be47d6ecef
From-SVN: r200974
1377 lines
40 KiB
Go
1377 lines
40 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package x509 parses X.509-encoded keys and certificates.
|
|
package x509
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto"
|
|
"crypto/dsa"
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/rsa"
|
|
"crypto/sha1"
|
|
"crypto/x509/pkix"
|
|
"encoding/asn1"
|
|
"encoding/pem"
|
|
"errors"
|
|
"io"
|
|
"math/big"
|
|
"net"
|
|
"strconv"
|
|
"time"
|
|
)
|
|
|
|
// pkixPublicKey reflects a PKIX public key structure. See SubjectPublicKeyInfo
|
|
// in RFC 3280.
|
|
type pkixPublicKey struct {
|
|
Algo pkix.AlgorithmIdentifier
|
|
BitString asn1.BitString
|
|
}
|
|
|
|
// ParsePKIXPublicKey parses a DER encoded public key. These values are
|
|
// typically found in PEM blocks with "BEGIN PUBLIC KEY".
|
|
func ParsePKIXPublicKey(derBytes []byte) (pub interface{}, err error) {
|
|
var pki publicKeyInfo
|
|
if _, err = asn1.Unmarshal(derBytes, &pki); err != nil {
|
|
return
|
|
}
|
|
algo := getPublicKeyAlgorithmFromOID(pki.Algorithm.Algorithm)
|
|
if algo == UnknownPublicKeyAlgorithm {
|
|
return nil, errors.New("ParsePKIXPublicKey: unknown public key algorithm")
|
|
}
|
|
return parsePublicKey(algo, &pki)
|
|
}
|
|
|
|
// MarshalPKIXPublicKey serialises a public key to DER-encoded PKIX format.
|
|
func MarshalPKIXPublicKey(pub interface{}) ([]byte, error) {
|
|
var pubBytes []byte
|
|
|
|
switch pub := pub.(type) {
|
|
case *rsa.PublicKey:
|
|
pubBytes, _ = asn1.Marshal(rsaPublicKey{
|
|
N: pub.N,
|
|
E: pub.E,
|
|
})
|
|
default:
|
|
return nil, errors.New("MarshalPKIXPublicKey: unknown public key type")
|
|
}
|
|
|
|
pkix := pkixPublicKey{
|
|
Algo: pkix.AlgorithmIdentifier{
|
|
Algorithm: []int{1, 2, 840, 113549, 1, 1, 1},
|
|
// This is a NULL parameters value which is technically
|
|
// superfluous, but most other code includes it and, by
|
|
// doing this, we match their public key hashes.
|
|
Parameters: asn1.RawValue{
|
|
Tag: 5,
|
|
},
|
|
},
|
|
BitString: asn1.BitString{
|
|
Bytes: pubBytes,
|
|
BitLength: 8 * len(pubBytes),
|
|
},
|
|
}
|
|
|
|
ret, _ := asn1.Marshal(pkix)
|
|
return ret, nil
|
|
}
|
|
|
|
// These structures reflect the ASN.1 structure of X.509 certificates.:
|
|
|
|
type certificate struct {
|
|
Raw asn1.RawContent
|
|
TBSCertificate tbsCertificate
|
|
SignatureAlgorithm pkix.AlgorithmIdentifier
|
|
SignatureValue asn1.BitString
|
|
}
|
|
|
|
type tbsCertificate struct {
|
|
Raw asn1.RawContent
|
|
Version int `asn1:"optional,explicit,default:1,tag:0"`
|
|
SerialNumber *big.Int
|
|
SignatureAlgorithm pkix.AlgorithmIdentifier
|
|
Issuer asn1.RawValue
|
|
Validity validity
|
|
Subject asn1.RawValue
|
|
PublicKey publicKeyInfo
|
|
UniqueId asn1.BitString `asn1:"optional,tag:1"`
|
|
SubjectUniqueId asn1.BitString `asn1:"optional,tag:2"`
|
|
Extensions []pkix.Extension `asn1:"optional,explicit,tag:3"`
|
|
}
|
|
|
|
type dsaAlgorithmParameters struct {
|
|
P, Q, G *big.Int
|
|
}
|
|
|
|
type dsaSignature struct {
|
|
R, S *big.Int
|
|
}
|
|
|
|
type ecdsaSignature dsaSignature
|
|
|
|
type validity struct {
|
|
NotBefore, NotAfter time.Time
|
|
}
|
|
|
|
type publicKeyInfo struct {
|
|
Raw asn1.RawContent
|
|
Algorithm pkix.AlgorithmIdentifier
|
|
PublicKey asn1.BitString
|
|
}
|
|
|
|
// RFC 5280, 4.2.1.1
|
|
type authKeyId struct {
|
|
Id []byte `asn1:"optional,tag:0"`
|
|
}
|
|
|
|
type SignatureAlgorithm int
|
|
|
|
const (
|
|
UnknownSignatureAlgorithm SignatureAlgorithm = iota
|
|
MD2WithRSA
|
|
MD5WithRSA
|
|
SHA1WithRSA
|
|
SHA256WithRSA
|
|
SHA384WithRSA
|
|
SHA512WithRSA
|
|
DSAWithSHA1
|
|
DSAWithSHA256
|
|
ECDSAWithSHA1
|
|
ECDSAWithSHA256
|
|
ECDSAWithSHA384
|
|
ECDSAWithSHA512
|
|
)
|
|
|
|
type PublicKeyAlgorithm int
|
|
|
|
const (
|
|
UnknownPublicKeyAlgorithm PublicKeyAlgorithm = iota
|
|
RSA
|
|
DSA
|
|
ECDSA
|
|
)
|
|
|
|
// OIDs for signature algorithms
|
|
//
|
|
// pkcs-1 OBJECT IDENTIFIER ::= {
|
|
// iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }
|
|
//
|
|
//
|
|
// RFC 3279 2.2.1 RSA Signature Algorithms
|
|
//
|
|
// md2WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 2 }
|
|
//
|
|
// md5WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 4 }
|
|
//
|
|
// sha-1WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 5 }
