
|
@ (rather relying upon the TSTs to prevent the additions) since
|
|
@ the bit in ip could be in the top two bits which might then match
|
|
@ with one of the smaller RORs.
|
|
mov curbit, ip
|
|
mov work, #0x7
|
|
tst curbit, work
|
|
beq LSYM(Lgot_result)
|
|
|
|
mov curbit, ip
|
|
mov work, #3
|
|
ror curbit, work
|
|
tst overdone, curbit
|
|
beq LSYM(Lover6)
|
|
lsr work, divisor, #3
|
|
add dividend, work
|
|
LSYM(Lover6):
|
|
mov curbit, ip
|
|
mov work, #2
|
|
ror curbit, work
|
|
tst overdone, curbit
|
|
beq LSYM(Lover7)
|
|
lsr work, divisor, #2
|
|
add dividend, work
|
|
LSYM(Lover7):
|
|
mov curbit, ip
|
|
mov work, #1
|
|
ror curbit, work
|
|
tst overdone, curbit
|
|
beq LSYM(Lgot_result)
|
|
lsr work, divisor, #1
|
|
add dividend, work
|
|
.endif
|
|
LSYM(Lgot_result):
|
|
.endm
|
|
|
|
/* If performance is preferred, the following functions are provided. */
|
|
#if defined(__prefer_thumb__) && !defined(__OPTIMIZE_SIZE__)
|
|
|
|
/* Branch to div(n), and jump to label if curbit is lo than divisior. */
|
|
.macro BranchToDiv n, label
|
|
lsr curbit, dividend, \n
|
|
cmp curbit, divisor
|
|
blo \label
|
|
.endm
|
|
|
|
/* Body of div(n). Shift the divisor in n bits and compare the divisor
|
|
and dividend. Update the dividend as the substruction result. */
|
|
.macro DoDiv n
|
|
lsr curbit, dividend, \n
|
|
cmp curbit, divisor
|
|
bcc 1f
|
|
lsl curbit, divisor, \n
|
|
sub dividend, dividend, curbit
|
|
|
|
1: adc result, result
|
|
.endm
|
|
|
|
/* The body of division with positive divisor. Unless the divisor is very
|
|
big, shift it up in multiples of four bits, since this is the amount of
|
|
unwinding in the main division loop. Continue shifting until the divisor
|
|
is larger than the dividend. */
|
|
.macro THUMB1_Div_Positive
|
|
mov result, #0
|
|
BranchToDiv #1, LSYM(Lthumb1_div1)
|
|
BranchToDiv #4, LSYM(Lthumb1_div4)
|
|
BranchToDiv #8, LSYM(Lthumb1_div8)
|
|
BranchToDiv #12, LSYM(Lthumb1_div12)
|
|
BranchToDiv #16, LSYM(Lthumb1_div16)
|
|
LSYM(Lthumb1_div_large_positive):
|
|
mov result, #0xff
|
|
lsl divisor, divisor, #8
|
|
rev result, result
|
|
lsr curbit, dividend, #16
|
|
cmp curbit, divisor
|
|
blo 1f
|
|
asr result, #8
|
|
lsl divisor, divisor, #8
|
|
beq LSYM(Ldivbyzero_waypoint)
|
|
|
|
1: lsr curbit, dividend, #12
|
|
cmp curbit, divisor
|
|
blo LSYM(Lthumb1_div12)
|
|
b LSYM(Lthumb1_div16)
|
|
LSYM(Lthumb1_div_loop):
|
|
lsr divisor, divisor, #8
|
|
LSYM(Lthumb1_div16):
|
|
Dodiv #15
|
|
Dodiv #14
|
|
Dodiv #13
|
|
Dodiv #12
|
|
LSYM(Lthumb1_div12):
|
|
Dodiv #11
|
|
Dodiv #10
|
|
Dodiv #9
|
|
Dodiv #8
|
|
bcs LSYM(Lthumb1_div_loop)
|
|
LSYM(Lthumb1_div8):
|
|
Dodiv #7
|
|
Dodiv #6
|
|
Dodiv #5
|
|
LSYM(Lthumb1_div5):
|
|
Dodiv #4
|
|
LSYM(Lthumb1_div4):
|
|
Dodiv #3
|
|
LSYM(Lthumb1_div3):
|
|
Dodiv #2
|
|
LSYM(Lthumb1_div2):
|
|
Dodiv #1
|
|
LSYM(Lthumb1_div1):
|
|
sub divisor, dividend, divisor
|
|
bcs 1f
|
|
cpy divisor, dividend
|
|
|
|
1: adc result, result
|
|
cpy dividend, result
|
|
RET
|
|
|
|
LSYM(Ldivbyzero_waypoint):
|
|
b LSYM(Ldiv0)
|
|
.endm
|
|
|
|
/* The body of division with negative divisor. Similar with
|
|
THUMB1_Div_Positive except that the shift steps are in multiples
|
|
of six bits. */
|
|
.macro THUMB1_Div_Negative
|
|
lsr result, divisor, #31
|
|
beq 1f
|
|
neg divisor, divisor
|
|
|
|
1: asr curbit, dividend, #32
|
|
bcc 2f
|
|
neg dividend, dividend
|
|
|
|
2: eor curbit, result
|
|
mov result, #0
|
|
cpy ip, curbit
|
|
BranchToDiv #4, LSYM(Lthumb1_div_negative4)
|
|
BranchToDiv #8, LSYM(Lthumb1_div_negative8)
|
|
LSYM(Lthumb1_div_large):
|
|
