2310 lines
61 KiB
C
2310 lines
61 KiB
C
/* RTL-level loop invariant motion.
|
||
Copyright (C) 2004-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by the
|
||
Free Software Foundation; either version 3, or (at your option) any
|
||
later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This implements the loop invariant motion pass. It is very simple
|
||
(no calls, no loads/stores, etc.). This should be sufficient to cleanup
|
||
things like address arithmetics -- other more complicated invariants should
|
||
be eliminated on GIMPLE either in tree-ssa-loop-im.c or in tree-ssa-pre.c.
|
||
|
||
We proceed loop by loop -- it is simpler than trying to handle things
|
||
globally and should not lose much. First we inspect all sets inside loop
|
||
and create a dependency graph on insns (saying "to move this insn, you must
|
||
also move the following insns").
|
||
|
||
We then need to determine what to move. We estimate the number of registers
|
||
used and move as many invariants as possible while we still have enough free
|
||
registers. We prefer the expensive invariants.
|
||
|
||
Then we move the selected invariants out of the loop, creating a new
|
||
temporaries for them if necessary. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "cfghooks.h"
|
||
#include "df.h"
|
||
#include "memmodel.h"
|
||
#include "tm_p.h"
|
||
#include "insn-config.h"
|
||
#include "regs.h"
|
||
#include "ira.h"
|
||
#include "recog.h"
|
||
#include "cfgrtl.h"
|
||
#include "cfgloop.h"
|
||
#include "expr.h"
|
||
#include "rtl-iter.h"
|
||
#include "dumpfile.h"
|
||
|
||
/* The data stored for the loop. */
|
||
|
||
class loop_data
|
||
{
|
||
public:
|
||
class loop *outermost_exit; /* The outermost exit of the loop. */
|
||
bool has_call; /* True if the loop contains a call. */
|
||
/* Maximal register pressure inside loop for given register class
|
||
(defined only for the pressure classes). */
|
||
int max_reg_pressure[N_REG_CLASSES];
|
||
/* Loop regs referenced and live pseudo-registers. */
|
||
bitmap_head regs_ref;
|
||
bitmap_head regs_live;
|
||
};
|
||
|
||
#define LOOP_DATA(LOOP) ((class loop_data *) (LOOP)->aux)
|
||
|
||
/* The description of an use. */
|
||
|
||
struct use
|
||
{
|
||
rtx *pos; /* Position of the use. */
|
||
rtx_insn *insn; /* The insn in that the use occurs. */
|
||
unsigned addr_use_p; /* Whether the use occurs in an address. */
|
||
struct use *next; /* Next use in the list. */
|
||
};
|
||
|
||
/* The description of a def. */
|
||
|
||
struct def
|
||
{
|
||
struct use *uses; /* The list of uses that are uniquely reached
|
||
by it. */
|
||
unsigned n_uses; /* Number of such uses. */
|
||
unsigned n_addr_uses; /* Number of uses in addresses. */
|
||
unsigned invno; /* The corresponding invariant. */
|
||
bool can_prop_to_addr_uses; /* True if the corresponding inv can be
|
||
propagated into its address uses. */
|
||
};
|
||
|
||
/* The data stored for each invariant. */
|
||
|
||
struct invariant
|
||
{
|
||
/* The number of the invariant. */
|
||
unsigned invno;
|
||
|
||
/* The number of the invariant with the same value. */
|
||
unsigned eqto;
|
||
|
||
/* The number of invariants which eqto this. */
|
||
unsigned eqno;
|
||
|
||
/* If we moved the invariant out of the loop, the original regno
|
||
that contained its value. */
|
||
int orig_regno;
|
||
|
||
/* If we moved the invariant out of the loop, the register that contains its
|
||
value. */
|
||
rtx reg;
|
||
|
||
/* The definition of the invariant. */
|
||
struct def *def;
|
||
|
||
/* The insn in that it is defined. */
|
||
rtx_insn *insn;
|
||
|
||
/* Whether it is always executed. */
|
||
bool always_executed;
|
||
|
||
/* Whether to move the invariant. */
|
||
bool move;
|
||
|
||
/* Whether the invariant is cheap when used as an address. */
|
||
bool cheap_address;
|
||
|
||
/* Cost of the invariant. */
|
||
unsigned cost;
|
||
|
||
/* Used for detecting already visited invariants during determining
|
||
costs of movements. */
|
||
unsigned stamp;
|
||
|
||
/* The invariants it depends on. */
|
||
bitmap depends_on;
|
||
};
|
||
|
||
/* Currently processed loop. */
|
||
static class loop *curr_loop;
|
||
|
||
/* Table of invariants indexed by the df_ref uid field. */
|
||
|
||
static unsigned int invariant_table_size = 0;
|
||
static struct invariant ** invariant_table;
|
||
|
||
/* Entry for hash table of invariant expressions. */
|
||
|
||
struct invariant_expr_entry
|
||
{
|
||
/* The invariant. */
|
||
struct invariant *inv;
|
||
|
||
/* Its value. */
|
||
rtx expr;
|
||
|
||
/* Its mode. */
|
||
machine_mode mode;
|
||
|
||
/* Its hash. */
|
||
hashval_t hash;
|
||
};
|
||
|
||
/* The actual stamp for marking already visited invariants during determining
|
||
costs of movements. */
|
||
|
||
static unsigned actual_stamp;
|
||
|
||
typedef struct invariant *invariant_p;
|
||
|
||
|
||
/* The invariants. */
|
||
|
||
static vec<invariant_p> invariants;
|
||
|
||
/* Check the size of the invariant table and realloc if necessary. */
|
||
|
||
static void
|
||
check_invariant_table_size (void)
|
||
{
|
||
if (invariant_table_size < DF_DEFS_TABLE_SIZE ())
|
||
{
|
||
unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
|
||
invariant_table = XRESIZEVEC (struct invariant *, invariant_table, new_size);
|
||
memset (&invariant_table[invariant_table_size], 0,
|
||
(new_size - invariant_table_size) * sizeof (struct invariant *));
|
||
invariant_table_size = new_size;
|
||
}
|
||
}
|
||
|
||
/* Test for possibility of invariantness of X. */
|
||
|
||
static bool
|
||
check_maybe_invariant (rtx x)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
int i, j;
|
||
const char *fmt;
|
||
|
||
switch (code)
|
||
{
|
||
CASE_CONST_ANY:
|
||
case SYMBOL_REF:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
return true;
|
||
|
||
case PC:
|
||
case CC0:
|
||
case UNSPEC_VOLATILE:
|
||
case CALL:
|
||
return false;
|
||
|
||
case REG:
|
||
return true;
|
||
|
||
case MEM:
|
||
/* Load/store motion is done elsewhere. ??? Perhaps also add it here?
|
||
It should not be hard, and might be faster than "elsewhere". */
|
||
|
||
/* Just handle the most trivial case where we load from an unchanging
|
||
location (most importantly, pic tables). */
|
||
if (MEM_READONLY_P (x) && !MEM_VOLATILE_P (x))
|
||
break;
|
||
|
||
return false;
|
||
|
||
case ASM_OPERANDS:
|
||
/* Don't mess with insns declared volatile. */
|
||
if (MEM_VOLATILE_P (x))
|
||
return false;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (!check_maybe_invariant (XEXP (x, i)))
|
||
return false;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (!check_maybe_invariant (XVECEXP (x, i, j)))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns the invariant definition for USE, or NULL if USE is not
|
||
invariant. */
|
||
|
||
static struct invariant *
|
||
invariant_for_use (df_ref use)
|
||
{
|
||
struct df_link *defs;
|
||
df_ref def;
|
||
basic_block bb = DF_REF_BB (use), def_bb;
|
||
|
||
if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
|
||
return NULL;
|
||
|
||
defs = DF_REF_CHAIN (use);
|
||
if (!defs || defs->next)
|
||
return NULL;
|
||
def = defs->ref;
|
||
check_invariant_table_size ();
|
||
if (!invariant_table[DF_REF_ID (def)])
|
||
return NULL;
|
||
|
||
def_bb = DF_REF_BB (def);
|
||
if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
|
||
return NULL;
|
||
return invariant_table[DF_REF_ID (def)];
|
||
}
|
||
|
||
/* Computes hash value for invariant expression X in INSN. */
|
||
|
||
static hashval_t
|
||
hash_invariant_expr_1 (rtx_insn *insn, rtx x)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
int i, j;
|
||
const char *fmt;
|
||
hashval_t val = code;
|
||
int do_not_record_p;
|
||
df_ref use;
|
||
struct invariant *inv;
|
||
|
||
switch (code)
|
||
{
|
||
CASE_CONST_ANY:
|
||
case SYMBOL_REF:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
|
||
|
||
case REG:
|
||
use = df_find_use (insn, x);
|
||
if (!use)
|
||
return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
|
||
inv = invariant_for_use (use);
|
||
if (!inv)
|
||
return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
|
||
|
||
gcc_assert (inv->eqto != ~0u);
|
||
return inv->eqto;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
val ^= hash_invariant_expr_1 (insn, XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
val ^= hash_invariant_expr_1 (insn, XVECEXP (x, i, j));
|
||
}
|
||
else if (fmt[i] == 'i' || fmt[i] == 'n')
|
||
val ^= XINT (x, i);
|
||
else if (fmt[i] == 'p')
|
||
val ^= constant_lower_bound (SUBREG_BYTE (x));
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Returns true if the invariant expressions E1 and E2 used in insns INSN1
|
||
and INSN2 have always the same value. */
|
||
|
||
static bool
|
||
invariant_expr_equal_p (rtx_insn *insn1, rtx e1, rtx_insn *insn2, rtx e2)
|
||
{
|
||
enum rtx_code code = GET_CODE (e1);
|
||
int i, j;
|
||
const char *fmt;
|
||
df_ref use1, use2;
|
||
struct invariant *inv1 = NULL, *inv2 = NULL;
|
||
rtx sub1, sub2;
|
||
|
||
/* If mode of only one of the operands is VOIDmode, it is not equivalent to
|
||
the other one. If both are VOIDmode, we rely on the caller of this
|
||
function to verify that their modes are the same. */
|
||
if (code != GET_CODE (e2) || GET_MODE (e1) != GET_MODE (e2))
|
||
return false;
|
||
|
||
switch (code)
|
||
{
|
||
CASE_CONST_ANY:
|
||
case SYMBOL_REF:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
return rtx_equal_p (e1, e2);
|
||
|
||
case REG:
|
||
use1 = df_find_use (insn1, e1);
|
||
use2 = df_find_use (insn2, e2);
|
||
if (use1)
|
||
inv1 = invariant_for_use (use1);
|
||
if (use2)
|
||
inv2 = invariant_for_use (use2);
|
||
|
||