|
|
//
|
|
// dsaWithSha1 OBJECT IDENTIFIER ::= {
|
|
// iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 3 }
|
|
//
|
|
// RFC 3279 2.2.3 ECDSA Signature Algorithm
|
|
//
|
|
// ecdsa-with-SHA1 OBJECT IDENTIFIER ::= {
|
|
// iso(1) member-body(2) us(840) ansi-x962(10045)
|
|
// signatures(4) ecdsa-with-SHA1(1)}
|
|
//
|
|
//
|
|
// RFC 4055 5 PKCS #1 Version 1.5
|
|
//
|
|
// sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 }
|
|
//
|
|
// sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 }
|
|
//
|
|
// sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 }
|
|
//
|
|
//
|
|
// RFC 5758 3.1 DSA Signature Algorithms
|
|
//
|
|
// dsaWithSha256 OBJECT IDENTIFIER ::= {
|
|
// joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101)
|
|
// csor(3) algorithms(4) id-dsa-with-sha2(3) 2}
|
|
//
|
|
// RFC 5758 3.2 ECDSA Signature Algorithm
|
|
//
|
|
// ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
|
|
// us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 }
|
|
//
|
|
// ecdsa-with-SHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
|
|
// us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 3 }
|
|
//
|
|
// ecdsa-with-SHA512 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
|
|
// us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 }
|
|
|
|
var (
|
|
oidSignatureMD2WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2}
|
|
oidSignatureMD5WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4}
|
|
oidSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5}
|
|
oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11}
|
|
oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12}
|
|
oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13}
|
|
oidSignatureDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3}
|
|
oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 4, 3, 2}
|
|
oidSignatureECDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1}
|
|
oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2}
|
|
oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3}
|
|
oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4}
|
|
)
|
|
|
|
func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) SignatureAlgorithm {
|
|
switch {
|
|
case oid.Equal(oidSignatureMD2WithRSA):
|
|
return MD2WithRSA
|
|
case oid.Equal(oidSignatureMD5WithRSA):
|
|
return MD5WithRSA
|
|
case oid.Equal(oidSignatureSHA1WithRSA):
|
|
return SHA1WithRSA
|
|
case oid.Equal(oidSignatureSHA256WithRSA):
|
|
return SHA256WithRSA
|
|
case oid.Equal(oidSignatureSHA384WithRSA):
|
|
return SHA384WithRSA
|
|
case oid.Equal(oidSignatureSHA512WithRSA):
|
|
return SHA512WithRSA
|
|
case oid.Equal(oidSignatureDSAWithSHA1):
|
|
return DSAWithSHA1
|
|
case oid.Equal(oidSignatureDSAWithSHA256):
|
|
return DSAWithSHA256
|
|
case oid.Equal(oidSignatureECDSAWithSHA1):
|
|
return ECDSAWithSHA1
|
|
case oid.Equal(oidSignatureECDSAWithSHA256):
|
|
return ECDSAWithSHA256
|
|
case oid.Equal(oidSignatureECDSAWithSHA384):
|
|
return ECDSAWithSHA384
|
|
case oid.Equal(oidSignatureECDSAWithSHA512):
|
|
return ECDSAWithSHA512
|
|
}
|
|
return UnknownSignatureAlgorithm
|
|
}
|
|
|
|
// RFC 3279, 2.3 Public Key Algorithms
|
|
//
|
|
// pkcs-1 OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840)
|
|
// rsadsi(113549) pkcs(1) 1 }
|
|
//
|
|
// rsaEncryption OBJECT IDENTIFIER ::== { pkcs1-1 1 }
|
|
//
|
|
// id-dsa OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840)
|
|
// x9-57(10040) x9cm(4) 1 }
|
|
//
|
|
// RFC 5480, 2.1.1 Unrestricted Algorithm Identifier and Parameters
|
|
//
|
|
// id-ecPublicKey OBJECT IDENTIFIER ::= {
|
|
// iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
|
|
var (
|
|
oidPublicKeyRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1}
|
|
oidPublicKeyDSA = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 1}
|
|
oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1}
|
|
)
|
|
|
|
func getPublicKeyAlgorithmFromOID(oid asn1.ObjectIdentifier) PublicKeyAlgorithm {
|
|
switch {
|
|
case oid.Equal(oidPublicKeyRSA):
|
|
return RSA
|
|
case oid.Equal(oidPublicKeyDSA):
|
|
return DSA
|
|
case oid.Equal(oidPublicKeyECDSA):
|
|
return ECDSA
|
|
}
|
|
return UnknownPublicKeyAlgorithm
|
|
}
|
|
|
|
// RFC 5480, 2.1.1.1. Named Curve