mov result, #0xfc
|
|
lsl divisor, divisor, #6
|
|
rev result, result
|
|
lsr curbit, dividend, #8
|
|
cmp curbit, divisor
|
|
blo LSYM(Lthumb1_div_negative8)
|
|
|
|
lsl divisor, divisor, #6
|
|
asr result, result, #6
|
|
cmp curbit, divisor
|
|
blo LSYM(Lthumb1_div_negative8)
|
|
|
|
lsl divisor, divisor, #6
|
|
asr result, result, #6
|
|
cmp curbit, divisor
|
|
blo LSYM(Lthumb1_div_negative8)
|
|
|
|
lsl divisor, divisor, #6
|
|
beq LSYM(Ldivbyzero_negative)
|
|
asr result, result, #6
|
|
b LSYM(Lthumb1_div_negative8)
|
|
LSYM(Lthumb1_div_negative_loop):
|
|
lsr divisor, divisor, #6
|
|
LSYM(Lthumb1_div_negative8):
|
|
DoDiv #7
|
|
DoDiv #6
|
|
DoDiv #5
|
|
DoDiv #4
|
|
LSYM(Lthumb1_div_negative4):
|
|
DoDiv #3
|
|
DoDiv #2
|
|
bcs LSYM(Lthumb1_div_negative_loop)
|
|
DoDiv #1
|
|
sub divisor, dividend, divisor
|
|
bcs 1f
|
|
cpy divisor, dividend
|
|
|
|
1: cpy curbit, ip
|
|
adc result, result
|
|
asr curbit, curbit, #1
|
|
cpy dividend, result
|
|
bcc 2f
|
|
neg dividend, dividend
|
|
cmp curbit, #0
|
|
|
|
2: bpl 3f
|
|
neg divisor, divisor
|
|
|
|
3: RET
|
|
|
|
LSYM(Ldivbyzero_negative):
|
|
cpy curbit, ip
|
|
asr curbit, curbit, #1
|
|
bcc LSYM(Ldiv0)
|
|
neg dividend, dividend
|
|
.endm
|
|
#endif /* ARM Thumb version. */
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
/* Start of the Real Functions */
|
|
/* ------------------------------------------------------------------------ */
|
|
#ifdef L_udivsi3
|
|
|
|
#if defined(__prefer_thumb__)
|
|
|
|
FUNC_START udivsi3
|
|
FUNC_ALIAS aeabi_uidiv udivsi3
|
|
#if defined(__OPTIMIZE_SIZE__)
|
|
|
|
cmp divisor, #0
|
|
beq LSYM(Ldiv0)
|
|
LSYM(udivsi3_skip_div0_test):
|
|
mov curbit, #1
|
|
mov result, #0
|
|
|
|
push { work }
|
|
cmp dividend, divisor
|
|
blo LSYM(Lgot_result)
|
|
|
|
THUMB_DIV_MOD_BODY 0
|
|
|
|
mov r0, result
|
|
pop { work }
|
|
RET
|
|
|
|
/* Implementation of aeabi_uidiv for ARMv6m. This version is only
|
|
used in ARMv6-M when we need an efficient implementation. */
|
|
#else
|
|
LSYM(udivsi3_skip_div0_test):
|
|
THUMB1_Div_Positive
|
|
|
|
#endif /* __OPTIMIZE_SIZE__ */
|
|
|
|
#elif defined(__ARM_ARCH_EXT_IDIV__)
|
|
|
|
ARM_FUNC_START udivsi3
|
|
ARM_FUNC_ALIAS aeabi_uidiv udivsi3
|
|
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
|
|
udiv r0, r0, r1
|
|
RET
|
|
|
|
#else /* ARM version/Thumb-2. */
|
|
|
|
ARM_FUNC_START udivsi3
|
|
ARM_FUNC_ALIAS aeabi_uidiv udivsi3
|
|
|
|
/* Note: if called via udivsi3_skip_div0_test, this will unnecessarily
|
|
check for division-by-zero a second time. */
|
|
LSYM(udivsi3_skip_div0_test):
|
|
subs r2, r1, #1
|
|
do_it eq
|
|
RETc(eq)
|
|
bcc LSYM(Ldiv0)
|
|
cmp r0, r1
|
|
bls 11f
|
|
tst r1, r2
|
|
beq 12f
|
|
|
|
ARM_DIV_BODY r0, r1, r2, r3
|
|
|
|
mov r0, r2
|
|
RET
|
|
|
|
11: do_it eq, e
|
|
moveq r0, #1
|
|
movne r0, #0
|
|
RET
|
|
|
|
12: ARM_DIV2_ORDER r1, r2
|
|
|
|
mov r0, r0, lsr r2
|
|
RET
|
|
|
|
#endif /* ARM version */
|
|
|
|
DIV_FUNC_END udivsi3 unsigned
|
|
|
|
#if defined(__prefer_thumb__)
|
|
FUNC_START aeabi_uidivmod
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
# if defined(__OPTIMIZE_SIZE__)
|
|
push {r0, r1, lr}
|
|
bl LSYM(udivsi3_skip_div0_test)
|
|
POP {r1, r2, r3}
|
|
mul r2, r0
|
|
sub r1, r1, r2
|
|
bx r3
|
|
# else
|
|
/* Both the quotient and remainder are calculated simultaneously
|
|
in THUMB1_Div_Positive. There is no need to calculate the
|
|
remainder again here. */
|
|
b LSYM(udivsi3_skip_div0_test)
|
|
RET
|
|
# endif /* __OPTIMIZE_SIZE__ */
|
|
|
|
#elif defined(__ARM_ARCH_EXT_IDIV__)
|
|
ARM_FUNC_START aeabi_uidivmod