if (!inv1 && !inv2)
|
||
return rtx_equal_p (e1, e2);
|
||
|
||
if (!inv1 || !inv2)
|
||
return false;
|
||
|
||
gcc_assert (inv1->eqto != ~0u);
|
||
gcc_assert (inv2->eqto != ~0u);
|
||
return inv1->eqto == inv2->eqto;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
sub1 = XEXP (e1, i);
|
||
sub2 = XEXP (e2, i);
|
||
|
||
if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
|
||
return false;
|
||
}
|
||
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
if (XVECLEN (e1, i) != XVECLEN (e2, i))
|
||
return false;
|
||
|
||
for (j = 0; j < XVECLEN (e1, i); j++)
|
||
{
|
||
sub1 = XVECEXP (e1, i, j);
|
||
sub2 = XVECEXP (e2, i, j);
|
||
|
||
if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
|
||
return false;
|
||
}
|
||
}
|
||
else if (fmt[i] == 'i' || fmt[i] == 'n')
|
||
{
|
||
if (XINT (e1, i) != XINT (e2, i))
|
||
return false;
|
||
}
|
||
else if (fmt[i] == 'p')
|
||
{
|
||
if (maybe_ne (SUBREG_BYTE (e1), SUBREG_BYTE (e2)))
|
||
return false;
|
||
}
|
||
/* Unhandled type of subexpression, we fail conservatively. */
|
||
else
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
struct invariant_expr_hasher : free_ptr_hash <invariant_expr_entry>
|
||
{
|
||
static inline hashval_t hash (const invariant_expr_entry *);
|
||
static inline bool equal (const invariant_expr_entry *,
|
||
const invariant_expr_entry *);
|
||
};
|
||
|
||
/* Returns hash value for invariant expression entry ENTRY. */
|
||
|
||
inline hashval_t
|
||
invariant_expr_hasher::hash (const invariant_expr_entry *entry)
|
||
{
|
||
return entry->hash;
|
||
}
|
||
|
||
/* Compares invariant expression entries ENTRY1 and ENTRY2. */
|
||
|
||
inline bool
|
||
invariant_expr_hasher::equal (const invariant_expr_entry *entry1,
|
||
const invariant_expr_entry *entry2)
|
||
{
|
||
if (entry1->mode != entry2->mode)
|
||
return 0;
|
||
|
||
return invariant_expr_equal_p (entry1->inv->insn, entry1->expr,
|
||
entry2->inv->insn, entry2->expr);
|
||
}
|
||
|
||
typedef hash_table<invariant_expr_hasher> invariant_htab_type;
|
||
|
||
/* Checks whether invariant with value EXPR in machine mode MODE is
|
||
recorded in EQ. If this is the case, return the invariant. Otherwise
|
||
insert INV to the table for this expression and return INV. */
|
||
|
||
static struct invariant *
|
||
find_or_insert_inv (invariant_htab_type *eq, rtx expr, machine_mode mode,
|
||
struct invariant *inv)
|
||
{
|
||
hashval_t hash = hash_invariant_expr_1 (inv->insn, expr);
|
||
struct invariant_expr_entry *entry;
|
||
struct invariant_expr_entry pentry;
|
||
invariant_expr_entry **slot;
|
||
|
||
pentry.expr = expr;
|
||
pentry.inv = inv;
|
||
pentry.mode = mode;
|
||
slot = eq->find_slot_with_hash (&pentry, hash, INSERT);
|
||
entry = *slot;
|
||
|
||
if (entry)
|
||
return entry->inv;
|
||
|
||
entry = XNEW (struct invariant_expr_entry);
|
||
entry->inv = inv;
|
||
entry->expr = expr;
|
||
entry->mode = mode;
|
||
entry->hash = hash;
|
||
*slot = entry;
|
||
|
||
return inv;
|
||
}
|
||
|
||
/* Finds invariants identical to INV and records the equivalence. EQ is the
|
||
hash table of the invariants. */
|
||
|
||
static void
|
||
find_identical_invariants (invariant_htab_type *eq, struct invariant *inv)
|
||
{
|
||
unsigned depno;
|
||
bitmap_iterator bi;
|
||
struct invariant *dep;
|
||
rtx expr, set;
|
||
machine_mode mode;
|
||
struct invariant *tmp;
|
||
|
||
if (inv->eqto != ~0u)
|
||
return;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
|
||
{
|
||
dep = invariants[depno];
|
||
find_identical_invariants (eq, dep);
|
||
}
|
||
|
||
set = single_set (inv->insn);
|
||
expr = SET_SRC (set);
|
||
mode = GET_MODE (expr);
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (SET_DEST (set));
|
||
|
||
tmp = find_or_insert_inv (eq, expr, mode, inv);
|
||
inv->eqto = tmp->invno;
|
||
|
||
if (tmp->invno != inv->invno && inv->always_executed)
|
||
tmp->eqno++;
|
||
|
||
if (dump_file && inv->eqto != inv->invno)
|
||
fprintf (dump_file,
|
||
"Invariant %d is equivalent to invariant %d.\n",
|
||
inv->invno, inv->eqto);
|
||
}
|
||
|
||
/* Find invariants with the same value and record the equivalences. */
|
||
|
||
static void
|
||
merge_identical_invariants (void)
|
||
{
|
||
unsigned i;
|
||
struct invariant *inv;
|
||
invariant_htab_type eq (invariants.length ());
|
||
|
||
FOR_EACH_VEC_ELT (invariants, i, inv)
|
||
find_identical_invariants (&eq, inv);
|
||
}
|
||
|
||
/* Determines the basic blocks inside LOOP that are always executed and
|
||
stores their bitmap to ALWAYS_REACHED. MAY_EXIT is a bitmap of
|
||
basic blocks that may either exit the loop, or contain the call that
|
||
does not have to return. BODY is body of the loop obtained by
|
||
get_loop_body_in_dom_order. */
|
||
|
||
static void
|
||
compute_always_reached (class loop *loop, basic_block *body,
|
||
bitmap may_exit, bitmap always_reached)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
if (dominated_by_p (CDI_DOMINATORS, loop->latch, body[i]))
|
||
bitmap_set_bit (always_reached, i);
|
||
|
||
if (bitmap_bit_p (may_exit, i))
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Finds exits out of the LOOP with body BODY. Marks blocks in that we may
|
||
exit the loop by cfg edge to HAS_EXIT and MAY_EXIT. In MAY_EXIT
|
||
additionally mark blocks that may exit due to a call. */
|
||
|
||
static void
|
||
find_exits (class loop *loop, basic_block *body,
|
||
bitmap may_exit, bitmap has_exit)
|
||
{
|
||
unsigned i;
|
||
edge_iterator ei;
|
||
edge e;
|
||
class loop *outermost_exit = loop, *aexit;
|
||
bool has_call = false;
|
||
rtx_insn *insn;
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
if (body[i]->loop_father == loop)
|
||
{
|
||
FOR_BB_INSNS (body[i], insn)
|
||
{
|
||
if (CALL_P (insn)
|
||
&& (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
|
||
|| !RTL_CONST_OR_PURE_CALL_P (insn)))
|
||
{
|
||
has_call = true;
|
||
bitmap_set_bit (may_exit, i);
|
||
break;
|
||
}
|
||
}
|
||
|
||
FOR_EACH_EDGE (e, ei, body[i]->succs)
|
||
{
|
||
if (! flow_bb_inside_loop_p (loop, e->dest))
|
||
{
|
||
bitmap_set_bit (may_exit, i);
|
||
bitmap_set_bit (has_exit, i);
|
||
outermost_exit = find_common_loop (outermost_exit,
|
||
e->dest->loop_father);
|
||
}
|
||
/* If we enter a subloop that might never terminate treat
|
||
it like a possible exit. */
|
||
if (flow_loop_nested_p (loop, e->dest->loop_father))
|
||
bitmap_set_bit (may_exit, i);
|
||
}
|
||
continue;
|
||
}
|
||
|
||
/* Use the data stored for the subloop to decide whether we may exit
|
||
through it. It is sufficient to do this for header of the loop,
|
||
as other basic blocks inside it must be dominated by it. */
|
||
if (body[i]->loop_father->header != body[i])
|
||
continue;
|
||
|
||
if (LOOP_DATA (body[i]->loop_father)->has_call)
|
||
{
|
||
has_call = true;
|
||
bitmap_set_bit (may_exit, i);
|
||
}
|
||
aexit = LOOP_DATA (body[i]->loop_father)->outermost_exit;
|
||
if (aexit != loop)
|
||
{
|
||
bitmap_set_bit (may_exit, i);
|
||
bitmap_set_bit (has_exit, i);
|
||
|
||
if (flow_loop_nested_p (aexit, outermost_exit))
|
||
outermost_exit = aexit;
|
||
}
|
||
}
|
||
|
||
if (loop->aux == NULL)
|
||
{
|
||
loop->aux = xcalloc (1, sizeof (class loop_data));
|
||
bitmap_initialize (&LOOP_DATA (loop)->regs_ref, ®_obstack);
|
||
bitmap_initialize (&LOOP_DATA (loop)->regs_live, ®_obstack);
|
||
}
|
||
LOOP_DATA (loop)->outermost_exit = outermost_exit;
|
||
LOOP_DATA (loop)->has_call = has_call;
|
||
}
|
||
|
||
/* Check whether we may assign a value to X from a register. */
|
||
|
||
static bool
|
||
may_assign_reg_p (rtx x)
|
||
{
|
||
return (GET_MODE (x) != VOIDmode
|
||
&& GET_MODE (x) != BLKmode
|
||
&& can_copy_p (GET_MODE (x))
|
||
/* Do not mess with the frame pointer adjustments that can
|
||
be generated e.g. by expand_builtin_setjmp_receiver. */
|
||
&& x != frame_pointer_rtx
|
||
&& (!REG_P (x)
|
||
|| !HARD_REGISTER_P (x)
|
||
|| REGNO_REG_CLASS (REGNO (x)) != NO_REGS));
|
||
}
|
||
|
||
/* Finds definitions that may correspond to invariants in LOOP with body
|
||
BODY. */
|
||
|
||
static void
|
||
find_defs (class loop *loop)
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file,
|
||
"*****starting processing of loop %d ******\n",
|
||
loop->num);
|
||
}
|
||
|
||
df_chain_add_problem (DF_UD_CHAIN);
|
||
df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
|
||
df_analyze_loop (loop);
|
||
check_invariant_table_size ();
|
||
|
||
if (dump_file)
|
||
{
|
||
df_dump_region (dump_file);
|
||
fprintf (dump_file,
|
||
"*****ending processing of loop %d ******\n",
|
||
loop->num);
|
||
}
|
||
}
|
||
|
||
/* Creates a new invariant for definition DEF in INSN, depending on invariants
|
||
in DEPENDS_ON. ALWAYS_EXECUTED is true if the insn is always executed,
|
||
unless the program ends due to a function call. The newly created invariant
|
||
is returned. */
|
||
|
||
static struct invariant *
|
||
create_new_invariant (struct def *def, rtx_insn *insn, bitmap depends_on,
|
||
bool always_executed)
|
||
{
|
||
struct invariant *inv = XNEW (struct invariant);
|
||
rtx set = single_set (insn);
|
||
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
|
||
|
||
inv->def = def;
|
||
inv->always_executed = always_executed;
|
||
inv->depends_on = depends_on;
|
||
|
||
/* If the set is simple, usually by moving it we move the whole store out of
|
||
the loop. Otherwise we save only cost of the computation. */
|
||
if (def)
|
||
{
|
||
inv->cost = set_rtx_cost (set, speed);
|
||
/* ??? Try to determine cheapness of address computation. Unfortunately
|
||
the address cost is only a relative measure, we can't really compare
|
||
it with any absolute number, but only with other address costs.
