gcc/libgo/go/big/int.go
Ian Lance Taylor 9ff56c9570 Update to current version of Go library.
From-SVN: r173931
2011-05-20 00:18:15 +00:00

735 lines
15 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements signed multi-precision integers.
package big
import (
"fmt"
"os"
"rand"
)
// An Int represents a signed multi-precision integer.
// The zero value for an Int represents the value 0.
type Int struct {
neg bool // sign
abs nat // absolute value of the integer
}
var intOne = &Int{false, natOne}
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0
// +1 if x > 0
//
func (x *Int) Sign() int {
if len(x.abs) == 0 {
return 0
}
if x.neg {
return -1
}
return 1
}
// SetInt64 sets z to x and returns z.
func (z *Int) SetInt64(x int64) *Int {
neg := false
if x < 0 {
neg = true
x = -x
}
z.abs = z.abs.setUint64(uint64(x))
z.neg = neg
return z
}
// NewInt allocates and returns a new Int set to x.
func NewInt(x int64) *Int {
return new(Int).SetInt64(x)
}
// Set sets z to x and returns z.
func (z *Int) Set(x *Int) *Int {
z.abs = z.abs.set(x.abs)
z.neg = x.neg
return z
}
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Int) Abs(x *Int) *Int {
z.abs = z.abs.set(x.abs)
z.neg = false
return z
}
// Neg sets z to -x and returns z.
func (z *Int) Neg(x *Int) *Int {
z.abs = z.abs.set(x.abs)
z.neg = len(z.abs) > 0 && !x.neg // 0 has no sign
return z
}
// Add sets z to the sum x+y and returns z.
func (z *Int) Add(x, y *Int) *Int {
neg := x.neg
if x.neg == y.neg {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z.abs = z.abs.add(x.abs, y.abs)
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if x.abs.cmp(y.abs) >= 0 {
z.abs = z.abs.sub(x.abs, y.abs)
} else {
neg = !neg
z.abs = z.abs.sub(y.abs, x.abs)
}
}
z.neg = len(z.abs) > 0 && neg // 0 has no sign
return z
}
// Sub sets z to the difference x-y and returns z.
func (z *Int) Sub(x, y *Int) *Int {
neg := x.neg
if x.neg != y.neg {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z.abs = z.abs.add(x.abs, y.abs)
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if x.abs.cmp(y.abs) >= 0 {
z.abs = z.abs.sub(x.abs, y.abs)
} else {
neg = !neg
z.abs = z.abs.sub(y.abs, x.abs)
}
}
z.neg = len(z.abs) > 0 && neg // 0 has no sign
return z
}
// Mul sets z to the product x*y and returns z.
func (z *Int) Mul(x, y *Int) *Int {
// x * y == x * y
// x * (-y) == -(x * y)
// (-x) * y == -(x * y)
// (-x) * (-y) == x * y
z.abs = z.abs.mul(x.abs, y.abs)
z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
return z
}
// MulRange sets z to the product of all integers
// in the range [a, b] inclusively and returns z.
// If a > b (empty range), the result is 1.
func (z *Int) MulRange(a, b int64) *Int {
switch {
case a > b:
return z.SetInt64(1) // empty range
case a <= 0 && b >= 0:
return z.SetInt64(0) // range includes 0
}
// a <= b && (b < 0 || a > 0)
neg := false
if a < 0 {
neg = (b-a)&1 == 0
a, b = -b, -a
}
z.abs = z.abs.mulRange(uint64(a), uint64(b))
z.neg = neg
return z
}
// Binomial sets z to the binomial coefficient of (n, k) and returns z.
func (z *Int) Binomial(n, k int64) *Int {
var a, b Int
a.MulRange(n-k+1, n)
b.MulRange(1, k)
return z.Quo(&a, &b)
}
// Quo sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// See QuoRem for more details.
func (z *Int) Quo(x, y *Int) *Int {
z.abs, _ = z.abs.div(nil, x.abs, y.abs)
z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
return z
}
// Rem sets z to the remainder x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// See QuoRem for more details.