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
mov r2, r0
|
|
udiv r0, r0, r1
|
|
mls r1, r0, r1, r2
|
|
RET
|
|
#else
|
|
ARM_FUNC_START aeabi_uidivmod
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
stmfd sp!, { r0, r1, lr }
|
|
bl LSYM(udivsi3_skip_div0_test)
|
|
ldmfd sp!, { r1, r2, lr }
|
|
mul r3, r2, r0
|
|
sub r1, r1, r3
|
|
RET
|
|
#endif
|
|
FUNC_END aeabi_uidivmod
|
|
|
|
#endif /* L_udivsi3 */
|
|
/* ------------------------------------------------------------------------ */
|
|
#ifdef L_umodsi3
|
|
|
|
#if defined(__ARM_ARCH_EXT_IDIV__) && __ARM_ARCH_ISA_THUMB != 1
|
|
|
|
ARM_FUNC_START umodsi3
|
|
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
udiv r2, r0, r1
|
|
mls r0, r1, r2, r0
|
|
RET
|
|
|
|
#elif defined(__thumb__)
|
|
|
|
FUNC_START umodsi3
|
|
|
|
cmp divisor, #0
|
|
beq LSYM(Ldiv0)
|
|
mov curbit, #1
|
|
cmp dividend, divisor
|
|
bhs LSYM(Lover10)
|
|
RET
|
|
|
|
LSYM(Lover10):
|
|
push { work }
|
|
|
|
THUMB_DIV_MOD_BODY 1
|
|
|
|
pop { work }
|
|
RET
|
|
|
|
#else /* ARM version. */
|
|
|
|
FUNC_START umodsi3
|
|
|
|
subs r2, r1, #1 @ compare divisor with 1
|
|
bcc LSYM(Ldiv0)
|
|
cmpne r0, r1 @ compare dividend with divisor
|
|
moveq r0, #0
|
|
tsthi r1, r2 @ see if divisor is power of 2
|
|
andeq r0, r0, r2
|
|
RETc(ls)
|
|
|
|
ARM_MOD_BODY r0, r1, r2, r3
|
|
|
|
RET
|
|
|
|
#endif /* ARM version. */
|
|
|
|
DIV_FUNC_END umodsi3 unsigned
|
|
|
|
#endif /* L_umodsi3 */
|
|
/* ------------------------------------------------------------------------ */
|
|
#ifdef L_divsi3
|
|
|
|
#if defined(__prefer_thumb__)
|
|
|
|
FUNC_START divsi3
|
|
FUNC_ALIAS aeabi_idiv divsi3
|
|
#if defined(__OPTIMIZE_SIZE__)
|
|
|
|
cmp divisor, #0
|
|
beq LSYM(Ldiv0)
|
|
LSYM(divsi3_skip_div0_test):
|
|
push { work }
|
|
mov work, dividend
|
|
eor work, divisor @ Save the sign of the result.
|
|
mov ip, work
|
|
mov curbit, #1
|
|
mov result, #0
|
|
cmp divisor, #0
|
|
bpl LSYM(Lover10)
|
|
neg divisor, divisor @ Loops below use unsigned.
|
|
LSYM(Lover10):
|
|
cmp dividend, #0
|
|
bpl LSYM(Lover11)
|
|
neg dividend, dividend
|
|
LSYM(Lover11):
|
|
cmp dividend, divisor
|
|
blo LSYM(Lgot_result)
|
|
|
|
THUMB_DIV_MOD_BODY 0
|
|
|
|
mov r0, result
|
|
mov work, ip
|
|
cmp work, #0
|
|
bpl LSYM(Lover12)
|
|
neg r0, r0
|
|
LSYM(Lover12):
|
|
pop { work }
|
|
RET
|
|
|
|
/* Implementation of aeabi_idiv for ARMv6m. This version is only
|
|
used in ARMv6-M when we need an efficient implementation. */
|
|
#else
|
|
LSYM(divsi3_skip_div0_test):
|
|
cpy curbit, dividend
|
|
orr curbit, divisor
|
|
bmi LSYM(Lthumb1_div_negative)
|
|
|
|
LSYM(Lthumb1_div_positive):
|
|
THUMB1_Div_Positive
|
|
|
|
LSYM(Lthumb1_div_negative):
|
|
THUMB1_Div_Negative
|
|
|
|
#endif /* __OPTIMIZE_SIZE__ */
|
|
|
|
#elif defined(__ARM_ARCH_EXT_IDIV__)
|
|
|
|
ARM_FUNC_START divsi3
|
|
ARM_FUNC_ALIAS aeabi_idiv divsi3
|
|
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
sdiv r0, r0, r1
|
|
RET
|
|
|
|
#else /* ARM/Thumb-2 version. */
|
|
|
|
ARM_FUNC_START divsi3
|
|
ARM_FUNC_ALIAS aeabi_idiv divsi3
|
|
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
LSYM(divsi3_skip_div0_test):
|
|
eor ip, r0, r1 @ save the sign of the result.
|
|
do_it mi
|
|
rsbmi r1, r1, #0 @ loops below use unsigned.
|
|
subs r2, r1, #1 @ division by 1 or -1 ?
|
|
beq 10f
|
|
movs r3, r0
|
|
do_it mi
|
|
rsbmi r3, r0, #0 @ positive dividend value
|
|
cmp r3, r1
|
|
bls 11f
|
|
tst r1, r2 @ divisor is power of 2 ?
|
|
beq 12f
|
|
|
|
ARM_DIV_BODY r3, r1, r0, r2
|
|
|
|
cmp ip, #0
|
|
do_it mi
|
|
rsbmi r0, r0, #0
|
|
RET
|
|
|
|
10: teq ip, r0 @ same sign ?