|
|
//
|
|
// secp224r1 OBJECT IDENTIFIER ::= {
|
|
// iso(1) identified-organization(3) certicom(132) curve(0) 33 }
|
|
//
|
|
// secp256r1 OBJECT IDENTIFIER ::= {
|
|
// iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
|
|
// prime(1) 7 }
|
|
//
|
|
// secp384r1 OBJECT IDENTIFIER ::= {
|
|
// iso(1) identified-organization(3) certicom(132) curve(0) 34 }
|
|
//
|
|
// secp521r1 OBJECT IDENTIFIER ::= {
|
|
// iso(1) identified-organization(3) certicom(132) curve(0) 35 }
|
|
//
|
|
// NB: secp256r1 is equivalent to prime256v1
|
|
var (
|
|
oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33}
|
|
oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7}
|
|
oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34}
|
|
oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35}
|
|
)
|
|
|
|
func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve {
|
|
switch {
|
|
case oid.Equal(oidNamedCurveP224):
|
|
return elliptic.P224()
|
|
case oid.Equal(oidNamedCurveP256):
|
|
return elliptic.P256()
|
|
case oid.Equal(oidNamedCurveP384):
|
|
return elliptic.P384()
|
|
case oid.Equal(oidNamedCurveP521):
|
|
return elliptic.P521()
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) {
|
|
switch curve {
|
|
case elliptic.P224():
|
|
return oidNamedCurveP224, true
|
|
case elliptic.P256():
|
|
return oidNamedCurveP256, true
|
|
case elliptic.P384():
|
|
return oidNamedCurveP384, true
|
|
case elliptic.P521():
|
|
return oidNamedCurveP521, true
|
|
}
|
|
|
|
return nil, false
|
|
}
|
|
|
|
// KeyUsage represents the set of actions that are valid for a given key. It's
|
|
// a bitmap of the KeyUsage* constants.
|
|
type KeyUsage int
|
|
|
|
const (
|
|
KeyUsageDigitalSignature KeyUsage = 1 << iota
|
|
KeyUsageContentCommitment
|
|
KeyUsageKeyEncipherment
|
|
KeyUsageDataEncipherment
|
|
KeyUsageKeyAgreement
|
|
KeyUsageCertSign
|
|
KeyUsageCRLSign
|
|
KeyUsageEncipherOnly
|
|
KeyUsageDecipherOnly
|
|
)
|
|
|
|
// RFC 5280, 4.2.1.12 Extended Key Usage
|
|
//
|
|
// anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }
|
|
//
|
|
// id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }
|
|
//
|
|
// id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 }
|
|
// id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 }
|
|
// id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 }
|
|
// id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 }
|
|
// id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 }
|
|
// id-kp-OCSPSigning OBJECT IDENTIFIER ::= { id-kp 9 }
|
|
var (
|
|
oidExtKeyUsageAny = asn1.ObjectIdentifier{2, 5, 29, 37, 0}
|
|
oidExtKeyUsageServerAuth = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 1}
|
|
oidExtKeyUsageClientAuth = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 2}
|
|
oidExtKeyUsageCodeSigning = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 3}
|
|
oidExtKeyUsageEmailProtection = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 4}
|
|
oidExtKeyUsageIPSECEndSystem = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 5}
|
|
oidExtKeyUsageIPSECTunnel = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 6}
|
|
oidExtKeyUsageIPSECUser = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 7}
|
|
oidExtKeyUsageTimeStamping = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 8}
|
|
oidExtKeyUsageOCSPSigning = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 9}
|
|
oidExtKeyUsageMicrosoftServerGatedCrypto = asn1.ObjectIdentifier{1, 3, 6, 1, 4, 1, 311, 10, 3, 3}
|
|
oidExtKeyUsageNetscapeServerGatedCrypto = asn1.ObjectIdentifier{2, 16, 840, 1, 113730, 4, 1}
|
|
)
|
|
|
|
// ExtKeyUsage represents an extended set of actions that are valid for a given key.
|
|
// Each of the ExtKeyUsage* constants define a unique action.
|
|
type ExtKeyUsage int
|
|
|
|
const (
|
|
ExtKeyUsageAny ExtKeyUsage = iota
|
|
ExtKeyUsageServerAuth
|
|
ExtKeyUsageClientAuth
|
|
ExtKeyUsageCodeSigning
|
|
ExtKeyUsageEmailProtection
|
|
ExtKeyUsageIPSECEndSystem
|
|
ExtKeyUsageIPSECTunnel
|
|
ExtKeyUsageIPSECUser
|
|
ExtKeyUsageTimeStamping
|
|
ExtKeyUsageOCSPSigning
|
|
ExtKeyUsageMicrosoftServerGatedCrypto
|
|
ExtKeyUsageNetscapeServerGatedCrypto
|
|
)
|
|
|
|
// extKeyUsageOIDs contains the mapping between an ExtKeyUsage and its OID.