func (z *Int) Rem(x, y *Int) *Int {
_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
return z
}
// QuoRem sets z to the quotient x/y and r to the remainder x%y
// and returns the pair (z, r) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// QuoRem implements T-division and modulus (like Go):
//
// q = x/y with the result truncated to zero
// r = x - y*q
//
// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
//
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
return z, r
}
// Div sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// See DivMod for more details.
func (z *Int) Div(x, y *Int) *Int {
y_neg := y.neg // z may be an alias for y
var r Int
z.QuoRem(x, y, &r)
if r.neg {
if y_neg {
z.Add(z, intOne)
} else {
z.Sub(z, intOne)
}
}
return z
}
// Mod sets z to the modulus x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// See DivMod for more details.
func (z *Int) Mod(x, y *Int) *Int {
y0 := y // save y
if z == y || alias(z.abs, y.abs) {
y0 = new(Int).Set(y)
}
var q Int
q.QuoRem(x, y, z)
if z.neg {
if y0.neg {
z.Sub(z, y0)
} else {
z.Add(z, y0)
}
}
return z
}
// DivMod sets z to the quotient x div y and m to the modulus x mod y
// and returns the pair (z, m) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// DivMod implements Euclidean division and modulus (unlike Go):
//
// q = x div y such that
// m = x - y*q with 0 <= m < |q|
//
// (See Raymond T. Boute, ``The Euclidean definition of the functions
// div and mod''. ACM Transactions on Programming Languages and
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
// ACM press.)
//
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
y0 := y // save y
if z == y || alias(z.abs, y.abs) {
y0 = new(Int).Set(y)
}
z.QuoRem(x, y, m)
if m.neg {
if y0.neg {
z.Add(z, intOne)
m.Sub(m, y0)
} else {
z.Sub(z, intOne)
m.Add(m, y0)
}
}
return z, m
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
func (x *Int) Cmp(y *Int) (r int) {
// x cmp y == x cmp y
// x cmp (-y) == x
// (-x) cmp y == y
// (-x) cmp (-y) == -(x cmp y)
switch {
case x.neg == y.neg:
r = x.abs.cmp(y.abs)
if x.neg {
r = -r
}
case x.neg:
r = -1
default:
r = 1
}
return
}
func (x *Int) String() string {
s := ""
if x.neg {
s = "-"
}
return s + x.abs.string(10)
}
func fmtbase(ch int) int {
switch ch {
case 'b':
return 2
case 'o':
return 8
case 'd':
return 10
case 'x':
return 16
}
return 10
}
// Format is a support routine for fmt.Formatter. It accepts
// the formats 'b' (binary), 'o' (octal), 'd' (decimal) and
// 'x' (hexadecimal).
//
func (x *Int) Format(s fmt.State, ch int) {
if x == nil {
fmt.Fprint(s, "<nil>")
return
}
if x.neg {
fmt.Fprint(s, "-")
}
fmt.Fprint(s, x.abs.string(fmtbase(ch)))
}
// Int64 returns the int64 representation of z.
// If z cannot be represented in an int64, the result is undefined.
func (x *Int) Int64() int64 {
if len(x.abs) == 0 {
return 0
}
v := int64(x.abs[0])
if _W == 32 && len(x.abs) > 1 {
v |= int64(x.abs[1]) << 32
}
if x.neg {
v = -v
}
return v
}
// SetString sets z to the value of s, interpreted in the given base,
// and returns z and a boolean indicating success. If SetString fails,
// the value of z is undefined.
//
// If the base argument is 0, the string prefix determines the actual
// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the
// ``0'' prefix selects base 8, and a ``0b'' or ``0B'' prefix selects
// base 2. Otherwise the selected base is 10.