|
|
do_it mi
|
|
rsbmi r0, r0, #0
|
|
RET
|
|
|
|
11: do_it lo
|
|
movlo r0, #0
|
|
do_it eq,t
|
|
moveq r0, ip, asr #31
|
|
orreq r0, r0, #1
|
|
RET
|
|
|
|
12: ARM_DIV2_ORDER r1, r2
|
|
|
|
cmp ip, #0
|
|
mov r0, r3, lsr r2
|
|
do_it mi
|
|
rsbmi r0, r0, #0
|
|
RET
|
|
|
|
#endif /* ARM version */
|
|
|
|
DIV_FUNC_END divsi3 signed
|
|
|
|
#if defined(__prefer_thumb__)
|
|
FUNC_START aeabi_idivmod
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
# if defined(__OPTIMIZE_SIZE__)
|
|
push {r0, r1, lr}
|
|
bl LSYM(divsi3_skip_div0_test)
|
|
POP {r1, r2, r3}
|
|
mul r2, r0
|
|
sub r1, r1, r2
|
|
bx r3
|
|
# else
|
|
/* Both the quotient and remainder are calculated simultaneously
|
|
in THUMB1_Div_Positive and THUMB1_Div_Negative. There is no
|
|
need to calculate the remainder again here. */
|
|
b LSYM(divsi3_skip_div0_test)
|
|
RET
|
|
# endif /* __OPTIMIZE_SIZE__ */
|
|
|
|
#elif defined(__ARM_ARCH_EXT_IDIV__)
|
|
ARM_FUNC_START aeabi_idivmod
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
mov r2, r0
|
|
sdiv r0, r0, r1
|
|
mls r1, r0, r1, r2
|
|
RET
|
|
#else
|
|
ARM_FUNC_START aeabi_idivmod
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
stmfd sp!, { r0, r1, lr }
|
|
bl LSYM(divsi3_skip_div0_test)
|
|
ldmfd sp!, { r1, r2, lr }
|
|
mul r3, r2, r0
|
|
sub r1, r1, r3
|
|
RET
|
|
#endif
|
|
FUNC_END aeabi_idivmod
|
|
|
|
#endif /* L_divsi3 */
|
|
/* ------------------------------------------------------------------------ */
|
|
#ifdef L_modsi3
|
|
|
|
#if defined(__ARM_ARCH_EXT_IDIV__) && __ARM_ARCH_ISA_THUMB != 1
|
|
|
|
ARM_FUNC_START modsi3
|
|
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
|
|
sdiv r2, r0, r1
|
|
mls r0, r1, r2, r0
|
|
RET
|
|
|
|
#elif defined(__thumb__)
|
|
|
|
FUNC_START modsi3
|
|
|
|
mov curbit, #1
|
|
cmp divisor, #0
|
|
beq LSYM(Ldiv0)
|
|
bpl LSYM(Lover10)
|
|
neg divisor, divisor @ Loops below use unsigned.
|
|
LSYM(Lover10):
|
|
push { work }
|
|
@ Need to save the sign of the dividend, unfortunately, we need
|
|
@ work later on. Must do this after saving the original value of
|
|
@ the work register, because we will pop this value off first.
|
|
push { dividend }
|
|
cmp dividend, #0
|
|
bpl LSYM(Lover11)
|
|
neg dividend, dividend
|
|
LSYM(Lover11):
|
|
cmp dividend, divisor
|
|
blo LSYM(Lgot_result)
|
|
|
|
THUMB_DIV_MOD_BODY 1
|
|
|
|
pop { work }
|
|
cmp work, #0
|
|
bpl LSYM(Lover12)
|
|
neg dividend, dividend
|
|
LSYM(Lover12):
|
|
pop { work }
|
|
RET
|
|
|
|
#else /* ARM version. */
|
|
|
|
FUNC_START modsi3
|
|
|
|
cmp r1, #0
|
|
beq LSYM(Ldiv0)
|
|
rsbmi r1, r1, #0 @ loops below use unsigned.
|
|
movs ip, r0 @ preserve sign of dividend
|
|
rsbmi r0, r0, #0 @ if negative make positive
|
|
subs r2, r1, #1 @ compare divisor with 1
|
|
cmpne r0, r1 @ compare dividend with divisor
|
|
moveq r0, #0
|
|
tsthi r1, r2 @ see if divisor is power of 2
|
|
andeq r0, r0, r2
|
|
bls 10f
|
|
|
|
ARM_MOD_BODY r0, r1, r2, r3
|
|
|
|
10: cmp ip, #0
|
|
rsbmi r0, r0, #0
|
|
RET
|
|
|
|
#endif /* ARM version */
|
|
|
|
DIV_FUNC_END modsi3 signed
|
|
|
|
#endif /* L_modsi3 */
|
|
/* ------------------------------------------------------------------------ */
|
|
#ifdef L_dvmd_tls
|
|
|
|
#ifdef __ARM_EABI__
|
|
WEAK aeabi_idiv0
|
|
WEAK aeabi_ldiv0
|
|
FUNC_START aeabi_idiv0
|
|
FUNC_START aeabi_ldiv0
|
|
RET
|
|
FUNC_END aeabi_ldiv0
|
|
FUNC_END aeabi_idiv0
|
|
#else
|
|
FUNC_START div0
|
|
RET
|
|
FUNC_END div0
|
|
#endif
|
|
|
|
#endif /* L_divmodsi_tools */
|
|
/* ------------------------------------------------------------------------ */
|
|
#ifdef L_dvmd_lnx
|
|
@ GNU/Linux division-by zero handler. Used in place of L_dvmd_tls
|
|
|
|
/* Constant taken from <asm/signal.h>. */
|
|
#define SIGFPE 8
|
|
|
|
#ifdef __ARM_EABI__
|
|
cfi_start __aeabi_ldiv0, LSYM(Lend_aeabi_ldiv0)
|
|
WEAK aeabi_idiv0
|
|
WEAK aeabi_ldiv0
|
|
ARM_FUNC_START aeabi_idiv0
|
|
ARM_FUNC_START aeabi_ldiv0
|
|
do_push {r1, lr}
|
|
98: cfi_push 98b - __aeabi_ldiv0, 0xe, -0x4, 0x8
|
|
#else
|
|
cfi_start __div0, LSYM(Lend_div0)
|
|
ARM_FUNC_START div0
|
|
do_push {r1, lr}
|
|
98: cfi_push 98b - __div0, 0xe, -0x4, 0x8
|
|
#endif
|
|
|
|
mov r0, #SIGFPE
|
|
bl SYM(raise) __PLT__
|
|
RETLDM r1 unwind=98b
|
|
|
|
#ifdef __ARM_EABI__
|
|
cfi_end LSYM(Lend_aeabi_ldiv0)
|
|
FUNC_END aeabi_ldiv0
|
|
FUNC_END aeabi_idiv0
|
|
#else
|
|
cfi_end LSYM(Lend_div0)
|
|
FUNC_END div0
|
|
#endif
|
|
|
|
#endif /* L_dvmd_lnx */
|
|
#ifdef L_clear_cache
|
|
#if defined __ARM_EABI__ && defined __linux__
|
|
@ EABI GNU/Linux call to cacheflush syscall.