|
||
But here we don't have any other addresses, so compare with a magic
|
||
number anyway. It has to be large enough to not regress PR33928
|
||
(by avoiding to move reg+8,reg+16,reg+24 invariants), but small
|
||
enough to not regress 410.bwaves either (by still moving reg+reg
|
||
invariants).
|
||
See http://gcc.gnu.org/ml/gcc-patches/2009-10/msg01210.html . */
|
||
if (SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set))))
|
||
inv->cheap_address = address_cost (SET_SRC (set), word_mode,
|
||
ADDR_SPACE_GENERIC, speed) < 3;
|
||
else
|
||
inv->cheap_address = false;
|
||
}
|
||
else
|
||
{
|
||
inv->cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)),
|
||
speed);
|
||
inv->cheap_address = false;
|
||
}
|
||
|
||
inv->move = false;
|
||
inv->reg = NULL_RTX;
|
||
inv->orig_regno = -1;
|
||
inv->stamp = 0;
|
||
inv->insn = insn;
|
||
|
||
inv->invno = invariants.length ();
|
||
inv->eqto = ~0u;
|
||
|
||
/* Itself. */
|
||
inv->eqno = 1;
|
||
|
||
if (def)
|
||
def->invno = inv->invno;
|
||
invariants.safe_push (inv);
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file,
|
||
"Set in insn %d is invariant (%d), cost %d, depends on ",
|
||
INSN_UID (insn), inv->invno, inv->cost);
|
||
dump_bitmap (dump_file, inv->depends_on);
|
||
}
|
||
|
||
return inv;
|
||
}
|
||
|
||
/* Return a canonical version of X for the address, from the point of view,
|
||
that all multiplications are represented as MULT instead of the multiply
|
||
by a power of 2 being represented as ASHIFT.
|
||
|
||
Callers should prepare a copy of X because this function may modify it
|
||
in place. */
|
||
|
||
static void
|
||
canonicalize_address_mult (rtx x)
|
||
{
|
||
subrtx_var_iterator::array_type array;
|
||
FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
|
||
{
|
||
rtx sub = *iter;
|
||
scalar_int_mode sub_mode;
|
||
if (is_a <scalar_int_mode> (GET_MODE (sub), &sub_mode)
|
||
&& GET_CODE (sub) == ASHIFT
|
||
&& CONST_INT_P (XEXP (sub, 1))
|
||
&& INTVAL (XEXP (sub, 1)) < GET_MODE_BITSIZE (sub_mode)
|
||
&& INTVAL (XEXP (sub, 1)) >= 0)
|
||
{
|
||
HOST_WIDE_INT shift = INTVAL (XEXP (sub, 1));
|
||
PUT_CODE (sub, MULT);
|
||
XEXP (sub, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift, sub_mode);
|
||
iter.skip_subrtxes ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Maximum number of sub expressions in address. We set it to
|
||
a small integer since it's unlikely to have a complicated
|
||
address expression. */
|
||
|
||
#define MAX_CANON_ADDR_PARTS (5)
|
||
|
||
/* Collect sub expressions in address X with PLUS as the seperator.
|
||
Sub expressions are stored in vector ADDR_PARTS. */
|
||
|
||
static void
|
||
collect_address_parts (rtx x, vec<rtx> *addr_parts)
|
||
{
|
||
subrtx_var_iterator::array_type array;
|
||
FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
|
||
{
|
||
rtx sub = *iter;
|
||
|
||
if (GET_CODE (sub) != PLUS)
|
||
{
|
||
addr_parts->safe_push (sub);
|
||
iter.skip_subrtxes ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Compare function for sorting sub expressions X and Y based on
|
||
precedence defined for communitive operations. */
|
||
|
||
static int
|
||
compare_address_parts (const void *x, const void *y)
|
||
{
|
||
const rtx *rx = (const rtx *)x;
|
||
const rtx *ry = (const rtx *)y;
|
||
int px = commutative_operand_precedence (*rx);
|
||
int py = commutative_operand_precedence (*ry);
|
||
|
||
return (py - px);
|
||
}
|
||
|
||
/* Return a canonical version address for X by following steps:
|
||
1) Rewrite ASHIFT into MULT recursively.
|
||
2) Divide address into sub expressions with PLUS as the
|
||
separator.
|
||
3) Sort sub expressions according to precedence defined
|
||
for communative operations.
|
||
4) Simplify CONST_INT_P sub expressions.
|
||
5) Create new canonicalized address and return.