|
|
var extKeyUsageOIDs = []struct {
|
|
extKeyUsage ExtKeyUsage
|
|
oid asn1.ObjectIdentifier
|
|
}{
|
|
{ExtKeyUsageAny, oidExtKeyUsageAny},
|
|
{ExtKeyUsageServerAuth, oidExtKeyUsageServerAuth},
|
|
{ExtKeyUsageClientAuth, oidExtKeyUsageClientAuth},
|
|
{ExtKeyUsageCodeSigning, oidExtKeyUsageCodeSigning},
|
|
{ExtKeyUsageEmailProtection, oidExtKeyUsageEmailProtection},
|
|
{ExtKeyUsageIPSECEndSystem, oidExtKeyUsageIPSECEndSystem},
|
|
{ExtKeyUsageIPSECTunnel, oidExtKeyUsageIPSECTunnel},
|
|
{ExtKeyUsageIPSECUser, oidExtKeyUsageIPSECUser},
|
|
{ExtKeyUsageTimeStamping, oidExtKeyUsageTimeStamping},
|
|
{ExtKeyUsageOCSPSigning, oidExtKeyUsageOCSPSigning},
|
|
{ExtKeyUsageMicrosoftServerGatedCrypto, oidExtKeyUsageMicrosoftServerGatedCrypto},
|
|
{ExtKeyUsageNetscapeServerGatedCrypto, oidExtKeyUsageNetscapeServerGatedCrypto},
|
|
}
|
|
|
|
func extKeyUsageFromOID(oid asn1.ObjectIdentifier) (eku ExtKeyUsage, ok bool) {
|
|
for _, pair := range extKeyUsageOIDs {
|
|
if oid.Equal(pair.oid) {
|
|
return pair.extKeyUsage, true
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func oidFromExtKeyUsage(eku ExtKeyUsage) (oid asn1.ObjectIdentifier, ok bool) {
|
|
for _, pair := range extKeyUsageOIDs {
|
|
if eku == pair.extKeyUsage {
|
|
return pair.oid, true
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// A Certificate represents an X.509 certificate.
|
|
type Certificate struct {
|
|
Raw []byte // Complete ASN.1 DER content (certificate, signature algorithm and signature).
|
|
RawTBSCertificate []byte // Certificate part of raw ASN.1 DER content.
|
|
RawSubjectPublicKeyInfo []byte // DER encoded SubjectPublicKeyInfo.
|
|
RawSubject []byte // DER encoded Subject
|
|
RawIssuer []byte // DER encoded Issuer
|
|
|
|
Signature []byte
|
|
SignatureAlgorithm SignatureAlgorithm
|
|
|
|
PublicKeyAlgorithm PublicKeyAlgorithm
|
|
PublicKey interface{}
|
|
|
|
Version int
|
|
SerialNumber *big.Int
|
|
Issuer pkix.Name
|
|
Subject pkix.Name
|
|
NotBefore, NotAfter time.Time // Validity bounds.
|
|
KeyUsage KeyUsage
|
|
|
|
ExtKeyUsage []ExtKeyUsage // Sequence of extended key usages.
|
|
UnknownExtKeyUsage []asn1.ObjectIdentifier // Encountered extended key usages unknown to this package.
|
|
|
|
BasicConstraintsValid bool // if true then the next two fields are valid.
|
|
IsCA bool
|
|
MaxPathLen int
|
|
|
|
SubjectKeyId []byte
|
|
AuthorityKeyId []byte
|
|
|
|
// Subject Alternate Name values
|
|
DNSNames []string
|
|
EmailAddresses []string
|
|
IPAddresses []net.IP
|
|
|
|
// Name constraints
|
|
PermittedDNSDomainsCritical bool // if true then the name constraints are marked critical.
|
|
PermittedDNSDomains []string
|
|
|
|
PolicyIdentifiers []asn1.ObjectIdentifier
|
|
}
|
|
|
|
// ErrUnsupportedAlgorithm results from attempting to perform an operation that
|
|
// involves algorithms that are not currently implemented.
|
|
var ErrUnsupportedAlgorithm = errors.New("crypto/x509: cannot verify signature: algorithm unimplemented")
|
|
|
|
// ConstraintViolationError results when a requested usage is not permitted by
|
|
// a certificate. For example: checking a signature when the public key isn't a
|
|
// certificate signing key.
|
|
type ConstraintViolationError struct{}
|
|
|
|
func (ConstraintViolationError) Error() string {
|
|
return "crypto/x509: invalid signature: parent certificate cannot sign this kind of certificate"
|
|
}
|
|
|
|
func (c *Certificate) Equal(other *Certificate) bool {
|
|
return bytes.Equal(c.Raw, other.Raw)
|
|
}
|
|
|
|
// Entrust have a broken root certificate (CN=Entrust.net Certification
|
|
// Authority (2048)) which isn't marked as a CA certificate and is thus invalid
|
|
// according to PKIX.
|
|
// We recognise this certificate by its SubjectPublicKeyInfo and exempt it
|
|
// from the Basic Constraints requirement.
|
|
// See http://www.entrust.net/knowledge-base/technote.cfm?tn=7869
|
|
//
|
|
// TODO(agl): remove this hack once their reissued root is sufficiently
|
|
// widespread.