|
|
ARM_FUNC_START clear_cache
|
|
do_push {r7}
|
|
#if __ARM_ARCH__ >= 7 || defined(__ARM_ARCH_6T2__)
|
|
movw r7, #2
|
|
movt r7, #0xf
|
|
#else
|
|
mov r7, #0xf0000
|
|
add r7, r7, #2
|
|
#endif
|
|
mov r2, #0
|
|
swi 0
|
|
do_pop {r7}
|
|
RET
|
|
FUNC_END clear_cache
|
|
#else
|
|
#error "This is only for ARM EABI GNU/Linux"
|
|
#endif
|
|
#endif /* L_clear_cache */
|
|
/* ------------------------------------------------------------------------ */
|
|
/* Dword shift operations. */
|
|
/* All the following Dword shift variants rely on the fact that
|
|
shft xxx, Reg
|
|
is in fact done as
|
|
shft xxx, (Reg & 255)
|
|
so for Reg value in (32...63) and (-1...-31) we will get zero (in the
|
|
case of logical shifts) or the sign (for asr). */
|
|
|
|
#ifdef __ARMEB__
|
|
#define al r1
|
|
#define ah r0
|
|
#else
|
|
#define al r0
|
|
#define ah r1
|
|
#endif
|
|
|
|
/* Prevent __aeabi double-word shifts from being produced on SymbianOS. */
|
|
#ifndef __symbian__
|
|
|
|
#ifdef L_lshrdi3
|
|
|
|
FUNC_START lshrdi3
|
|
FUNC_ALIAS aeabi_llsr lshrdi3
|
|
|
|
#ifdef __thumb__
|
|
lsr al, r2
|
|
mov r3, ah
|
|
lsr ah, r2
|
|
mov ip, r3
|
|
sub r2, #32
|
|
lsr r3, r2
|
|
orr al, r3
|
|
neg r2, r2
|
|
mov r3, ip
|
|
lsl r3, r2
|
|
orr al, r3
|
|
RET
|
|
#else
|
|
subs r3, r2, #32
|
|
rsb ip, r2, #32
|
|
movmi al, al, lsr r2
|
|
movpl al, ah, lsr r3
|
|
orrmi al, al, ah, lsl ip
|
|
mov ah, ah, lsr r2
|
|
RET
|
|
#endif
|
|
FUNC_END aeabi_llsr
|
|
FUNC_END lshrdi3
|
|
|
|
#endif
|
|
|
|
#ifdef L_ashrdi3
|
|
|
|
FUNC_START ashrdi3
|
|
FUNC_ALIAS aeabi_lasr ashrdi3
|
|
|
|
#ifdef __thumb__
|
|
lsr al, r2
|
|
mov r3, ah
|
|
asr ah, r2
|
|
sub r2, #32
|
|
@ If r2 is negative at this point the following step would OR
|
|
@ the sign bit into all of AL. That's not what we want...
|
|
bmi 1f
|
|
mov ip, r3
|
|
asr r3, r2
|
|
orr al, r3
|
|
mov r3, ip
|
|
1:
|
|
neg r2, r2
|
|
lsl r3, r2
|
|
orr al, r3
|
|
RET
|
|
#else
|
|
subs r3, r2, #32
|
|
rsb ip, r2, #32
|
|
movmi al, al, lsr r2
|
|
movpl al, ah, asr r3
|
|
orrmi al, al, ah, lsl ip
|
|
mov ah, ah, asr r2
|
|
RET
|
|
#endif
|
|
|
|
FUNC_END aeabi_lasr
|
|
FUNC_END ashrdi3
|
|
|
|
#endif
|
|
|
|
#ifdef L_ashldi3
|
|
|
|
FUNC_START ashldi3
|
|
FUNC_ALIAS aeabi_llsl ashldi3
|
|
|
|
#ifdef __thumb__
|
|
lsl ah, r2
|
|
mov r3, al
|
|
lsl al, r2
|
|
mov ip, r3
|
|
sub r2, #32
|
|
lsl r3, r2
|
|
orr ah, r3
|
|
neg r2, r2
|
|
mov r3, ip
|
|
lsr r3, r2
|
|
orr ah, r3
|
|
RET
|
|
#else
|
|
subs r3, r2, #32
|
|
rsb ip, r2, #32
|
|
movmi ah, ah, lsl r2
|
|
movpl ah, al, lsl r3
|
|
orrmi ah, ah, al, lsr ip
|
|
mov al, al, lsl r2
|
|
RET
|
|
#endif
|
|
FUNC_END aeabi_llsl
|
|
FUNC_END ashldi3
|
|
|
|
#endif
|
|
|
|
#endif /* __symbian__ */
|
|
|
|
#if (__ARM_ARCH_ISA_THUMB == 2 \
|
|
|| (__ARM_ARCH_ISA_ARM \
|
|
&& (__ARM_ARCH__ > 5 \
|
|
|| (__ARM_ARCH__ == 5 && __ARM_ARCH_ISA_THUMB))))
|
|
#define HAVE_ARM_CLZ 1
|
|
#endif
|
|
|
|
#ifdef L_clzsi2
|
|
#ifdef NOT_ISA_TARGET_32BIT
|
|
FUNC_START clzsi2
|
|
mov r1, #28
|
|
mov r3, #1
|
|
lsl r3, r3, #16
|
|
cmp r0, r3 /* 0x10000 */
|
|
bcc 2f
|
|
lsr r0, r0, #16
|
|
sub r1, r1, #16
|
|
2: lsr r3, r3, #8
|
|
cmp r0, r3 /* #0x100 */
|
|
bcc 2f
|
|
lsr r0, r0, #8
|
|
sub r1, r1, #8
|
|
2: lsr r3, r3, #4
|
|
cmp r0, r3 /* #0x10 */
|
|
bcc 2f
|
|
lsr r0, r0, #4
|
|
sub r1, r1, #4
|
|
2: adr r2, 1f
|
|
ldrb r0, [r2, r0]
|
|
add r0, r0, r1
|
|
bx lr
|
|
.align 2
|
|
1:
|
|