|
||
Callers should prepare a copy of X because this function may
|
||
modify it in place. */
|
||
|
||
static rtx
|
||
canonicalize_address (rtx x)
|
||
{
|
||
rtx res;
|
||
unsigned int i, j;
|
||
machine_mode mode = GET_MODE (x);
|
||
auto_vec<rtx, MAX_CANON_ADDR_PARTS> addr_parts;
|
||
|
||
/* Rewrite ASHIFT into MULT. */
|
||
canonicalize_address_mult (x);
|
||
/* Divide address into sub expressions. */
|
||
collect_address_parts (x, &addr_parts);
|
||
/* Unlikely to have very complicated address. */
|
||
if (addr_parts.length () < 2
|
||
|| addr_parts.length () > MAX_CANON_ADDR_PARTS)
|
||
return x;
|
||
|
||
/* Sort sub expressions according to canonicalization precedence. */
|
||
addr_parts.qsort (compare_address_parts);
|
||
|
||
/* Simplify all constant int summary if possible. */
|
||
for (i = 0; i < addr_parts.length (); i++)
|
||
if (CONST_INT_P (addr_parts[i]))
|
||
break;
|
||
|
||
for (j = i + 1; j < addr_parts.length (); j++)
|
||
{
|
||
gcc_assert (CONST_INT_P (addr_parts[j]));
|
||
addr_parts[i] = simplify_gen_binary (PLUS, mode,
|
||
addr_parts[i],
|
||
addr_parts[j]);
|
||
}
|
||
|
||
/* Chain PLUS operators to the left for !CONST_INT_P sub expressions. */
|
||
res = addr_parts[0];
|
||
for (j = 1; j < i; j++)
|
||
res = simplify_gen_binary (PLUS, mode, res, addr_parts[j]);
|
||
|
||
/* Pickup the last CONST_INT_P sub expression. */
|
||
if (i < addr_parts.length ())
|
||
res = simplify_gen_binary (PLUS, mode, res, addr_parts[i]);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Given invariant DEF and its address USE, check if the corresponding
|
||
invariant expr can be propagated into the use or not. */
|
||
|
||
static bool
|
||
inv_can_prop_to_addr_use (struct def *def, df_ref use)
|
||
{
|
||
struct invariant *inv;
|
||
rtx *pos = DF_REF_REAL_LOC (use), def_set, use_set;
|
||
rtx_insn *use_insn = DF_REF_INSN (use);
|
||
rtx_insn *def_insn;
|
||
bool ok;
|
||
|
||
inv = invariants[def->invno];
|
||
/* No need to check if address expression is expensive. */
|
||
if (!inv->cheap_address)
|
||
return false;
|
||
|
||
def_insn = inv->insn;
|
||
def_set = single_set (def_insn);
|
||
if (!def_set)
|
||
return false;
|
||
|
||
validate_unshare_change (use_insn, pos, SET_SRC (def_set), true);
|
||
ok = verify_changes (0);
|
||
/* Try harder with canonicalization in address expression. */
|
||
if (!ok && (use_set = single_set (use_insn)) != NULL_RTX)
|
||
{
|
||
rtx src, dest, mem = NULL_RTX;
|
||
|
||
src = SET_SRC (use_set);
|
||
dest = SET_DEST (use_set);
|
||
if (MEM_P (src))
|
||
mem = src;
|
||
else if (MEM_P (dest))
|
||
mem = dest;
|
||
|
||
if (mem != NULL_RTX
|
||
&& !memory_address_addr_space_p (GET_MODE (mem),
|
||
XEXP (mem, 0),
|
||
MEM_ADDR_SPACE (mem)))
|
||
{
|
||
rtx addr = canonicalize_address (copy_rtx (XEXP (mem, 0)));
|
||
if (memory_address_addr_space_p (GET_MODE (mem),
|
||
addr, MEM_ADDR_SPACE (mem)))
|
||
ok = true;
|
||
}
|
||
}
|
||
cancel_changes (0);
|
||
return ok;
|
||
}
|
||
|
||
/* Record USE at DEF. */
|
||
|
||
static void
|
||
record_use (struct def *def, df_ref use)
|
||
{
|
||
struct use *u = XNEW (struct use);
|
||
|
||
u->pos = DF_REF_REAL_LOC (use);
|
||
u->insn = DF_REF_INSN (use);
|
||
u->addr_use_p = (DF_REF_TYPE (use) == DF_REF_REG_MEM_LOAD
|
||
|| DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE);
|
||
u->next = def->uses;
|
||
def->uses = u;
|
||
def->n_uses++;
|
||
if (u->addr_use_p)
|
||
{
|
||
/* Initialize propagation information if this is the first addr
|
||
use of the inv def. */
|
||
if (def->n_addr_uses == 0)
|
||
def->can_prop_to_addr_uses = true;
|
||
|
||
def->n_addr_uses++;
|
||
if (def->can_prop_to_addr_uses && !inv_can_prop_to_addr_use (def, use))
|
||
def->can_prop_to_addr_uses = false;
|
||
}
|
||
}
|
||
|
||
/* Finds the invariants USE depends on and store them to the DEPENDS_ON
|
||
bitmap. Returns true if all dependencies of USE are known to be
|
||
loop invariants, false otherwise. */
|
||
|
||
static bool
|
||
check_dependency (basic_block bb, df_ref use, bitmap depends_on)
|
||
{
|
||
df_ref def;
|
||
basic_block def_bb;
|
||
struct df_link *defs;
|
||
struct def *def_data;
|
||
struct invariant *inv;
|
||
|
||
if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
|
||
return false;
|
||
|
||
defs = DF_REF_CHAIN (use);
|
||
if (!defs)
|
||
{
|
||
unsigned int regno = DF_REF_REGNO (use);
|
||
|
||
/* If this is the use of an uninitialized argument register that is
|
||
likely to be spilled, do not move it lest this might extend its
|
||
lifetime and cause reload to die. This can occur for a call to
|
||
a function taking complex number arguments and moving the insns
|
||
preparing the arguments without moving the call itself wouldn't
|
||
gain much in practice. */
|
||
if ((DF_REF_FLAGS (use) & DF_HARD_REG_LIVE)
|
||
&& FUNCTION_ARG_REGNO_P (regno)
|
||
&& targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
if (defs->next)
|
||
return false;
|
||
|
||
def = defs->ref;
|
||
check_invariant_table_size ();
|
||
inv = invariant_table[DF_REF_ID (def)];
|
||
if (!inv)
|
||
return false;
|
||
|
||
def_data = inv->def;
|
||
gcc_assert (def_data != NULL);
|
||
|
||
def_bb = DF_REF_BB (def);
|
||
/* Note that in case bb == def_bb, we know that the definition
|
||
dominates insn, because def has invariant_table[DF_REF_ID(def)]
|
||
defined and we process the insns in the basic block bb
|
||
sequentially. */
|
||
if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
|
||
return false;
|
||
|
||
bitmap_set_bit (depends_on, def_data->invno);
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Finds the invariants INSN depends on and store them to the DEPENDS_ON
|
||
bitmap. Returns true if all dependencies of INSN are known to be
|
||
loop invariants, false otherwise. */
|
||
|
||
static bool
|
||
check_dependencies (rtx_insn *insn, bitmap depends_on)
|
||
{
|
||
struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
|
||
df_ref use;
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
|
||
FOR_EACH_INSN_INFO_USE (use, insn_info)
|
||
if (!check_dependency (bb, use, depends_on))
|
||
return false;
|
||
FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
|
||
if (!check_dependency (bb, use, depends_on))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Pre-check candidate DEST to skip the one which cannot make a valid insn
|
||
during move_invariant_reg. SIMPLE is to skip HARD_REGISTER. */
|
||
static bool
|
||
pre_check_invariant_p (bool simple, rtx dest)
|
||
{
|
||
if (simple && REG_P (dest) && DF_REG_DEF_COUNT (REGNO (dest)) > 1)
|
||
{
|
||
df_ref use;
|
||
unsigned int i = REGNO (dest);
|
||
struct df_insn_info *insn_info;
|
||
df_ref def_rec;
|
||
|
||
for (use = DF_REG_USE_CHAIN (i); use; use = DF_REF_NEXT_REG (use))
|
||
{
|
||
rtx_insn *ref = DF_REF_INSN (use);
|
||
insn_info = DF_INSN_INFO_GET (ref);
|
||
|
||
FOR_EACH_INSN_INFO_DEF (def_rec, insn_info)
|
||
if (DF_REF_REGNO (def_rec) == i)
|
||
{
|
||
/* Multi definitions at this stage, most likely are due to
|
||
instruction constraints, which requires both read and write
|
||
on the same register. Since move_invariant_reg is not
|
||
powerful enough to handle such cases, just ignore the INV
|
||
and leave the chance to others. */
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Finds invariant in INSN. ALWAYS_REACHED is true if the insn is always
|
||
executed. ALWAYS_EXECUTED is true if the insn is always executed,
|
||
unless the program ends due to a function call. */
|
||
|
||
static void
|
||
find_invariant_insn (rtx_insn *insn, bool always_reached, bool always_executed)
|
||
{
|
||
df_ref ref;
|
||
struct def *def;
|
||
bitmap depends_on;
|
||
rtx set, dest;
|
||
bool simple = true;
|
||
struct invariant *inv;
|
||
|
||
/* We can't move a CC0 setter without the user. */
|
||
if (HAVE_cc0 && sets_cc0_p (insn))
|
||
return;
|
||
|
||
/* Jumps have control flow side-effects. */
|
||
if (JUMP_P (insn))
|
||
return;
|
||
|
||
set = single_set (insn);
|
||
if (!set)
|
||
return;
|
||
dest = SET_DEST (set);
|
||
|
||
if (!REG_P (dest)
|
||
|| HARD_REGISTER_P (dest))
|
||
simple = false;
|
||
|
||
if (!may_assign_reg_p (dest)
|
||
|| !pre_check_invariant_p (simple, dest)
|
||
|| !check_maybe_invariant (SET_SRC (set)))
|
||
return;
|
||
|
||
/* If the insn can throw exception, we cannot move it at all without changing
|
||
cfg. */
|
||
if (can_throw_internal (insn))
|
||
return;
|
||
|
||
/* We cannot make trapping insn executed, unless it was executed before. */
|
||
if (may_trap_or_fault_p (PATTERN (insn)) && !always_reached)
|
||
return;
|
||
|
||
depends_on = BITMAP_ALLOC (NULL);
|
||
if (!check_dependencies (insn, depends_on))
|
||
{
|
||
BITMAP_FREE (depends_on);
|
||
return;
|
||
}
|
||
|
||
if (simple)
|
||
def = XCNEW (struct def);
|
||
else
|
||
def = NULL;
|
||
|
||
inv = create_new_invariant (def, insn, depends_on, always_executed);
|
||
|
||
if (simple)
|
||
{
|
||
ref = df_find_def (insn, dest);
|
||
check_invariant_table_size ();
|
||
invariant_table[DF_REF_ID (ref)] = inv;
|
||
}
|
||
}
|
||
|
||
/* Record registers used in INSN that have a unique invariant definition. */
|
||
|
||
static void
|
||
record_uses (rtx_insn *insn)
|
||
{
|
||
struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
|
||
df_ref use;
|
||
struct invariant *inv;
|
||
|
||
FOR_EACH_INSN_INFO_USE (use, insn_info)
|
||
{
|
||
inv = invariant_for_use (use);
|
||
if (inv)
|
||
record_use (inv->def, use);
|
||
}
|
||
FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
|
||
{
|
||
inv = invariant_for_use (use);
|
||
if (inv)
|
||
record_use (inv->def, use);
|
||
}
|
||
}
|
||
|
||
/* Finds invariants in INSN. ALWAYS_REACHED is true if the insn is always
|
||
executed. ALWAYS_EXECUTED is true if the insn is always executed,
|
||
unless the program ends due to a function call. */
|
||
|
||
static void
|
||
find_invariants_insn (rtx_insn *insn, bool always_reached, bool always_executed)
