gcc/libgo/go/runtime/signal1_unix.go
Ian Lance Taylor 0d3dd8fb65 runtime: copy cgo support from Go 1.7 runtime
Remove support for _cgo_allocate.  It was removed from the gc
    toolchain in Go 1.5, so it is unlikely that anybody is trying to use it.
    
    Reviewed-on: https://go-review.googlesource.com/34557

From-SVN: r243805
2016-12-19 18:00:35 +00:00

338 lines
8.6 KiB
Go

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin dragonfly freebsd linux netbsd openbsd solaris
package runtime
import (
_ "unsafe" // For go:linkname.
)
// Temporary for gccgo's C code to call:
//go:linkname initsig runtime.initsig
//go:linkname crash runtime.crash
//go:linkname resetcpuprofiler runtime.resetcpuprofiler
//extern setitimer
func setitimer(which int32, new *_itimerval, old *_itimerval) int32
type sigTabT struct {
flags int32
name string
}
const (
_SIG_DFL uintptr = 0
_SIG_IGN uintptr = 1
)
// Stores the signal handlers registered before Go installed its own.
// These signal handlers will be invoked in cases where Go doesn't want to
// handle a particular signal (e.g., signal occurred on a non-Go thread).
// See sigfwdgo() for more information on when the signals are forwarded.
//
// Signal forwarding is currently available only on Darwin and Linux.
var fwdSig [_NSIG]uintptr
// sigmask represents a general signal mask compatible with the GOOS
// specific sigset types: the signal numbered x is represented by bit x-1
// to match the representation expected by sigprocmask.
type sigmask [(_NSIG + 31) / 32]uint32
// channels for synchronizing signal mask updates with the signal mask
// thread
var (
disableSigChan chan uint32
enableSigChan chan uint32
maskUpdatedChan chan struct{}
)
func init() {
// _NSIG is the number of signals on this operating system.
// sigtable should describe what to do for all the possible signals.
if len(sigtable) != _NSIG {
print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n")
throw("bad sigtable len")
}
}
var signalsOK bool
// Initialize signals.
// Called by libpreinit so runtime may not be initialized.
//go:nosplit
//go:nowritebarrierrec
func initsig(preinit bool) {
if preinit {
// preinit is only passed as true if isarchive should be true.
isarchive = true
}
if !preinit {
// It's now OK for signal handlers to run.
signalsOK = true
}
// For c-archive/c-shared this is called by libpreinit with
// preinit == true.
if (isarchive || islibrary) && !preinit {
return
}
for i := int32(0); i < _NSIG; i++ {
t := &sigtable[i]
if t.flags == 0 || t.flags&_SigDefault != 0 {
continue
}
fwdSig[i] = getsig(i)
if !sigInstallGoHandler(i) {
// Even if we are not installing a signal handler,
// set SA_ONSTACK if necessary.
if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN {
setsigstack(i)
}
continue
}
t.flags |= _SigHandling
setsig(i, getSigtramp(), true)
}
}
//go:nosplit
//go:nowritebarrierrec
func sigInstallGoHandler(sig int32) bool {
// For some signals, we respect an inherited SIG_IGN handler
// rather than insist on installing our own default handler.
// Even these signals can be fetched using the os/signal package.
switch sig {
case _SIGHUP, _SIGINT:
if fwdSig[sig] == _SIG_IGN {
return false
}
}
t := &sigtable[sig]
if t.flags&_SigSetStack != 0 {
return false
}
// When built using c-archive or c-shared, only install signal
// handlers for synchronous signals.
if (isarchive || islibrary) && t.flags&_SigPanic == 0 {
return false
}
return true
}
func sigenable(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
ensureSigM()
enableSigChan <- sig
<-maskUpdatedChan
if t.flags&_SigHandling == 0 {
t.flags |= _SigHandling
fwdSig[sig] = getsig(int32(sig))
setsig(int32(sig), getSigtramp(), true)
}
}
}
func sigdisable(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
ensureSigM()
disableSigChan <- sig
<-maskUpdatedChan
// If initsig does not install a signal handler for a
// signal, then to go back to the state before Notify
// we should remove the one we installed.
if !sigInstallGoHandler(int32(sig)) {
t.flags &^= _SigHandling
setsig(int32(sig), fwdSig[sig], true)
}
}
}
func sigignore(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
t.flags &^= _SigHandling
setsig(int32(sig), _SIG_IGN, true)
}
}
func resetcpuprofiler(hz int32) {
var it _itimerval