//
func (z *Int) SetString(s string, base int) (*Int, bool) {
if len(s) == 0 || base < 0 || base == 1 || 16 < base {
return z, false
}
neg := s[0] == '-'
if neg || s[0] == '+' {
s = s[1:]
if len(s) == 0 {
return z, false
}
}
var scanned int
z.abs, _, scanned = z.abs.scan(s, base)
if scanned != len(s) {
return z, false
}
z.neg = len(z.abs) > 0 && neg // 0 has no sign
return z, true
}
// SetBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z *Int) SetBytes(buf []byte) *Int {
z.abs = z.abs.setBytes(buf)
z.neg = false
return z
}
// Bytes returns the absolute value of z as a big-endian byte slice.
func (z *Int) Bytes() []byte {
buf := make([]byte, len(z.abs)*_S)
return buf[z.abs.bytes(buf):]
}
// BitLen returns the length of the absolute value of z in bits.
// The bit length of 0 is 0.
func (z *Int) BitLen() int {
return z.abs.bitLen()
}
// Exp sets z = x**y mod m. If m is nil, z = x**y.
// See Knuth, volume 2, section 4.6.3.
func (z *Int) Exp(x, y, m *Int) *Int {
if y.neg || len(y.abs) == 0 {
neg := x.neg
z.SetInt64(1)
z.neg = neg
return z
}
var mWords nat
if m != nil {
mWords = m.abs
}
z.abs = z.abs.expNN(x.abs, y.abs, mWords)
z.neg = len(z.abs) > 0 && x.neg && y.abs[0]&1 == 1 // 0 has no sign
return z
}
// GcdInt sets d to the greatest common divisor of a and b, which must be
// positive numbers.
// If x and y are not nil, GcdInt sets x and y such that d = a*x + b*y.
// If either a or b is not positive, GcdInt sets d = x = y = 0.
func GcdInt(d, x, y, a, b *Int) {
if a.neg || b.neg {
d.SetInt64(0)
if x != nil {
x.SetInt64(0)
}
if y != nil {
y.SetInt64(0)
}
return
}
A := new(Int).Set(a)
B := new(Int).Set(b)
X := new(Int)
Y := new(Int).SetInt64(1)
lastX := new(Int).SetInt64(1)
lastY := new(Int)
q := new(Int)
temp := new(Int)
for len(B.abs) > 0 {
r := new(Int)
q, r = q.QuoRem(A, B, r)
A, B = B, r
temp.Set(X)
X.Mul(X, q)
X.neg = !X.neg
X.Add(X, lastX)
lastX.Set(temp)
temp.Set(Y)
Y.Mul(Y, q)
Y.neg = !Y.neg
Y.Add(Y, lastY)
lastY.Set(temp)
}
if x != nil {
*x = *lastX
}
if y != nil {
*y = *lastY
}
*d = *A
}
// ProbablyPrime performs n Miller-Rabin tests to check whether z is prime.
// If it returns true, z is prime with probability 1 - 1/4^n.
// If it returns false, z is not prime.
func ProbablyPrime(z *Int, n int) bool {
return !z.neg && z.abs.probablyPrime(n)
}
// Rand sets z to a pseudo-random number in [0, n) and returns z.
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
z.neg = false
if n.neg == true || len(n.abs) == 0 {
z.abs = nil
return z
}
z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
return z
}
// ModInverse sets z to the multiplicative inverse of g in the group /p (where
// p is a prime) and returns z.
func (z *Int) ModInverse(g, p *Int) *Int {
var d Int
GcdInt(&d, z, nil, g, p)
// x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking
// that modulo p results in g*x = 1, therefore x is the inverse element.
if z.neg {
z.Add(z, p)
}
return z
}
// Lsh sets z = x << n and returns z.
func (z *Int) Lsh(x *Int, n uint) *Int {
z.abs = z.abs.shl(x.abs, n)
z.neg = x.neg
return z
}
// Rsh sets z = x >> n and returns z.