|
||
{
|
||
find_invariant_insn (insn, always_reached, always_executed);
|
||
record_uses (insn);
|
||
}
|
||
|
||
/* Finds invariants in basic block BB. ALWAYS_REACHED is true if the
|
||
basic block is always executed. ALWAYS_EXECUTED is true if the basic
|
||
block is always executed, unless the program ends due to a function
|
||
call. */
|
||
|
||
static void
|
||
find_invariants_bb (basic_block bb, bool always_reached, bool always_executed)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (!NONDEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
find_invariants_insn (insn, always_reached, always_executed);
|
||
|
||
if (always_reached
|
||
&& CALL_P (insn)
|
||
&& (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
|
||
|| ! RTL_CONST_OR_PURE_CALL_P (insn)))
|
||
always_reached = false;
|
||
}
|
||
}
|
||
|
||
/* Finds invariants in LOOP with body BODY. ALWAYS_REACHED is the bitmap of
|
||
basic blocks in BODY that are always executed. ALWAYS_EXECUTED is the
|
||
bitmap of basic blocks in BODY that are always executed unless the program
|
||
ends due to a function call. */
|
||
|
||
static void
|
||
find_invariants_body (class loop *loop, basic_block *body,
|
||
bitmap always_reached, bitmap always_executed)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
find_invariants_bb (body[i],
|
||
bitmap_bit_p (always_reached, i),
|
||
bitmap_bit_p (always_executed, i));
|
||
}
|
||
|
||
/* Finds invariants in LOOP. */
|
||
|
||
static void
|
||
find_invariants (class loop *loop)
|
||
{
|
||
auto_bitmap may_exit;
|
||
auto_bitmap always_reached;
|
||
auto_bitmap has_exit;
|
||
auto_bitmap always_executed;
|
||
basic_block *body = get_loop_body_in_dom_order (loop);
|
||
|
||
find_exits (loop, body, may_exit, has_exit);
|
||
compute_always_reached (loop, body, may_exit, always_reached);
|
||
compute_always_reached (loop, body, has_exit, always_executed);
|
||
|
||
find_defs (loop);
|
||
find_invariants_body (loop, body, always_reached, always_executed);
|
||
merge_identical_invariants ();
|
||
|
||
free (body);
|
||
}
|
||
|
||
/* Frees a list of uses USE. */
|
||
|
||
static void
|
||
free_use_list (struct use *use)
|
||
{
|
||
struct use *next;
|
||
|
||
for (; use; use = next)
|
||
{
|
||
next = use->next;
|
||
free (use);
|
||
}
|
||
}
|
||
|
||
/* Return pressure class and number of hard registers (through *NREGS)
|
||
for destination of INSN. */
|
||
static enum reg_class
|
||
get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
|
||
{
|
||
rtx reg;
|
||
enum reg_class pressure_class;
|
||
rtx set = single_set (insn);
|
||
|
||
/* Considered invariant insns have only one set. */
|
||
gcc_assert (set != NULL_RTX);
|
||
reg = SET_DEST (set);
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
if (MEM_P (reg))
|
||
{
|
||
*nregs = 0;
|
||
pressure_class = NO_REGS;
|
||
}
|
||
else
|
||
{
|
||
if (! REG_P (reg))
|
||
reg = NULL_RTX;
|
||
if (reg == NULL_RTX)
|
||
pressure_class = GENERAL_REGS;
|
||
else
|
||
{
|
||
pressure_class = reg_allocno_class (REGNO (reg));
|
||
pressure_class = ira_pressure_class_translate[pressure_class];
|
||
}
|
||
*nregs
|
||
= ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
|
||
}
|
||
return pressure_class;
|
||
}
|
||
|
||
/* Calculates cost and number of registers needed for moving invariant INV
|
||
out of the loop and stores them to *COST and *REGS_NEEDED. *CL will be
|
||
the REG_CLASS of INV. Return
|
||
-1: if INV is invalid.
|
||
0: if INV and its depends_on have same reg_class
|
||
1: if INV and its depends_on have different reg_classes. */
|
||
|
||
static int
|
||
get_inv_cost (struct invariant *inv, int *comp_cost, unsigned *regs_needed,
|
||
enum reg_class *cl)
|
||
{
|
||
int i, acomp_cost;
|
||
unsigned aregs_needed[N_REG_CLASSES];
|
||
unsigned depno;
|
||
struct invariant *dep;
|
||
bitmap_iterator bi;
|
||
int ret = 1;
|
||
|
||
/* Find the representative of the class of the equivalent invariants. */
|
||
inv = invariants[inv->eqto];
|
||
|
||
*comp_cost = 0;
|
||
if (! flag_ira_loop_pressure)
|
||
regs_needed[0] = 0;
|
||
else
|
||
{
|
||
for (i = 0; i < ira_pressure_classes_num; i++)
|
||
regs_needed[ira_pressure_classes[i]] = 0;
|
||
}
|
||
|
||
if (inv->move
|
||
|| inv->stamp == actual_stamp)
|
||
return -1;
|
||
inv->stamp = actual_stamp;
|
||
|
||
if (! flag_ira_loop_pressure)
|
||
regs_needed[0]++;
|
||
else
|
||
{
|
||
int nregs;
|
||
enum reg_class pressure_class;
|
||
|
||
pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
|
||
regs_needed[pressure_class] += nregs;
|
||
*cl = pressure_class;
|
||
ret = 0;
|
||
}
|
||
|
||
if (!inv->cheap_address
|
||
|| inv->def->n_uses == 0
|
||
|| inv->def->n_addr_uses < inv->def->n_uses
|
||
/* Count cost if the inv can't be propagated into address uses. */
|
||
|| !inv->def->can_prop_to_addr_uses)
|
||
(*comp_cost) += inv->cost * inv->eqno;
|
||
|
||
#ifdef STACK_REGS
|
||
{
|
||
/* Hoisting constant pool constants into stack regs may cost more than
|
||
just single register. On x87, the balance is affected both by the
|
||
small number of FP registers, and by its register stack organization,
|
||
that forces us to add compensation code in and around the loop to
|
||
shuffle the operands to the top of stack before use, and pop them
|
||
from the stack after the loop finishes.
|
||
|
||
To model this effect, we increase the number of registers needed for
|
||
stack registers by two: one register push, and one register pop.
|
||
This usually has the effect that FP constant loads from the constant
|
||
pool are not moved out of the loop.
|
||
|
||
Note that this also means that dependent invariants cannot be moved.
|
||
However, the primary purpose of this pass is to move loop invariant
|
||
address arithmetic out of loops, and address arithmetic that depends
|
||
on floating point constants is unlikely to ever occur. */
|
||
rtx set = single_set (inv->insn);
|
||
if (set
|
||
&& IS_STACK_MODE (GET_MODE (SET_SRC (set)))
|
||
&& constant_pool_constant_p (SET_SRC (set)))
|
||
{
|
||
if (flag_ira_loop_pressure)
|
||
regs_needed[ira_stack_reg_pressure_class] += 2;
|
||
else
|
||
regs_needed[0] += 2;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
|
||
{
|
||
bool check_p;
|
||
enum reg_class dep_cl = ALL_REGS;
|
||
int dep_ret;
|
||
|
||
dep = invariants[depno];
|
||
|
||
/* If DEP is moved out of the loop, it is not a depends_on any more. */
|
||
if (dep->move)
|
||
continue;
|
||
|
||
dep_ret = get_inv_cost (dep, &acomp_cost, aregs_needed, &dep_cl);
|
||
|
||
if (! flag_ira_loop_pressure)
|
||
check_p = aregs_needed[0] != 0;
|
||
else
|
||
{
|
||
for (i = 0; i < ira_pressure_classes_num; i++)
|
||
if (aregs_needed[ira_pressure_classes[i]] != 0)
|
||
break;
|
||
check_p = i < ira_pressure_classes_num;
|
||
|
||
if ((dep_ret == 1) || ((dep_ret == 0) && (*cl != dep_cl)))
|
||
{
|
||
*cl = ALL_REGS;
|
||
ret = 1;
|
||
}
|
||
}
|
||
if (check_p
|
||
/* We need to check always_executed, since if the original value of
|
||
the invariant may be preserved, we may need to keep it in a
|
||
separate register. TODO check whether the register has an
|
||
use outside of the loop. */
|
||
&& dep->always_executed
|
||
&& !dep->def->uses->next)
|
||
{
|
||
/* If this is a single use, after moving the dependency we will not
|
||
need a new register. */
|
||
if (! flag_ira_loop_pressure)
|
||
aregs_needed[0]--;
|
||
else
|
||
{
|
||
int nregs;
|
||
enum reg_class pressure_class;
|
||
|
||
pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
|
||
aregs_needed[pressure_class] -= nregs;
|
||
}
|
||
}
|
||
|
||
if (! flag_ira_loop_pressure)
|
||
regs_needed[0] += aregs_needed[0];
|
||
else
|
||
{
|
||
for (i = 0; i < ira_pressure_classes_num; i++)
|
||
regs_needed[ira_pressure_classes[i]]
|
||
+= aregs_needed[ira_pressure_classes[i]];
|
||
}
|
||
(*comp_cost) += acomp_cost;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Calculates gain for eliminating invariant INV. REGS_USED is the number
|
||
of registers used in the loop, NEW_REGS is the number of new variables
|
||
already added due to the invariant motion. The number of registers needed
|
||
for it is stored in *REGS_NEEDED. SPEED and CALL_P are flags passed
|
||
through to estimate_reg_pressure_cost. */
|
||
|
||
static int
|
||
gain_for_invariant (struct invariant *inv, unsigned *regs_needed,
|
||
unsigned *new_regs, unsigned regs_used,
|
||
bool speed, bool call_p)
|
||
{
|
||
int comp_cost, size_cost;
|
||
/* Workaround -Wmaybe-uninitialized false positive during
|
||
profiledbootstrap by initializing it. */
|
||
enum reg_class cl = NO_REGS;
|
||
int ret;
|
||
|
||
actual_stamp++;
|
||
|
||
ret = get_inv_cost (inv, &comp_cost, regs_needed, &cl);
|
||
|
||
if (! flag_ira_loop_pressure)
|
||
{
|
||
size_cost = (estimate_reg_pressure_cost (new_regs[0] + regs_needed[0],
|
||
regs_used, speed, call_p)
|
||
- estimate_reg_pressure_cost (new_regs[0],
|
||
regs_used, speed, call_p));
|
||
}
|
||
else if (ret < 0)
|
||
return -1;
|
||
else if ((ret == 0) && (cl == NO_REGS))
|
||
/* Hoist it anyway since it does not impact register pressure. */
|
||
return 1;
|
||
else
|
||
{
|
||
int i;
|
||
enum reg_class pressure_class;
|
||
|
||
for (i = 0; i < ira_pressure_classes_num; i++)
|
||
{
|
||
pressure_class = ira_pressure_classes[i];
|
||
|
||
if (!reg_classes_intersect_p (pressure_class, cl))
|
||
continue;
|
||
|
||
if ((int) new_regs[pressure_class]
|
||
+ (int) regs_needed[pressure_class]
|
||
+ LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
|
||
+ param_ira_loop_reserved_regs
|
||
> ira_class_hard_regs_num[pressure_class])
|
||
break;
|
||
}
|
||
if (i < ira_pressure_classes_num)
|
||
/* There will be register pressure excess and we want not to
|
||
make this loop invariant motion. All loop invariants with
|
||
non-positive gains will be rejected in function
|
||
find_invariants_to_move. Therefore we return the negative
|
||
number here.