|
|
var entrustBrokenSPKI = []byte{
|
|
0x30, 0x82, 0x01, 0x22, 0x30, 0x0d, 0x06, 0x09,
|
|
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01,
|
|
0x01, 0x05, 0x00, 0x03, 0x82, 0x01, 0x0f, 0x00,
|
|
0x30, 0x82, 0x01, 0x0a, 0x02, 0x82, 0x01, 0x01,
|
|
0x00, 0x97, 0xa3, 0x2d, 0x3c, 0x9e, 0xde, 0x05,
|
|
0xda, 0x13, 0xc2, 0x11, 0x8d, 0x9d, 0x8e, 0xe3,
|
|
0x7f, 0xc7, 0x4b, 0x7e, 0x5a, 0x9f, 0xb3, 0xff,
|
|
0x62, 0xab, 0x73, 0xc8, 0x28, 0x6b, 0xba, 0x10,
|
|
0x64, 0x82, 0x87, 0x13, 0xcd, 0x57, 0x18, 0xff,
|
|
0x28, 0xce, 0xc0, 0xe6, 0x0e, 0x06, 0x91, 0x50,
|
|
0x29, 0x83, 0xd1, 0xf2, 0xc3, 0x2a, 0xdb, 0xd8,
|
|
0xdb, 0x4e, 0x04, 0xcc, 0x00, 0xeb, 0x8b, 0xb6,
|
|
0x96, 0xdc, 0xbc, 0xaa, 0xfa, 0x52, 0x77, 0x04,
|
|
0xc1, 0xdb, 0x19, 0xe4, 0xae, 0x9c, 0xfd, 0x3c,
|
|
0x8b, 0x03, 0xef, 0x4d, 0xbc, 0x1a, 0x03, 0x65,
|
|
0xf9, 0xc1, 0xb1, 0x3f, 0x72, 0x86, 0xf2, 0x38,
|
|
0xaa, 0x19, 0xae, 0x10, 0x88, 0x78, 0x28, 0xda,
|
|
0x75, 0xc3, 0x3d, 0x02, 0x82, 0x02, 0x9c, 0xb9,
|
|
0xc1, 0x65, 0x77, 0x76, 0x24, 0x4c, 0x98, 0xf7,
|
|
0x6d, 0x31, 0x38, 0xfb, 0xdb, 0xfe, 0xdb, 0x37,
|
|
0x02, 0x76, 0xa1, 0x18, 0x97, 0xa6, 0xcc, 0xde,
|
|
0x20, 0x09, 0x49, 0x36, 0x24, 0x69, 0x42, 0xf6,
|
|
0xe4, 0x37, 0x62, 0xf1, 0x59, 0x6d, 0xa9, 0x3c,
|
|
0xed, 0x34, 0x9c, 0xa3, 0x8e, 0xdb, 0xdc, 0x3a,
|
|
0xd7, 0xf7, 0x0a, 0x6f, 0xef, 0x2e, 0xd8, 0xd5,
|
|
0x93, 0x5a, 0x7a, 0xed, 0x08, 0x49, 0x68, 0xe2,
|
|
0x41, 0xe3, 0x5a, 0x90, 0xc1, 0x86, 0x55, 0xfc,
|
|
0x51, 0x43, 0x9d, 0xe0, 0xb2, 0xc4, 0x67, 0xb4,
|
|
0xcb, 0x32, 0x31, 0x25, 0xf0, 0x54, 0x9f, 0x4b,
|
|
0xd1, 0x6f, 0xdb, 0xd4, 0xdd, 0xfc, 0xaf, 0x5e,
|
|
0x6c, 0x78, 0x90, 0x95, 0xde, 0xca, 0x3a, 0x48,
|
|
0xb9, 0x79, 0x3c, 0x9b, 0x19, 0xd6, 0x75, 0x05,
|
|
0xa0, 0xf9, 0x88, 0xd7, 0xc1, 0xe8, 0xa5, 0x09,
|
|
0xe4, 0x1a, 0x15, 0xdc, 0x87, 0x23, 0xaa, 0xb2,
|
|
0x75, 0x8c, 0x63, 0x25, 0x87, 0xd8, 0xf8, 0x3d,
|
|
0xa6, 0xc2, 0xcc, 0x66, 0xff, 0xa5, 0x66, 0x68,
|
|
0x55, 0x02, 0x03, 0x01, 0x00, 0x01,
|
|
}
|
|
|
|
// CheckSignatureFrom verifies that the signature on c is a valid signature
|
|
// from parent.
|
|
func (c *Certificate) CheckSignatureFrom(parent *Certificate) (err error) {
|
|
// RFC 5280, 4.2.1.9:
|
|
// "If the basic constraints extension is not present in a version 3
|
|
// certificate, or the extension is present but the cA boolean is not
|
|
// asserted, then the certified public key MUST NOT be used to verify
|
|
// certificate signatures."