.byte 4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
|
|
FUNC_END clzsi2
|
|
#else
|
|
ARM_FUNC_START clzsi2
|
|
# if defined(HAVE_ARM_CLZ)
|
|
clz r0, r0
|
|
RET
|
|
# else
|
|
mov r1, #28
|
|
cmp r0, #0x10000
|
|
do_it cs, t
|
|
movcs r0, r0, lsr #16
|
|
subcs r1, r1, #16
|
|
cmp r0, #0x100
|
|
do_it cs, t
|
|
movcs r0, r0, lsr #8
|
|
subcs r1, r1, #8
|
|
cmp r0, #0x10
|
|
do_it cs, t
|
|
movcs r0, r0, lsr #4
|
|
subcs r1, r1, #4
|
|
adr r2, 1f
|
|
ldrb r0, [r2, r0]
|
|
add r0, r0, r1
|
|
RET
|
|
.align 2
|
|
1:
|
|
.byte 4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
|
|
# endif /* !HAVE_ARM_CLZ */
|
|
FUNC_END clzsi2
|
|
#endif
|
|
#endif /* L_clzsi2 */
|
|
|
|
#ifdef L_clzdi2
|
|
#if !defined(HAVE_ARM_CLZ)
|
|
|
|
# ifdef NOT_ISA_TARGET_32BIT
|
|
FUNC_START clzdi2
|
|
push {r4, lr}
|
|
# else
|
|
ARM_FUNC_START clzdi2
|
|
do_push {r4, lr}
|
|
# endif
|
|
cmp xxh, #0
|
|
bne 1f
|
|
# ifdef __ARMEB__
|
|
mov r0, xxl
|
|
bl __clzsi2
|
|
add r0, r0, #32
|
|
b 2f
|
|
1:
|
|
bl __clzsi2
|
|
# else
|
|
bl __clzsi2
|
|
add r0, r0, #32
|
|
b 2f
|
|
1:
|
|
mov r0, xxh
|
|
bl __clzsi2
|
|
# endif
|
|
2:
|
|
# ifdef NOT_ISA_TARGET_32BIT
|
|
pop {r4, pc}
|
|
# else
|
|
RETLDM r4
|
|
# endif
|
|
FUNC_END clzdi2
|
|
|
|
#else /* HAVE_ARM_CLZ */
|
|
|
|
ARM_FUNC_START clzdi2
|
|
cmp xxh, #0
|
|
do_it eq, et
|
|
clzeq r0, xxl
|
|
clzne r0, xxh
|
|
addeq r0, r0, #32
|
|
RET
|
|
FUNC_END clzdi2
|
|
|
|
#endif
|
|
#endif /* L_clzdi2 */
|
|
|
|
#ifdef L_ctzsi2
|
|
#ifdef NOT_ISA_TARGET_32BIT
|
|
FUNC_START ctzsi2
|
|
neg r1, r0
|
|
and r0, r0, r1
|
|
mov r1, #28
|
|
mov r3, #1
|
|
lsl r3, r3, #16
|
|
cmp r0, r3 /* 0x10000 */
|
|
bcc 2f
|
|
lsr r0, r0, #16
|
|
sub r1, r1, #16
|
|
2: lsr r3, r3, #8
|
|
cmp r0, r3 /* #0x100 */
|
|
bcc 2f
|
|
lsr r0, r0, #8
|
|
sub r1, r1, #8
|
|
2: lsr r3, r3, #4
|
|
cmp r0, r3 /* #0x10 */
|
|
bcc 2f
|
|
lsr r0, r0, #4
|
|
sub r1, r1, #4
|
|
2: adr r2, 1f
|
|
ldrb r0, [r2, r0]
|
|
sub r0, r0, r1
|
|
bx lr
|
|
.align 2
|
|
1:
|
|
.byte 27, 28, 29, 29, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31
|
|
FUNC_END ctzsi2
|
|
#else
|
|
ARM_FUNC_START ctzsi2
|
|
rsb r1, r0, #0
|
|
and r0, r0, r1
|
|
# if defined(HAVE_ARM_CLZ)
|
|
clz r0, r0
|
|
rsb r0, r0, #31
|
|
RET
|
|
# else
|
|
mov r1, #28
|
|
cmp r0, #0x10000
|
|
do_it cs, t
|
|
movcs r0, r0, lsr #16
|
|
subcs r1, r1, #16
|
|
cmp r0, #0x100
|
|
do_it cs, t
|
|
movcs r0, r0, lsr #8
|
|
subcs r1, r1, #8
|
|
cmp r0, #0x10
|
|
do_it cs, t
|
|
movcs r0, r0, lsr #4
|
|
subcs r1, r1, #4
|
|
adr r2, 1f
|
|
ldrb r0, [r2, r0]
|
|
sub r0, r0, r1
|
|
RET
|
|
.align 2
|
|
1:
|
|
.byte 27, 28, 29, 29, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31
|
|
# endif /* !HAVE_ARM_CLZ */
|
|
FUNC_END ctzsi2
|
|
#endif
|
|
#endif /* L_clzsi2 */
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
/* These next two sections are here despite the fact that they contain Thumb
|
|
assembler because their presence allows interworked code to be linked even
|
|
when the GCC library is this one. */
|
|
|
|
/* Do not build the interworking functions when the target architecture does
|
|
not support Thumb instructions. (This can be a multilib option). */
|
|
#if defined __ARM_ARCH_4T__ || defined __ARM_ARCH_5T__\
|
|
|| defined __ARM_ARCH_5TE__ || defined __ARM_ARCH_5TEJ__ \
|
|
|| __ARM_ARCH__ >= 6
|
|
|
|
#if defined L_call_via_rX
|
|
|
|
/* These labels & instructions are used by the Arm/Thumb interworking code.