|
||
|
||
One could think that this rejects also expensive loop
|
||
invariant motions and this will hurt code performance.
|
||
However numerous experiments with different heuristics
|
||
taking invariant cost into account did not confirm this
|
||
assumption. There are possible explanations for this
|
||
result:
|
||
o probably all expensive invariants were already moved out
|
||
of the loop by PRE and gimple invariant motion pass.
|
||
o expensive invariant execution will be hidden by insn
|
||
scheduling or OOO processor hardware because usually such
|
||
invariants have a lot of freedom to be executed
|
||
out-of-order.
|
||
Another reason for ignoring invariant cost vs spilling cost
|
||
heuristics is also in difficulties to evaluate accurately
|
||
spill cost at this stage. */
|
||
return -1;
|
||
else
|
||
size_cost = 0;
|
||
}
|
||
|
||
return comp_cost - size_cost;
|
||
}
|
||
|
||
/* Finds invariant with best gain for moving. Returns the gain, stores
|
||
the invariant in *BEST and number of registers needed for it to
|
||
*REGS_NEEDED. REGS_USED is the number of registers used in the loop.
|
||
NEW_REGS is the number of new variables already added due to invariant
|
||
motion. */
|
||
|
||
static int
|
||
best_gain_for_invariant (struct invariant **best, unsigned *regs_needed,
|
||
unsigned *new_regs, unsigned regs_used,
|
||
bool speed, bool call_p)
|
||
{
|
||
struct invariant *inv;
|
||
int i, gain = 0, again;
|
||
unsigned aregs_needed[N_REG_CLASSES], invno;
|
||
|
||
FOR_EACH_VEC_ELT (invariants, invno, inv)
|
||
{
|
||
if (inv->move)
|
||
continue;
|
||
|
||
/* Only consider the "representatives" of equivalent invariants. */
|
||
if (inv->eqto != inv->invno)
|
||
continue;
|
||
|
||
again = gain_for_invariant (inv, aregs_needed, new_regs, regs_used,
|
||
speed, call_p);
|
||
if (again > gain)
|
||
{
|
||
gain = again;
|
||
*best = inv;
|
||
if (! flag_ira_loop_pressure)
|
||
regs_needed[0] = aregs_needed[0];
|
||
else
|
||
{
|
||
for (i = 0; i < ira_pressure_classes_num; i++)
|
||
regs_needed[ira_pressure_classes[i]]
|
||
= aregs_needed[ira_pressure_classes[i]];
|
||
}
|
||
}
|
||
}
|
||
|
||
return gain;
|
||
}
|
||
|
||
/* Marks invariant INVNO and all its dependencies for moving. */
|
||
|
||
static void
|
||
set_move_mark (unsigned invno, int gain)
|
||
{
|
||
struct invariant *inv = invariants[invno];
|
||
bitmap_iterator bi;
|
||
|
||
/* Find the representative of the class of the equivalent invariants. */
|
||
inv = invariants[inv->eqto];
|
||
|
||
if (inv->move)
|
||
return;
|
||
inv->move = true;
|
||
|
||
if (dump_file)
|
||
{
|
||
if (gain >= 0)
|
||
fprintf (dump_file, "Decided to move invariant %d -- gain %d\n",
|
||
invno, gain);
|
||
else
|
||
fprintf (dump_file, "Decided to move dependent invariant %d\n",
|
||
invno);
|
||
};
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, invno, bi)
|
||
{
|
||
set_move_mark (invno, -1);
|
||
}
|
||
}
|
||
|
||
/* Determines which invariants to move. */
|
||
|
||
static void
|
||
find_invariants_to_move (bool speed, bool call_p)
|
||
{
|
||
int gain;
|
||
unsigned i, regs_used, regs_needed[N_REG_CLASSES], new_regs[N_REG_CLASSES];
|
||
struct invariant *inv = NULL;
|
||
|
||
if (!invariants.length ())
|
||
return;
|
||
|
||
if (flag_ira_loop_pressure)
|
||
/* REGS_USED is actually never used when the flag is on. */
|
||
regs_used = 0;
|
||
else
|
||
/* We do not really do a good job in estimating number of
|
||
registers used; we put some initial bound here to stand for
|
||
induction variables etc. that we do not detect. */
|
||
{
|
||
unsigned int n_regs = DF_REG_SIZE (df);
|
||
|
||
regs_used = 2;
|
||
|
||
for (i = 0; i < n_regs; i++)
|
||
{
|
||
if (!DF_REGNO_FIRST_DEF (i) && DF_REGNO_LAST_USE (i))
|
||
{
|
||
/* This is a value that is used but not changed inside loop. */
|
||
regs_used++;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (! flag_ira_loop_pressure)
|
||
new_regs[0] = regs_needed[0] = 0;
|
||
else
|
||
{
|
||
for (i = 0; (int) i < ira_pressure_classes_num; i++)
|
||
new_regs[ira_pressure_classes[i]] = 0;
|
||
}
|
||
while ((gain = best_gain_for_invariant (&inv, regs_needed,
|
||
new_regs, regs_used,
|
||
speed, call_p)) > 0)
|
||
{
|
||
set_move_mark (inv->invno, gain);
|
||
if (! flag_ira_loop_pressure)
|
||
new_regs[0] += regs_needed[0];
|
||
else
|
||
{
|
||
for (i = 0; (int) i < ira_pressure_classes_num; i++)
|
||
new_regs[ira_pressure_classes[i]]
|
||
+= regs_needed[ira_pressure_classes[i]];
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Replace the uses, reached by the definition of invariant INV, by REG.
|
||
|
||
IN_GROUP is nonzero if this is part of a group of changes that must be
|
||
performed as a group. In that case, the changes will be stored. The
|
||
function `apply_change_group' will validate and apply the changes. */
|
||
|
||
static int
|
||
replace_uses (struct invariant *inv, rtx reg, bool in_group)
|
||
{
|
||
/* Replace the uses we know to be dominated. It saves work for copy
|
||
propagation, and also it is necessary so that dependent invariants
|
||
are computed right. */
|
||
if (inv->def)
|
||
{
|
||
struct use *use;
|
||
for (use = inv->def->uses; use; use = use->next)
|
||
validate_change (use->insn, use->pos, reg, true);
|
||
|
||
/* If we aren't part of a larger group, apply the changes now. */
|
||
if (!in_group)
|
||
return apply_change_group ();
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Whether invariant INV setting REG can be moved out of LOOP, at the end of
|
||
the block preceding its header. */
|
||
|
||
static bool
|
||
can_move_invariant_reg (class loop *loop, struct invariant *inv, rtx reg)
|
||
{
|
||
df_ref def, use;
|
||
unsigned int dest_regno, defs_in_loop_count = 0;
|
||
rtx_insn *insn = inv->insn;
|
||
basic_block bb = BLOCK_FOR_INSN (inv->insn);
|
||
|
||
/* We ignore hard register and memory access for cost and complexity reasons.