func (z *Int) Rsh(x *Int, n uint) *Int {
if x.neg {
// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
t = t.shr(t, n)
z.abs = t.add(t, natOne)
z.neg = true // z cannot be zero if x is negative
return z
}
z.abs = z.abs.shr(x.abs, n)
z.neg = false
return z
}
// And sets z = x & y and returns z.
func (z *Int) And(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
x1 := nat{}.sub(x.abs, natOne)
y1 := nat{}.sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
z.neg = true // z cannot be zero if x and y are negative
return z
}
// x & y == x & y
z.abs = z.abs.and(x.abs, y.abs)
z.neg = false
return z
}
// x.neg != y.neg
if x.neg {
x, y = y, x // & is symmetric
}
// x & (-y) == x & ^(y-1) == x &^ (y-1)
y1 := nat{}.sub(y.abs, natOne)
z.abs = z.abs.andNot(x.abs, y1)
z.neg = false
return z
}
// AndNot sets z = x &^ y and returns z.
func (z *Int) AndNot(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
x1 := nat{}.sub(x.abs, natOne)
y1 := nat{}.sub(y.abs, natOne)
z.abs = z.abs.andNot(y1, x1)
z.neg = false
return z
}
// x &^ y == x &^ y
z.abs = z.abs.andNot(x.abs, y.abs)
z.neg = false
return z
}
if x.neg {
// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
x1 := nat{}.sub(x.abs, natOne)
z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
z.neg = true // z cannot be zero if x is negative and y is positive
return z
}
// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
y1 := nat{}.add(y.abs, natOne)
z.abs = z.abs.and(x.abs, y1)
z.neg = false
return z
}
// Or sets z = x | y and returns z.
func (z *Int) Or(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
x1 := nat{}.sub(x.abs, natOne)
y1 := nat{}.sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
z.neg = true // z cannot be zero if x and y are negative
return z
}
// x | y == x | y
z.abs = z.abs.or(x.abs, y.abs)
z.neg = false
return z
}
// x.neg != y.neg
if x.neg {
x, y = y, x // | is symmetric
}
// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
y1 := nat{}.sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
z.neg = true // z cannot be zero if one of x or y is negative
return z
}
// Xor sets z = x ^ y and returns z.
func (z *Int) Xor(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
x1 := nat{}.sub(x.abs, natOne)
y1 := nat{}.sub(y.abs, natOne)
z.abs = z.abs.xor(x1, y1)
z.neg = false
return z
}
// x ^ y == x ^ y
z.abs = z.abs.xor(x.abs, y.abs)
z.neg = false
return z
}
// x.neg != y.neg
if x.neg {
x, y = y, x // ^ is symmetric
}
// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
y1 := nat{}.sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
z.neg = true // z cannot be zero if only one of x or y is negative
return z
}
// Not sets z = ^x and returns z.
func (z *Int) Not(x *Int) *Int {
if x.neg {
// ^(-x) == ^(^(x-1)) == x-1
z.abs = z.abs.sub(x.abs, natOne)
z.neg = false
return z
}
// ^x == -x-1 == -(x+1)
z.abs = z.abs.add(x.abs, natOne)
z.neg = true // z cannot be zero if x is positive
return z
}
// Gob codec version. Permits backward-compatible changes to the encoding.
const version byte = 1
// GobEncode implements the gob.GobEncoder interface.
func (z *Int) GobEncode() ([]byte, os.Error) {
buf := make([]byte, len(z.abs)*_S+1) // extra byte for version and sign bit
i := z.abs.bytes(buf) - 1 // i >= 0
b := version << 1 // make space for sign bit
if z.neg {
b |= 1
}
buf[i] = b
return buf[i:], nil
}
// GobDecode implements the gob.GobDecoder interface.
func (z *Int) GobDecode(buf []byte) os.Error {
if len(buf) == 0 {
return os.NewError("Int.GobDecode: no data")
}
b := buf[0]
if b>>1 != version {
return os.NewError(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1))
}
z.neg = b&1 != 0
z.abs = z.abs.setBytes(buf[1:])
return nil
}