gcc/libgfortran/intrinsics/erfc_scaled_inc.c
François-Xavier Coudert f489fba128 re PR fortran/33197 (Fortran 2008: math functions)
PR fortran/33197

gcc/fortran/
	* intrinsic.c (add_functions): Modify intrinsics ACOSH, ASINH,
	ATANH, ERF, ERFC and GAMMA. Add intrinsics BESSEL_{J,Y}{0,1,N},
	ERFC_SCALED, LOG_GAMMA and HYPOT.
	* intrinsic.h (gfc_check_hypot, gfc_simplify_hypot,
	gfc_resolve_hypot): New prototypes.
	* mathbuiltins.def: Add HYPOT builtin. Make complex versions of
	ACOSH, ASINH and ATANH available.
	* gfortran.h (GFC_ISYM_ERFC_SCALED, GFC_ISYM_HYPOT): New values.
	* lang.opt: Add -std=f2008 option.
	* libgfortran.h: Define GFC_STD_F2008.
	* lang-specs.h: Add .f08 and .F08 file suffixes.
	* iresolve.c (gfc_resolve_hypot): New function.
	* parse.c (parse_contained): Allow empty CONTAINS for Fortran 2008.
	* check.c (gfc_check_hypot): New function.
	* trans-intrinsic.c (gfc_intrinsic_map): Define ERFC_SCALE builtin.
	* options.c (set_default_std_flags): Allow Fortran 2008 by default.
	(form_from_filename): Add .f08 suffix.
	(gfc_handle_option): Handle -std=f2008 option.
	* simplify.c (gfc_simplify_hypot): New function.
	* gfortran.texi: Document Fortran 2008 status and file extensions.
	* intrinsic.texi: Document new BESSEL_{J,Y}{0,1,N} intrinsics,
	as well as HYPOT and ERFC_SCALED. Update documentation of ERF,
	ERFC, GAMMA, LGAMMA, ASINH, ACOSH and ATANH.
	* invoke.texi: Document the new -std=f2008 option.

libgomp/
	* testsuite/libgomp.fortran/fortran.exp: Add .f08 and
	.F08 file suffixes.

gcc/testsuite/
	* gfortran.dg/gomp/gomp.exp: Add .f08 and .F08 file suffixes.
	* gfortran.dg/dg.exp: Likewise.
	* gfortran.dg/vect/vect.exp: Likewise.
	* gfortran.fortran-torture/execute/execute.exp: Likewise.
	* gfortran.fortran-torture/compile/compile.exp: Likewise.
	* gfortran.dg/gamma_1.f90: Also check log_gamma.
	* gfortran.dg/invalid_contains_1.f90: Remove warning about
	empty CONTAINS.
	* gfortran.dg/gamma_2.f90: Add a few error messages.
	* gfortran.dg/invalid_contains_2.f90: Remove warning about
	empty CONTAINS.
	* gfortran.dg/gamma_3.f90: Adjust error message.
	* gfortran.dg/gamma_4.f90: Test for log_gamma instead of lgamma.
	* gfortran.dg/bind_c_usage_9.f03: Adjust error messages.
	* gfortran.dg/bessel_1.f90: New test.
	* gfortran.dg/recursive_check_3.f90: Remove warnings.
	* gfortran.dg/besxy.f90: Also check for new F2008 intrinsics.
	* gfortran.dg/derived_function_interface_1.f90: Remove warning.
	* gfortran.dg/contains_empty_1.f03: New test.
	* gfortran.dg/erfc_scaled_1.f90: New test.
	* gfortran.dg/hypot_1.f90: New test.
	* gfortran.dg/contains_empty_2.f03: New test.

libgfortran/
	* intrinsics/erfc_scaled_inc.c: New file.
	* intrinsics/erfc_scaled.c: New file.
	* gfortran.map (GFORTRAN_1.0): Add _gfortran_erfc_scaled_r*.
	* Makefile.am: Add intrinsics/erfc_scaled.c.
	* config.h.in: Regenerate.
	* configure: Regenerate.
	* Makefile.in: Regenerate.

