gcc/libgo/go/crypto/rand/rand_unix.go
Ian Lance Taylor 4ccad563d2 libgo: Update to current sources.
From-SVN: r192704
2012-10-23 04:31:11 +00:00

139 lines
3.2 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin freebsd linux netbsd openbsd plan9
// Unix cryptographically secure pseudorandom number
// generator.
package rand
import (
"bufio"
"crypto/aes"
"crypto/cipher"
"io"
"os"
"runtime"
"sync"
"time"
)
// Easy implementation: read from /dev/urandom.
// This is sufficient on Linux, OS X, and FreeBSD.
func init() {
if runtime.GOOS == "plan9" {
Reader = newReader(nil)
} else {
Reader = &devReader{name: "/dev/urandom"}
}
}
// A devReader satisfies reads by reading the file named name.
type devReader struct {
name string
f io.Reader
mu sync.Mutex
}
func (r *devReader) Read(b []byte) (n int, err error) {
r.mu.Lock()
defer r.mu.Unlock()
if r.f == nil {
f, err := os.Open(r.name)
if f == nil {
return 0, err
}
if runtime.GOOS == "plan9" {
r.f = f
} else {
r.f = bufio.NewReader(f)
}
}
return r.f.Read(b)
}
// Alternate pseudo-random implementation for use on
// systems without a reliable /dev/urandom.
// newReader returns a new pseudorandom generator that
// seeds itself by reading from entropy. If entropy == nil,
// the generator seeds itself by reading from the system's
// random number generator, typically /dev/random.
// The Read method on the returned reader always returns
// the full amount asked for, or else it returns an error.
//
// The generator uses the X9.31 algorithm with AES-128,
// reseeding after every 1 MB of generated data.
func newReader(entropy io.Reader) io.Reader {
if entropy == nil {
entropy = &devReader{name: "/dev/random"}
}
return &reader{entropy: entropy}
}
type reader struct {
mu sync.Mutex
budget int // number of bytes that can be generated
cipher cipher.Block
entropy io.Reader
time, seed, dst, key [aes.BlockSize]byte
}
func (r *reader) Read(b []byte) (n int, err error) {
r.mu.Lock()
defer r.mu.Unlock()
n = len(b)
for len(b) > 0 {
if r.budget == 0 {
_, err := io.ReadFull(r.entropy, r.seed[0:])
if err != nil {
return n - len(b), err
}
_, err = io.ReadFull(r.entropy, r.key[0:])
if err != nil {
return n - len(b), err
}
r.cipher, err = aes.NewCipher(r.key[0:])
if err != nil {
return n - len(b), err
}
r.budget = 1 << 20 // reseed after generating 1MB
}
r.budget -= aes.BlockSize
// ANSI X9.31 (== X9.17) algorithm, but using AES in place of 3DES.
//
// single block:
// t = encrypt(time)
// dst = encrypt(t^seed)
// seed = encrypt(t^dst)
ns := time.Now().UnixNano()
r.time[0] = byte(ns >> 56)
r.time[1] = byte(ns >> 48)
r.time[2] = byte(ns >> 40)
r.time[3] = byte(ns >> 32)
r.time[4] = byte(ns >> 24)
r.time[5] = byte(ns >> 16)
r.time[6] = byte(ns >> 8)
r.time[7] = byte(ns)
r.cipher.Encrypt(r.time[0:], r.time[0:])
for i := 0; i < aes.BlockSize; i++ {
r.dst[i] = r.time[i] ^ r.seed[i]
}
r.cipher.Encrypt(r.dst[0:], r.dst[0:])
for i := 0; i < aes.BlockSize; i++ {
r.seed[i] = r.time[i] ^ r.dst[i]
}
r.cipher.Encrypt(r.seed[0:], r.seed[0:])
m := copy(b, r.dst[0:])
b = b[m:]
}
return n, nil
}