|
||
Hard register are few at this stage and expensive to consider as they
|
||
require building a separate data flow. Memory access would require using
|
||
df_simulate_* and can_move_insns_across functions and is more complex. */
|
||
if (!REG_P (reg) || HARD_REGISTER_P (reg))
|
||
return false;
|
||
|
||
/* Check whether the set is always executed. We could omit this condition if
|
||
we know that the register is unused outside of the loop, but it does not
|
||
seem worth finding out. */
|
||
if (!inv->always_executed)
|
||
return false;
|
||
|
||
/* Check that all uses that would be dominated by def are already dominated
|
||
by it. */
|
||
dest_regno = REGNO (reg);
|
||
for (use = DF_REG_USE_CHAIN (dest_regno); use; use = DF_REF_NEXT_REG (use))
|
||
{
|
||
rtx_insn *use_insn;
|
||
basic_block use_bb;
|
||
|
||
use_insn = DF_REF_INSN (use);
|
||
use_bb = BLOCK_FOR_INSN (use_insn);
|
||
|
||
/* Ignore instruction considered for moving. */
|
||
if (use_insn == insn)
|
||
continue;
|
||
|
||
/* Don't consider uses outside loop. */
|
||
if (!flow_bb_inside_loop_p (loop, use_bb))
|
||
continue;
|
||
|
||
/* Don't move if a use is not dominated by def in insn. */
|
||
if (use_bb == bb && DF_INSN_LUID (insn) >= DF_INSN_LUID (use_insn))
|
||
return false;
|
||
if (!dominated_by_p (CDI_DOMINATORS, use_bb, bb))
|
||
return false;
|
||
}
|
||
|
||
/* Check for other defs. Any other def in the loop might reach a use
|
||
currently reached by the def in insn. */
|
||
for (def = DF_REG_DEF_CHAIN (dest_regno); def; def = DF_REF_NEXT_REG (def))
|
||
{
|
||
basic_block def_bb = DF_REF_BB (def);
|
||
|
||
/* Defs in exit block cannot reach a use they weren't already. */
|
||
if (single_succ_p (def_bb))
|
||
{
|
||
basic_block def_bb_succ;
|
||
|
||
def_bb_succ = single_succ (def_bb);
|
||
if (!flow_bb_inside_loop_p (loop, def_bb_succ))
|
||
continue;
|
||
}
|
||
|
||
if (++defs_in_loop_count > 1)
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Move invariant INVNO out of the LOOP. Returns true if this succeeds, false
|
||
otherwise. */
|
||
|
||
static bool
|
||
move_invariant_reg (class loop *loop, unsigned invno)
|
||
{
|
||
struct invariant *inv = invariants[invno];
|
||
struct invariant *repr = invariants[inv->eqto];
|
||
unsigned i;
|
||
basic_block preheader = loop_preheader_edge (loop)->src;
|
||
rtx reg, set, dest, note;
|
||
bitmap_iterator bi;
|
||
int regno = -1;
|
||
|
||
if (inv->reg)
|
||
return true;
|
||
if (!repr->move)
|
||
return false;
|
||
|
||
/* If this is a representative of the class of equivalent invariants,
|
||
really move the invariant. Otherwise just replace its use with
|
||
the register used for the representative. */
|
||
if (inv == repr)
|
||
{
|
||
if (inv->depends_on)
|
||
{
|
||
EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, i, bi)
|
||
{
|
||
if (!move_invariant_reg (loop, i))
|
||
goto fail;
|
||
}
|
||
}
|
||
|
||
/* If possible, just move the set out of the loop. Otherwise, we
|
||
need to create a temporary register. */
|
||
set = single_set (inv->insn);
|
||
reg = dest = SET_DEST (set);
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
if (REG_P (reg))
|
||
regno = REGNO (reg);
|
||
|
||
if (!can_move_invariant_reg (loop, inv, dest))
|
||
{
|
||
reg = gen_reg_rtx_and_attrs (dest);
|
||
|
||
/* Try replacing the destination by a new pseudoregister. */
|
||
validate_change (inv->insn, &SET_DEST (set), reg, true);
|
||
|
||
/* As well as all the dominated uses. */
|
||
replace_uses (inv, reg, true);
|
||
|
||
/* And validate all the changes. */
|
||
if (!apply_change_group ())
|
||
goto fail;
|
||
|
||
emit_insn_after (gen_move_insn (dest, reg), inv->insn);
|
||
}
|
||
else if (dump_file)
|
||
fprintf (dump_file, "Invariant %d moved without introducing a new "
|
||
"temporary register\n", invno);
|
||
reorder_insns (inv->insn, inv->insn, BB_END (preheader));
|
||
df_recompute_luids (preheader);
|
||
|
||
/* If there is a REG_EQUAL note on the insn we just moved, and the
|
||
insn is in a basic block that is not always executed or the note
|
||
contains something for which we don't know the invariant status,
|
||
the note may no longer be valid after we move the insn. Note that
|
||
uses in REG_EQUAL notes are taken into account in the computation
|
||
of invariants, so it is safe to retain the note even if it contains
|
||
register references for which we know the invariant status. */
|
||
if ((note = find_reg_note (inv->insn, REG_EQUAL, NULL_RTX))
|
||
&& (!inv->always_executed
|
||
|| !check_maybe_invariant (XEXP (note, 0))))
|
||
remove_note (inv->insn, note);
|
||
}
|
||
else
|
||
{
|
||
if (!move_invariant_reg (loop, repr->invno))
|
||
goto fail;
|
||
reg = repr->reg;
|
||
regno = repr->orig_regno;
|
||
if (!replace_uses (inv, reg, false))
|
||
goto fail;
|
||
set = single_set (inv->insn);
|
||
emit_insn_after (gen_move_insn (SET_DEST (set), reg), inv->insn);
|
||
delete_insn (inv->insn);
|
||
}
|
||
|
||
inv->reg = reg;
|
||
inv->orig_regno = regno;
|
||
|
||
return true;
|
||
|
||
fail:
|
||
/* If we failed, clear move flag, so that we do not try to move inv
|
||
again. */
|
||
if (dump_file)
|
||
fprintf (dump_file, "Failed to move invariant %d\n", invno);
|
||
inv->move = false;
|
||
inv->reg = NULL_RTX;
|
||
inv->orig_regno = -1;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Move selected invariant out of the LOOP. Newly created regs are marked
|
||
in TEMPORARY_REGS. */
|
||
|
||
static void
|
||
move_invariants (class loop *loop)
|
||
{
|
||
struct invariant *inv;
|
||
unsigned i;
|
||
|
||
FOR_EACH_VEC_ELT (invariants, i, inv)
|
||
move_invariant_reg (loop, i);
|
||
if (flag_ira_loop_pressure && resize_reg_info ())
|
||
{
|
||
FOR_EACH_VEC_ELT (invariants, i, inv)
|
||
if (inv->reg != NULL_RTX)
|
||
{
|
||
if (inv->orig_regno >= 0)
|
||
setup_reg_classes (REGNO (inv->reg),
|
||
reg_preferred_class (inv->orig_regno),
|
||
reg_alternate_class (inv->orig_regno),
|
||
reg_allocno_class (inv->orig_regno));
|
||
else
|
||
setup_reg_classes (REGNO (inv->reg),
|
||
GENERAL_REGS, NO_REGS, GENERAL_REGS);
|
||
}
|
||
}
|
||
/* Remove the DF_UD_CHAIN problem added in find_defs before rescanning,
|
||
to save a bit of compile time. */
|
||
df_remove_problem (df_chain);
|
||
df_process_deferred_rescans ();
|
||
}
|
||
|
||
/* Initializes invariant motion data. */
|
||
|
||
static void
|
||
init_inv_motion_data (void)
|
||
{
|
||
actual_stamp = 1;
|
||
|
||
invariants.create (100);
|
||
}
|
||
|
||
/* Frees the data allocated by invariant motion. */
|
||
|
||
static void
|
||
free_inv_motion_data (void)
|
||
{
|
||
unsigned i;
|
||
struct def *def;
|
||
struct invariant *inv;
|
||
|
||
check_invariant_table_size ();
|
||
for (i = 0; i < DF_DEFS_TABLE_SIZE (); i++)
|
||
{
|
||
inv = invariant_table[i];
|
||
if (inv)
|
||
{
|
||
def = inv->def;
|
||
gcc_assert (def != NULL);
|
||
|
||
free_use_list (def->uses);
|
||
free (def);
|
||
invariant_table[i] = NULL;
|
||
}
|
||
}
|
||
|
||
FOR_EACH_VEC_ELT (invariants, i, inv)
|
||
{
|
||
BITMAP_FREE (inv->depends_on);
|
||
free (inv);
|
||
}
|
||
invariants.release ();
|
||
}
|
||
|
||
/* Move the invariants out of the LOOP. */
|
||
|
||
static void
|
||
move_single_loop_invariants (class loop *loop)
|
||
{
|
||
init_inv_motion_data ();
|
||
|
||
find_invariants (loop);
|
||
find_invariants_to_move (optimize_loop_for_speed_p (loop),
|
||
LOOP_DATA (loop)->has_call);
|
||
move_invariants (loop);
|
||
|
||
free_inv_motion_data ();
|
||
}
|
||
|
||
/* Releases the auxiliary data for LOOP. */
|
||
|
||
static void
|
||
free_loop_data (class loop *loop)
|
||
{
|
||
class loop_data *data = LOOP_DATA (loop);
|
||
if (!data)
|
||
return;
|
||
|
||
bitmap_clear (&LOOP_DATA (loop)->regs_ref);
|
||
bitmap_clear (&LOOP_DATA (loop)->regs_live);
|
||
free (data);
|
||
loop->aux = NULL;
|
||
}
|
||
|
||
|
||
|
||
/* Registers currently living. */
|
||
static bitmap_head curr_regs_live;
|
||
|
||
/* Current reg pressure for each pressure class. */
|
||
static int curr_reg_pressure[N_REG_CLASSES];
|
||
|
||
/* Record all regs that are set in any one insn. Communication from
|
||
mark_reg_{store,clobber} and global_conflicts. Asm can refer to
|
||
all hard-registers. */
|
||
static rtx regs_set[(FIRST_PSEUDO_REGISTER > MAX_RECOG_OPERANDS
|
||
? FIRST_PSEUDO_REGISTER : MAX_RECOG_OPERANDS) * 2];
|
||
/* Number of regs stored in the previous array. */
|
||
static int n_regs_set;
|
||
|
||
/* Return pressure class and number of needed hard registers (through
|
||
*NREGS) of register REGNO. */
|
||
static enum reg_class
|
||
get_regno_pressure_class (int regno, int *nregs)
|
||
{
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
enum reg_class pressure_class;
|
||
|
||