|
|
// (except for Entrust, see comment above entrustBrokenSPKI)
|
|
if (parent.Version == 3 && !parent.BasicConstraintsValid ||
|
|
parent.BasicConstraintsValid && !parent.IsCA) &&
|
|
!bytes.Equal(c.RawSubjectPublicKeyInfo, entrustBrokenSPKI) {
|
|
return ConstraintViolationError{}
|
|
}
|
|
|
|
if parent.KeyUsage != 0 && parent.KeyUsage&KeyUsageCertSign == 0 {
|
|
return ConstraintViolationError{}
|
|
}
|
|
|
|
if parent.PublicKeyAlgorithm == UnknownPublicKeyAlgorithm {
|
|
return ErrUnsupportedAlgorithm
|
|
}
|
|
|
|
// TODO(agl): don't ignore the path length constraint.
|
|
|
|
return parent.CheckSignature(c.SignatureAlgorithm, c.RawTBSCertificate, c.Signature)
|
|
}
|
|
|
|
// CheckSignature verifies that signature is a valid signature over signed from
|
|
// c's public key.
|
|
func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) (err error) {
|
|
var hashType crypto.Hash
|
|
|
|
switch algo {
|
|
case SHA1WithRSA, DSAWithSHA1, ECDSAWithSHA1:
|
|
hashType = crypto.SHA1
|
|
case SHA256WithRSA, DSAWithSHA256, ECDSAWithSHA256:
|
|
hashType = crypto.SHA256
|
|
case SHA384WithRSA, ECDSAWithSHA384:
|
|
hashType = crypto.SHA384
|
|
case SHA512WithRSA, ECDSAWithSHA512:
|
|
hashType = crypto.SHA512
|
|
default:
|
|
return ErrUnsupportedAlgorithm
|
|
}
|
|
|
|
if !hashType.Available() {
|
|
return ErrUnsupportedAlgorithm
|
|
}
|
|
h := hashType.New()
|
|
|
|
h.Write(signed)
|
|
digest := h.Sum(nil)
|
|
|
|
switch pub := c.PublicKey.(type) {
|
|
case *rsa.PublicKey:
|
|
return rsa.VerifyPKCS1v15(pub, hashType, digest, signature)
|
|
case *dsa.PublicKey:
|
|
dsaSig := new(dsaSignature)
|
|
if _, err := asn1.Unmarshal(signature, dsaSig); err != nil {
|
|
return err
|
|
}
|
|
if dsaSig.R.Sign() <= 0 || dsaSig.S.Sign() <= 0 {
|
|
return errors.New("DSA signature contained zero or negative values")
|
|
}
|
|
if !dsa.Verify(pub, digest, dsaSig.R, dsaSig.S) {
|
|
return errors.New("DSA verification failure")
|
|
}
|
|
return
|
|
case *ecdsa.PublicKey:
|
|
ecdsaSig := new(ecdsaSignature)
|
|
if _, err := asn1.Unmarshal(signature, ecdsaSig); err != nil {
|
|
return err
|
|
}
|
|
if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
|
|
return errors.New("crypto/x509: ECDSA signature contained zero or negative values")
|
|
}
|
|
if !ecdsa.Verify(pub, digest, ecdsaSig.R, ecdsaSig.S) {
|
|
return errors.New("crypto/x509: ECDSA verification failure")
|
|
}
|
|
return
|
|
}
|
|
return ErrUnsupportedAlgorithm
|
|
}
|
|
|
|
// CheckCRLSignature checks that the signature in crl is from c.
|
|
func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) (err error) {
|
|
algo := getSignatureAlgorithmFromOID(crl.SignatureAlgorithm.Algorithm)
|
|
return c.CheckSignature(algo, crl.TBSCertList.Raw, crl.SignatureValue.RightAlign())
|
|
}
|
|
|
|
type UnhandledCriticalExtension struct{}
|
|
|
|
func (h UnhandledCriticalExtension) Error() string {
|
|
return "unhandled critical extension"
|
|
}
|
|
|
|
type basicConstraints struct {
|
|
IsCA bool `asn1:"optional"`
|
|
MaxPathLen int `asn1:"optional,default:-1"`
|
|
}
|
|
|
|
// RFC 5280 4.2.1.4
|
|
type policyInformation struct {
|
|
Policy asn1.ObjectIdentifier
|
|
// policyQualifiers omitted
|
|
}
|
|
|
|
// RFC 5280, 4.2.1.10
|
|
type nameConstraints struct {
|
|
Permitted []generalSubtree `asn1:"optional,tag:0"`
|
|
Excluded []generalSubtree `asn1:"optional,tag:1"`
|
|
}
|
|
|
|
type generalSubtree struct {
|
|
Name string `asn1:"tag:2,optional,ia5"`
|
|
}
|
|
|
|
func parsePublicKey(algo PublicKeyAlgorithm, keyData *publicKeyInfo) (interface{}, error) {
|
|
asn1Data := keyData.PublicKey.RightAlign()
|
|
switch algo {
|
|
case RSA:
|
|
p := new(rsaPublicKey)
|
|
_, err := asn1.Unmarshal(asn1Data, p)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if p.N.Sign() <= 0 {
|
|
return nil, errors.New("x509: RSA modulus is not a positive number")
|
|
}
|
|
if p.E <= 0 {