if hz == 0 {
setitimer(_ITIMER_PROF, &it, nil)
} else {
it.it_interval.tv_sec = 0
it.it_interval.set_usec(1000000 / hz)
it.it_value = it.it_interval
setitimer(_ITIMER_PROF, &it, nil)
}
_g_ := getg()
_g_.m.profilehz = hz
}
func sigpipe() {
if sigsend(_SIGPIPE) {
return
}
dieFromSignal(_SIGPIPE)
}
// dieFromSignal kills the program with a signal.
// This provides the expected exit status for the shell.
// This is only called with fatal signals expected to kill the process.
//go:nosplit
//go:nowritebarrierrec
func dieFromSignal(sig int32) {
setsig(sig, _SIG_DFL, false)
updatesigmask(sigmask{})
raise(sig)
// That should have killed us. On some systems, though, raise
// sends the signal to the whole process rather than to just
// the current thread, which means that the signal may not yet
// have been delivered. Give other threads a chance to run and
// pick up the signal.
osyield()
osyield()
osyield()
// If we are still somehow running, just exit with the wrong status.
exit(2)
}
// raisebadsignal is called when a signal is received on a non-Go
// thread, and the Go program does not want to handle it (that is, the
// program has not called os/signal.Notify for the signal).
func raisebadsignal(sig int32, c *sigctxt) {
if sig == _SIGPROF {
// Ignore profiling signals that arrive on non-Go threads.
return
}
var handler uintptr
if sig >= _NSIG {
handler = _SIG_DFL
} else {
handler = fwdSig[sig]
}
// Reset the signal handler and raise the signal.
// We are currently running inside a signal handler, so the
// signal is blocked. We need to unblock it before raising the
// signal, or the signal we raise will be ignored until we return
// from the signal handler. We know that the signal was unblocked
// before entering the handler, or else we would not have received
// it. That means that we don't have to worry about blocking it
// again.
unblocksig(sig)
setsig(sig, handler, false)
// If we're linked into a non-Go program we want to try to
// avoid modifying the original context in which the signal
// was raised. If the handler is the default, we know it
// is non-recoverable, so we don't have to worry about
// re-installing sighandler. At this point we can just
// return and the signal will be re-raised and caught by
// the default handler with the correct context.
if (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER {
return
}
raise(sig)
// If the signal didn't cause the program to exit, restore the
// Go signal handler and carry on.
//
// We may receive another instance of the signal before we
// restore the Go handler, but that is not so bad: we know
// that the Go program has been ignoring the signal.
setsig(sig, getSigtramp(), true)
}
func crash() {
dieFromSignal(_SIGABRT)
}
// ensureSigM starts one global, sleeping thread to make sure at least one thread
// is available to catch signals enabled for os/signal.
func ensureSigM() {
if maskUpdatedChan != nil {
return
}
maskUpdatedChan = make(chan struct{})
disableSigChan = make(chan uint32)
enableSigChan = make(chan uint32)
go func() {
// Signal masks are per-thread, so make sure this goroutine stays on one
// thread.
LockOSThread()
defer UnlockOSThread()
// The sigBlocked mask contains the signals not active for os/signal,
// initially all signals except the essential. When signal.Notify()/Stop is called,
// sigenable/sigdisable in turn notify this thread to update its signal
// mask accordingly.
var sigBlocked sigmask
for i := range sigBlocked {
sigBlocked[i] = ^uint32(0)
}
for i := range sigtable {
if sigtable[i].flags&_SigUnblock != 0 {
sigBlocked[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31)
}
}
updatesigmask(sigBlocked)
for {
select {
case sig := <-enableSigChan:
if b := sig - 1; sig > 0 {
sigBlocked[b/32] &^= (1 << (b & 31))
}
case sig := <-disableSigChan:
if b := sig - 1; sig > 0 {
sigBlocked[b/32] |= (1 << (b & 31))
}
}
updatesigmask(sigBlocked)
maskUpdatedChan <- struct{}{}
}
}()
}
// This runs on a foreign stack, without an m or a g. No stack split.
//go:nosplit
//go:norace
//go:nowritebarrierrec
func badsignal(sig uintptr, c *sigctxt) {
needm(0)
if !sigsend(uint32(sig)) {
// A foreign thread received the signal sig, and the
// Go code does not want to handle it.
raisebadsignal(int32(sig), c)
}
dropm()
}