From-SVN: r132846
2008-03-03 23:46:20 +00:00

176 lines
5.1 KiB
C

/* Implementation of the ERFC_SCALED intrinsic, to be included by erfc_scaled.c
Copyright (c) 2008 Free Software Foundation, Inc.
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR a PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
/* This implementation of ERFC_SCALED is based on the netlib algorithm
available at http://www.netlib.org/specfun/erf */
#define TYPE KIND_SUFFIX(GFC_REAL_,KIND)
#define CONCAT(x,y) x ## y
#define KIND_SUFFIX(x,y) CONCAT(x,y)
#if (KIND == 4)
# define EXP(x) expf(x)
# define TRUNC(x) truncf(x)
#elif (KIND == 8)
# define EXP(x) exp(x)
# define TRUNC(x) trunc(x)
#else
# define EXP(x) expl(x)
# define TRUNC(x) truncl(x)
#endif
extern TYPE KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE);
export_proto(KIND_SUFFIX(erfc_scaled_r,KIND));
TYPE
KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE x)
{
/* The main computation evaluates near-minimax approximations
from "Rational Chebyshev approximations for the error function"
by W. J. Cody, Math. Comp., 1969, PP. 631-638. This
transportable program uses rational functions that theoretically
approximate erf(x) and erfc(x) to at least 18 significant
decimal digits. The accuracy achieved depends on the arithmetic
system, the compiler, the intrinsic functions, and proper
selection of the machine-dependent constants. */
int i;
TYPE del, res, xden, xnum, y, ysq;
#if (KIND == 4)
static TYPE xneg = -9.382, xsmall = 5.96e-8,
xbig = 9.194, xhuge = 2.90e+3, xmax = 4.79e+37;
#else
static TYPE xneg = -26.628, xsmall = 1.11e-16,
xbig = 26.543, xhuge = 6.71e+7, xmax = 2.53e+307;
#endif
#define SQRPI ((TYPE) 0.56418958354775628695L)
#define THRESH ((TYPE) 0.46875L)
static TYPE a[5] = { 3.16112374387056560l, 113.864154151050156l,
377.485237685302021l, 3209.37758913846947l, 0.185777706184603153l };
static TYPE b[4] = { 23.6012909523441209l, 244.024637934444173l,
1282.61652607737228l, 2844.23683343917062l };
static TYPE c[9] = { 0.564188496988670089l, 8.88314979438837594l,
66.1191906371416295l, 298.635138197400131l, 881.952221241769090l,
1712.04761263407058l, 2051.07837782607147l, 1230.33935479799725l,
2.15311535474403846e-8l };
static TYPE d[8] = { 15.7449261107098347l, 117.693950891312499l,
537.181101862009858l, 1621.38957456669019l, 3290.79923573345963l,
4362.61909014324716l, 3439.36767414372164l, 1230.33935480374942l };
static TYPE p[6] = { 0.305326634961232344l, 0.360344899949804439l,
0.125781726111229246l, 0.0160837851487422766l,
0.000658749161529837803l, 0.0163153871373020978l };
static TYPE q[5] = { 2.56852019228982242l, 1.87295284992346047l,
0.527905102951428412l, 0.0605183413124413191l,
0.00233520497626869185l };
y = (x > 0 ? x : -x);
if (y <= THRESH)
{
ysq = 0;
if (y > xsmall)
ysq = y * y;
xnum = a[4]*ysq;
xden = ysq;
for (i = 0; i <= 2; i++)
{
xnum = (xnum + a[i]) * ysq;
xden = (xden + b[i]) * ysq;
}
res = x * (xnum + a[3]) / (xden + b[3]);
res = 1 - res;
res = EXP(ysq) * res;
return res;
}
else if (y <= 4)
{
xnum = c[8]*y;
xden = y;
for (i = 0; i <= 6; i++)
{
xnum = (xnum + c[i]) * y;
xden = (xden + d[i]) * y;
}
res = (xnum + c[7]) / (xden + d[7]);
}
else
{
res = 0;
if (y >= xbig)
{
if (y >= xmax)
goto finish;
if (y >= xhuge)
{
res = SQRPI / y;
goto finish;
}
}
ysq = ((TYPE) 1) / (y * y);
xnum = p[5]*ysq;
xden = ysq;
for (i = 0; i <= 3; i++)
{
xnum = (xnum + p[i]) * ysq;
xden = (xden + q[i]) * ysq;
}
res = ysq *(xnum + p[4]) / (xden + q[4]);
res = (SQRPI - res) / y;
}
finish:
if (x < 0)
{
if (x < xneg)
res = __builtin_inf ();
else
{
ysq = TRUNC (x*((TYPE) 16))/((TYPE) 16);
del = (x-ysq)*(x+ysq);
y = EXP(ysq*ysq) * EXP(del);
res = (y+y) - res;
}
}
return res;
}
#undef EXP
#undef TRUNC
#undef CONCAT
#undef TYPE
#undef KIND_SUFFIX