|
|
return nil, errors.New("x509: RSA public exponent is not a positive number")
|
|
}
|
|
|
|
pub := &rsa.PublicKey{
|
|
E: p.E,
|
|
N: p.N,
|
|
}
|
|
return pub, nil
|
|
case DSA:
|
|
var p *big.Int
|
|
_, err := asn1.Unmarshal(asn1Data, &p)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
paramsData := keyData.Algorithm.Parameters.FullBytes
|
|
params := new(dsaAlgorithmParameters)
|
|
_, err = asn1.Unmarshal(paramsData, params)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if p.Sign() <= 0 || params.P.Sign() <= 0 || params.Q.Sign() <= 0 || params.G.Sign() <= 0 {
|
|
return nil, errors.New("zero or negative DSA parameter")
|
|
}
|
|
pub := &dsa.PublicKey{
|
|
Parameters: dsa.Parameters{
|
|
P: params.P,
|
|
Q: params.Q,
|
|
G: params.G,
|
|
},
|
|
Y: p,
|
|
}
|
|
return pub, nil
|
|
case ECDSA:
|
|
paramsData := keyData.Algorithm.Parameters.FullBytes
|
|
namedCurveOID := new(asn1.ObjectIdentifier)
|
|
_, err := asn1.Unmarshal(paramsData, namedCurveOID)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
namedCurve := namedCurveFromOID(*namedCurveOID)
|
|
if namedCurve == nil {
|
|
return nil, errors.New("crypto/x509: unsupported elliptic curve")
|
|
}
|
|
x, y := elliptic.Unmarshal(namedCurve, asn1Data)
|
|
if x == nil {
|
|
return nil, errors.New("crypto/x509: failed to unmarshal elliptic curve point")
|
|
}
|
|
pub := &ecdsa.PublicKey{
|
|
Curve: namedCurve,
|
|
X: x,
|
|
Y: y,
|
|
}
|
|
return pub, nil
|
|
default:
|
|
return nil, nil
|
|
}
|
|
}
|
|
|
|
func parseCertificate(in *certificate) (*Certificate, error) {
|
|
out := new(Certificate)
|
|
out.Raw = in.Raw
|
|
out.RawTBSCertificate = in.TBSCertificate.Raw
|
|
out.RawSubjectPublicKeyInfo = in.TBSCertificate.PublicKey.Raw
|
|
out.RawSubject = in.TBSCertificate.Subject.FullBytes
|
|
out.RawIssuer = in.TBSCertificate.Issuer.FullBytes
|
|
|
|
out.Signature = in.SignatureValue.RightAlign()
|
|
out.SignatureAlgorithm =
|
|
getSignatureAlgorithmFromOID(in.TBSCertificate.SignatureAlgorithm.Algorithm)
|
|
|
|
out.PublicKeyAlgorithm =
|
|
getPublicKeyAlgorithmFromOID(in.TBSCertificate.PublicKey.Algorithm.Algorithm)
|
|
var err error
|
|
out.PublicKey, err = parsePublicKey(out.PublicKeyAlgorithm, &in.TBSCertificate.PublicKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if in.TBSCertificate.SerialNumber.Sign() < 0 {
|
|
return nil, errors.New("negative serial number")
|
|
}
|
|
|
|
out.Version = in.TBSCertificate.Version + 1
|
|
out.SerialNumber = in.TBSCertificate.SerialNumber
|
|
|
|
var issuer, subject pkix.RDNSequence
|
|
if _, err := asn1.Unmarshal(in.TBSCertificate.Subject.FullBytes, &subject); err != nil {
|
|
return nil, err
|
|
}
|
|
if _, err := asn1.Unmarshal(in.TBSCertificate.Issuer.FullBytes, &issuer); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
out.Issuer.FillFromRDNSequence(&issuer)
|
|
out.Subject.FillFromRDNSequence(&subject)
|
|
|
|
out.NotBefore = in.TBSCertificate.Validity.NotBefore
|
|
out.NotAfter = in.TBSCertificate.Validity.NotAfter
|
|
|
|
for _, e := range in.TBSCertificate.Extensions {
|
|
if len(e.Id) == 4 && e.Id[0] == 2 && e.Id[1] == 5 && e.Id[2] == 29 {
|
|
switch e.Id[3] {
|
|
case 15:
|
|
// RFC 5280, 4.2.1.3
|
|
var usageBits asn1.BitString
|
|
_, err := asn1.Unmarshal(e.Value, &usageBits)
|
|
|
|
if err == nil {
|
|
var usage int
|
|
for i := 0; i < 9; i++ {
|
|
if usageBits.At(i) != 0 {
|
|
usage |= 1 << uint(i)
|
|
}
|
|
}
|
|
out.KeyUsage = KeyUsage(usage)
|
|
continue
|
|
}
|
|
case 19:
|
|
// RFC 5280, 4.2.1.9
|
|
var constraints basicConstraints
|
|
_, err := asn1.Unmarshal(e.Value, &constraints)
|
|
|
|
if err == nil {
|
|
out.BasicConstraintsValid = true
|
|
out.IsCA = constraints.IsCA
|
|
out.MaxPathLen = constraints.MaxPathLen
|
|
continue
|
|
}
|
|
case 17:
|
|
// RFC 5280, 4.2.1.6
|
|
|
|
// SubjectAltName ::= GeneralNames
|
|
//
|
|
// GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