|
|
The address of function to be called is loaded into a register and then
|
|
one of these labels is called via a BL instruction. This puts the
|
|
return address into the link register with the bottom bit set, and the
|
|
code here switches to the correct mode before executing the function. */
|
|
|
|
.text
|
|
.align 0
|
|
.force_thumb
|
|
|
|
.macro call_via register
|
|
THUMB_FUNC_START _call_via_\register
|
|
|
|
bx \register
|
|
nop
|
|
|
|
SIZE (_call_via_\register)
|
|
.endm
|
|
|
|
call_via r0
|
|
call_via r1
|
|
call_via r2
|
|
call_via r3
|
|
call_via r4
|
|
call_via r5
|
|
call_via r6
|
|
call_via r7
|
|
call_via r8
|
|
call_via r9
|
|
call_via sl
|
|
call_via fp
|
|
call_via ip
|
|
call_via sp
|
|
call_via lr
|
|
|
|
#endif /* L_call_via_rX */
|
|
|
|
/* Don't bother with the old interworking routines for Thumb-2. */
|
|
/* ??? Maybe only omit these on "m" variants. */
|
|
#if !defined(__thumb2__) && __ARM_ARCH_ISA_ARM
|
|
|
|
#if defined L_interwork_call_via_rX
|
|
|
|
/* These labels & instructions are used by the Arm/Thumb interworking code,
|
|
when the target address is in an unknown instruction set. The address
|
|
of function to be called is loaded into a register and then one of these
|
|
labels is called via a BL instruction. This puts the return address
|
|
into the link register with the bottom bit set, and the code here
|
|
switches to the correct mode before executing the function. Unfortunately
|
|
the target code cannot be relied upon to return via a BX instruction, so
|
|
instead we have to store the resturn address on the stack and allow the
|
|
called function to return here instead. Upon return we recover the real
|
|
return address and use a BX to get back to Thumb mode.
|
|
|
|
There are three variations of this code. The first,
|
|
_interwork_call_via_rN(), will push the return address onto the
|
|
stack and pop it in _arm_return(). It should only be used if all
|
|
arguments are passed in registers.
|
|
|
|
The second, _interwork_r7_call_via_rN(), instead stores the return
|
|
address at [r7, #-4]. It is the caller's responsibility to ensure
|
|
that this address is valid and contains no useful data.
|
|
|
|
The third, _interwork_r11_call_via_rN(), works in the same way but
|
|
uses r11 instead of r7. It is useful if the caller does not really
|
|
need a frame pointer. */
|
|
|
|
.text
|
|
.align 0
|
|
|
|
.code 32
|
|
.globl _arm_return
|
|
LSYM(Lstart_arm_return):
|
|
cfi_start LSYM(Lstart_arm_return) LSYM(Lend_arm_return)
|
|
cfi_push 0, 0xe, -0x8, 0x8
|
|
nop @ This nop is for the benefit of debuggers, so that
|
|
@ backtraces will use the correct unwind information.
|
|
_arm_return:
|
|
RETLDM unwind=LSYM(Lstart_arm_return)
|
|
cfi_end LSYM(Lend_arm_return)
|
|
|
|
.globl _arm_return_r7
|
|
_arm_return_r7:
|
|
ldr lr, [r7, #-4]
|
|
bx lr
|
|
|
|
.globl _arm_return_r11
|
|
_arm_return_r11:
|
|
ldr lr, [r11, #-4]
|
|
bx lr
|
|
|
|
.macro interwork_with_frame frame, register, name, return
|
|
.code 16
|
|
|
|
THUMB_FUNC_START \name
|
|
|
|
bx pc
|
|
nop
|
|
|
|
.code 32
|
|
tst \register, #1
|
|
streq lr, [\frame, #-4]
|
|
adreq lr, _arm_return_\frame
|
|
bx \register
|
|
|
|
SIZE (\name)
|
|
.endm
|
|
|
|
.macro interwork register
|
|
.code 16
|
|
|
|
THUMB_FUNC_START _interwork_call_via_\register
|
|
|
|
bx pc
|
|
nop
|
|
|
|
.code 32
|
|
.globl LSYM(Lchange_\register)
|
|
LSYM(Lchange_\register):
|
|
tst \register, #1
|
|
streq lr, [sp, #-8]!