pressure_class = reg_allocno_class (regno);
|
||
pressure_class = ira_pressure_class_translate[pressure_class];
|
||
*nregs
|
||
= ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
|
||
return pressure_class;
|
||
}
|
||
else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
|
||
&& ! TEST_HARD_REG_BIT (eliminable_regset, regno))
|
||
{
|
||
*nregs = 1;
|
||
return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
|
||
}
|
||
else
|
||
{
|
||
*nregs = 0;
|
||
return NO_REGS;
|
||
}
|
||
}
|
||
|
||
/* Increase (if INCR_P) or decrease current register pressure for
|
||
register REGNO. */
|
||
static void
|
||
change_pressure (int regno, bool incr_p)
|
||
{
|
||
int nregs;
|
||
enum reg_class pressure_class;
|
||
|
||
pressure_class = get_regno_pressure_class (regno, &nregs);
|
||
if (! incr_p)
|
||
curr_reg_pressure[pressure_class] -= nregs;
|
||
else
|
||
{
|
||
curr_reg_pressure[pressure_class] += nregs;
|
||
if (LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
|
||
< curr_reg_pressure[pressure_class])
|
||
LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
|
||
= curr_reg_pressure[pressure_class];
|
||
}
|
||
}
|
||
|
||
/* Mark REGNO birth. */
|
||
static void
|
||
mark_regno_live (int regno)
|
||
{
|
||
class loop *loop;
|
||
|
||
for (loop = curr_loop;
|
||
loop != current_loops->tree_root;
|
||
loop = loop_outer (loop))
|
||
bitmap_set_bit (&LOOP_DATA (loop)->regs_live, regno);
|
||
if (!bitmap_set_bit (&curr_regs_live, regno))
|
||
return;
|
||
change_pressure (regno, true);
|
||
}
|
||
|
||
/* Mark REGNO death. */
|
||
static void
|
||
mark_regno_death (int regno)
|
||
{
|
||
if (! bitmap_clear_bit (&curr_regs_live, regno))
|
||
return;
|
||
change_pressure (regno, false);
|
||
}
|
||
|
||
/* Mark setting register REG. */
|
||
static void
|
||
mark_reg_store (rtx reg, const_rtx setter ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
|
||
if (! REG_P (reg))
|
||
return;
|
||
|
||
regs_set[n_regs_set++] = reg;
|
||
|
||
unsigned int end_regno = END_REGNO (reg);
|
||
for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
|
||
mark_regno_live (regno);
|
||
}
|
||
|
||
/* Mark clobbering register REG. */
|
||
static void
|
||
mark_reg_clobber (rtx reg, const_rtx setter, void *data)
|
||
{
|
||
if (GET_CODE (setter) == CLOBBER)
|
||
mark_reg_store (reg, setter, data);
|
||
}
|
||
|
||
/* Mark register REG death. */
|
||
static void
|
||
mark_reg_death (rtx reg)
|
||
{
|
||
unsigned int end_regno = END_REGNO (reg);
|
||
for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
|
||
mark_regno_death (regno);
|
||
}
|
||
|
||
/* Mark occurrence of registers in X for the current loop. */
|
||
static void
|
||
mark_ref_regs (rtx x)
|
||
{
|
||
RTX_CODE code;
|
||
int i;
|
||
const char *fmt;
|
||
|
||
if (!x)
|
||
return;
|
||
|
||
code = GET_CODE (x);
|
||
if (code == REG)
|
||
{
|
||
class loop *loop;
|
||
|
||
for (loop = curr_loop;
|
||
loop != current_loops->tree_root;
|
||
loop = loop_outer (loop))
|
||
bitmap_set_bit (&LOOP_DATA (loop)->regs_ref, REGNO (x));
|
||
return;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
mark_ref_regs (XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
mark_ref_regs (XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
|
||
/* Calculate register pressure in the loops. */
|
||
static void
|
||
calculate_loop_reg_pressure (void)
|
||
{
|
||
int i;
|
||
unsigned int j;
|
||
bitmap_iterator bi;
|
||
basic_block bb;
|
||
rtx_insn *insn;
|
||
rtx link;
|
||
class loop *loop, *parent;
|
||
|
||
FOR_EACH_LOOP (loop, 0)
|
||
if (loop->aux == NULL)
|
||
{
|
||
loop->aux = xcalloc (1, sizeof (class loop_data));
|
||
bitmap_initialize (&LOOP_DATA (loop)->regs_ref, ®_obstack);
|
||
bitmap_initialize (&LOOP_DATA (loop)->regs_live, ®_obstack);
|
||
}
|
||
ira_setup_eliminable_regset ();
|
||
bitmap_initialize (&curr_regs_live, ®_obstack);
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
curr_loop = bb->loop_father;
|
||
if (curr_loop == current_loops->tree_root)
|
||
continue;
|
||
|
||
for (loop = curr_loop;
|
||
loop != current_loops->tree_root;
|
||
loop = loop_outer (loop))
|
||
bitmap_ior_into (&LOOP_DATA (loop)->regs_live, DF_LR_IN (bb));
|
||
|
||
bitmap_copy (&curr_regs_live, DF_LR_IN (bb));
|
||
for (i = 0; i < ira_pressure_classes_num; i++)
|
||
curr_reg_pressure[ira_pressure_classes[i]] = 0;
|
||
EXECUTE_IF_SET_IN_BITMAP (&curr_regs_live, 0, j, bi)
|
||
change_pressure (j, true);
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (! NONDEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
mark_ref_regs (PATTERN (insn));
|
||
n_regs_set = 0;
|
||
note_stores (insn, mark_reg_clobber, NULL);
|
||
|
||
/* Mark any registers dead after INSN as dead now. */
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_DEAD)
|
||
mark_reg_death (XEXP (link, 0));
|
||
|
||
/* Mark any registers set in INSN as live,
|
||
and mark them as conflicting with all other live regs.
|
||
Clobbers are processed again, so they conflict with
|
||
the registers that are set. */
|
||
|
||
note_stores (insn, mark_reg_store, NULL);
|
||
|
||
if (AUTO_INC_DEC)
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_INC)
|
||
mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
|
||
|
||
while (n_regs_set-- > 0)
|
||
{
|
||
rtx note = find_regno_note (insn, REG_UNUSED,
|
||
REGNO (regs_set[n_regs_set]));
|
||
if (! note)
|
||
continue;
|
||
|
||
mark_reg_death (XEXP (note, 0));
|
||
}
|
||
}
|
||
}
|
||
bitmap_release (&curr_regs_live);
|
||
if (flag_ira_region == IRA_REGION_MIXED
|
||
|| flag_ira_region == IRA_REGION_ALL)
|
||
FOR_EACH_LOOP (loop, 0)
|
||
{
|
||
EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
|
||
if (! bitmap_bit_p (&LOOP_DATA (loop)->regs_ref, j))
|
||
{
|
||
enum reg_class pressure_class;
|
||
int nregs;
|
||
|
||
pressure_class = get_regno_pressure_class (j, &nregs);
|
||
LOOP_DATA (loop)->max_reg_pressure[pressure_class] -= nregs;
|
||
}
|
||
}
|
||
if (dump_file == NULL)
|
||
return;
|
||
FOR_EACH_LOOP (loop, 0)
|
||
{
|
||
parent = loop_outer (loop);
|
||
fprintf (dump_file, "\n Loop %d (parent %d, header bb%d, depth %d)\n",
|
||
loop->num, (parent == NULL ? -1 : parent->num),
|
||
loop->header->index, loop_depth (loop));
|
||
fprintf (dump_file, "\n ref. regnos:");
|
||
EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_ref, 0, j, bi)
|
||
fprintf (dump_file, " %d", j);
|
||
fprintf (dump_file, "\n live regnos:");
|
||
EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
|
||
fprintf (dump_file, " %d", j);
|
||
fprintf (dump_file, "\n Pressure:");
|
||
for (i = 0; (int) i < ira_pressure_classes_num; i++)
|
||
{
|
||
enum reg_class pressure_class;
|
||
|
||
pressure_class = ira_pressure_classes[i];
|
||
if (LOOP_DATA (loop)->max_reg_pressure[pressure_class] == 0)
|
||
continue;
|
||
fprintf (dump_file, " %s=%d", reg_class_names[pressure_class],
|
||
LOOP_DATA (loop)->max_reg_pressure[pressure_class]);
|
||
}
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Move the invariants out of the loops. */
|
||
|
||
void
|
||
move_loop_invariants (void)
|
||
{
|
||
class loop *loop;
|
||
|
||
if (optimize == 1)
|
||
df_live_add_problem ();
|
||
/* ??? This is a hack. We should only need to call df_live_set_all_dirty
|
||
for optimize == 1, but can_move_invariant_reg relies on DF_INSN_LUID
|
||
being up-to-date. That isn't always true (even after df_analyze)
|
||
because df_process_deferred_rescans doesn't necessarily cause
|
||
blocks to be rescanned. */
|
||
df_live_set_all_dirty ();
|
||
if (flag_ira_loop_pressure)
|
||
{
|
||
df_analyze ();
|
||
regstat_init_n_sets_and_refs ();
|
||
ira_set_pseudo_classes (true, dump_file);
|
||
calculate_loop_reg_pressure ();
|
||
regstat_free_n_sets_and_refs ();
|
||
}
|
||
df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
|
||
/* Process the loops, innermost first. */
|
||
FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
|
||
{
|
||
curr_loop = loop;
|
||
/* move_single_loop_invariants for very large loops is time consuming
|
||
and might need a lot of memory. For -O1 only do loop invariant
|
||
motion for very small loops. */
|
||
unsigned max_bbs = param_loop_invariant_max_bbs_in_loop;
|
||
if (optimize < 2)
|
||
max_bbs /= 10;
|
||
if (loop->num_nodes <= max_bbs)
|
||
move_single_loop_invariants (loop);
|
||
}
|
||
|
||
FOR_EACH_LOOP (loop, 0)
|
||
{
|
||
free_loop_data (loop);
|
||
}
|
||
|
||
if (flag_ira_loop_pressure)
|
||
/* There is no sense to keep this info because it was most
|
||
probably outdated by subsequent passes. */
|
||
free_reg_info ();
|
||
free (invariant_table);
|
||
invariant_table = NULL;
|
||
invariant_table_size = 0;
|
||
|
||
if (optimize == 1)
|
||
df_remove_problem (df_live);
|
||
|
||
checking_verify_flow_info ();
|
||
}
|