|
|
adreq lr, _arm_return
|
|
bx \register
|
|
|
|
SIZE (_interwork_call_via_\register)
|
|
|
|
interwork_with_frame r7,\register,_interwork_r7_call_via_\register
|
|
interwork_with_frame r11,\register,_interwork_r11_call_via_\register
|
|
.endm
|
|
|
|
interwork r0
|
|
interwork r1
|
|
interwork r2
|
|
interwork r3
|
|
interwork r4
|
|
interwork r5
|
|
interwork r6
|
|
interwork r7
|
|
interwork r8
|
|
interwork r9
|
|
interwork sl
|
|
interwork fp
|
|
interwork ip
|
|
interwork sp
|
|
|
|
/* The LR case has to be handled a little differently... */
|
|
.code 16
|
|
|
|
THUMB_FUNC_START _interwork_call_via_lr
|
|
|
|
bx pc
|
|
nop
|
|
|
|
.code 32
|
|
.globl .Lchange_lr
|
|
.Lchange_lr:
|
|
tst lr, #1
|
|
stmeqdb r13!, {lr, pc}
|
|
mov ip, lr
|
|
adreq lr, _arm_return
|
|
bx ip
|
|
|
|
SIZE (_interwork_call_via_lr)
|
|
|
|
#endif /* L_interwork_call_via_rX */
|
|
#endif /* !__thumb2__ */
|
|
|
|
/* Functions to support compact pic switch tables in thumb1 state.
|
|
All these routines take an index into the table in r0. The
|
|
table is at LR & ~1 (but this must be rounded up in the case
|
|
of 32-bit entires). They are only permitted to clobber r12
|
|
and r14 and r0 must be preserved on exit. */
|
|
#ifdef L_thumb1_case_sqi
|
|
|
|
.text
|
|
.align 0
|
|
.force_thumb
|
|
.syntax unified
|
|
THUMB_FUNC_START __gnu_thumb1_case_sqi
|
|
push {r1}
|
|
mov r1, lr
|
|
lsrs r1, r1, #1
|
|
lsls r1, r1, #1
|
|
ldrsb r1, [r1, r0]
|
|
lsls r1, r1, #1
|
|
add lr, lr, r1
|
|
pop {r1}
|
|
bx lr
|
|
SIZE (__gnu_thumb1_case_sqi)
|
|
#endif
|
|
|
|
#ifdef L_thumb1_case_uqi
|
|
|
|
.text
|
|
.align 0
|
|
.force_thumb
|
|
.syntax unified
|
|
THUMB_FUNC_START __gnu_thumb1_case_uqi
|
|
push {r1}
|
|
mov r1, lr
|
|
lsrs r1, r1, #1
|
|
lsls r1, r1, #1
|
|
ldrb r1, [r1, r0]
|
|
lsls r1, r1, #1
|
|
add lr, lr, r1
|
|
pop {r1}
|
|
bx lr
|
|
SIZE (__gnu_thumb1_case_uqi)
|
|
#endif
|
|
|
|
#ifdef L_thumb1_case_shi
|
|
|
|
.text
|
|
.align 0
|
|
.force_thumb
|
|
.syntax unified
|
|
THUMB_FUNC_START __gnu_thumb1_case_shi
|
|
push {r0, r1}
|
|
mov r1, lr
|
|
lsrs r1, r1, #1
|
|
lsls r0, r0, #1
|
|
lsls r1, r1, #1
|
|
ldrsh r1, [r1, r0]
|
|
lsls r1, r1, #1
|
|
add lr, lr, r1
|
|
pop {r0, r1}
|
|
bx lr
|
|
SIZE (__gnu_thumb1_case_shi)
|
|
#endif
|
|
|
|
#ifdef L_thumb1_case_uhi
|
|
|
|
.text
|
|
.align 0
|
|
.force_thumb
|
|
.syntax unified
|
|
THUMB_FUNC_START __gnu_thumb1_case_uhi
|
|
push {r0, r1}
|
|
mov r1, lr
|
|
lsrs r1, r1, #1
|
|
lsls r0, r0, #1
|
|
lsls r1, r1, #1
|
|
ldrh r1, [r1, r0]
|
|
lsls r1, r1, #1
|
|
add lr, lr, r1
|
|
pop {r0, r1}
|
|
bx lr
|
|
SIZE (__gnu_thumb1_case_uhi)
|
|
#endif
|
|
|
|
#ifdef L_thumb1_case_si
|
|
|
|
.text
|
|
.align 0
|
|
.force_thumb
|
|
.syntax unified
|
|
THUMB_FUNC_START __gnu_thumb1_case_si
|
|
push {r0, r1}
|
|
mov r1, lr
|
|
adds.n r1, r1, #2 /* Align to word. */
|
|
lsrs r1, r1, #2
|
|
lsls r0, r0, #2
|
|
lsls r1, r1, #2
|
|
ldr r0, [r1, r0]
|
|
adds r0, r0, r1
|
|
mov lr, r0
|
|
pop {r0, r1}
|
|
mov pc, lr /* We know we were called from thumb code. */
|
|
SIZE (__gnu_thumb1_case_si)
|
|
#endif
|
|
|
|
#endif /* Arch supports thumb. */
|
|
|
|
.macro CFI_START_FUNCTION
|
|
.cfi_startproc
|
|
.cfi_remember_state
|
|
.endm
|
|
|
|
.macro CFI_END_FUNCTION
|
|
.cfi_restore_state
|
|
.cfi_endproc
|
|
.endm
|
|
|
|
#ifndef __symbian__
|
|
/* The condition here must match the one in gcc/config/arm/elf.h. */
|
|
#ifndef NOT_ISA_TARGET_32BIT
|
|
#include "ieee754-df.S"
|
|
#include "ieee754-sf.S"
|
|
#include "bpabi.S"
|
|
#else /* NOT_ISA_TARGET_32BIT */
|
|
#include "bpabi-v6m.S"
|
|
#endif /* NOT_ISA_TARGET_32BIT */
|
|
#endif /* !__symbian__ */
|