|
|
//
|
|
// GeneralName ::= CHOICE {
|
|
// otherName [0] OtherName,
|
|
// rfc822Name [1] IA5String,
|
|
// dNSName [2] IA5String,
|
|
// x400Address [3] ORAddress,
|
|
// directoryName [4] Name,
|
|
// ediPartyName [5] EDIPartyName,
|
|
// uniformResourceIdentifier [6] IA5String,
|
|
// iPAddress [7] OCTET STRING,
|
|
// registeredID [8] OBJECT IDENTIFIER }
|
|
var seq asn1.RawValue
|
|
_, err := asn1.Unmarshal(e.Value, &seq)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if !seq.IsCompound || seq.Tag != 16 || seq.Class != 0 {
|
|
return nil, asn1.StructuralError{Msg: "bad SAN sequence"}
|
|
}
|
|
|
|
parsedName := false
|
|
|
|
rest := seq.Bytes
|
|
for len(rest) > 0 {
|
|
var v asn1.RawValue
|
|
rest, err = asn1.Unmarshal(rest, &v)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
switch v.Tag {
|
|
case 1:
|
|
out.EmailAddresses = append(out.EmailAddresses, string(v.Bytes))
|
|
parsedName = true
|
|
case 2:
|
|
out.DNSNames = append(out.DNSNames, string(v.Bytes))
|
|
parsedName = true
|
|
case 7:
|
|
switch len(v.Bytes) {
|
|
case net.IPv4len, net.IPv6len:
|
|
out.IPAddresses = append(out.IPAddresses, v.Bytes)
|
|
default:
|
|
return nil, errors.New("x509: certificate contained IP address of length " + strconv.Itoa(len(v.Bytes)))
|
|
}
|
|
}
|
|
}
|
|
|
|
if parsedName {
|
|
continue
|
|
}
|
|
// If we didn't parse any of the names then we
|
|
// fall through to the critical check below.
|
|
|
|
case 30:
|
|
// RFC 5280, 4.2.1.10
|
|
|
|
// NameConstraints ::= SEQUENCE {
|
|
// permittedSubtrees [0] GeneralSubtrees OPTIONAL,
|
|
// excludedSubtrees [1] GeneralSubtrees OPTIONAL }
|
|
//
|
|
// GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree
|
|
//
|
|
// GeneralSubtree ::= SEQUENCE {
|
|
// base GeneralName,
|
|
// minimum [0] BaseDistance DEFAULT 0,
|
|
// maximum [1] BaseDistance OPTIONAL }
|
|
//
|
|
// BaseDistance ::= INTEGER (0..MAX)
|
|
|
|
var constraints nameConstraints
|
|
_, err := asn1.Unmarshal(e.Value, &constraints)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if len(constraints.Excluded) > 0 && e.Critical {
|
|
return out, UnhandledCriticalExtension{}
|
|
}
|
|
|
|
for _, subtree := range constraints.Permitted {
|
|
if len(subtree.Name) == 0 {
|
|
if e.Critical {
|
|
return out, UnhandledCriticalExtension{}
|
|
}
|
|
continue
|
|
}
|
|
out.PermittedDNSDomains = append(out.PermittedDNSDomains, subtree.Name)
|
|
}
|
|
continue
|
|
|
|
case 35:
|
|
// RFC 5280, 4.2.1.1
|
|
var a authKeyId
|
|
_, err = asn1.Unmarshal(e.Value, &a)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
out.AuthorityKeyId = a.Id
|
|
continue
|
|
|
|
case 37:
|
|
// RFC 5280, 4.2.1.12. Extended Key Usage
|
|
|
|
// id-ce-extKeyUsage OBJECT IDENTIFIER ::= { id-ce 37 }
|
|
//
|
|
// ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId
|
|
//
|
|
// KeyPurposeId ::= OBJECT IDENTIFIER
|
|
|
|
var keyUsage []asn1.ObjectIdentifier
|
|
_, err = asn1.Unmarshal(e.Value, &keyUsage)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
for _, u := range keyUsage {
|
|
if extKeyUsage, ok := extKeyUsageFromOID(u); ok {
|
|
out.ExtKeyUsage = append(out.ExtKeyUsage, extKeyUsage)
|
|
} else {
|
|
out.UnknownExtKeyUsage = append(out.UnknownExtKeyUsage, u)
|
|
}
|
|
}
|
|
|
|
continue
|
|
|
|
case 14:
|
|
// RFC 5280, 4.2.1.2
|
|
var keyid []byte
|
|
_, err = asn1.Unmarshal(e.Value, &keyid)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
out.SubjectKeyId = keyid
|
|
continue
|
|
|
|
case 32:
|
|
// RFC 5280 4.2.1.4: Certificate Policies
|
|
var policies []policyInformation
|
|
if _, err = asn1.Unmarshal(e.Value, &policies); err != nil {
|
|
return nil, err
|
|
}
|
|
out.PolicyIdentifiers = make([]asn1.ObjectIdentifier, len(policies))
|
|
for i, policy := range policies {
|
|
out.PolicyIdentifiers[i] = policy.Policy
|
|
}
|
|
}
|
|
}
|
|
|
|
if e.Critical {
|
|
return out, UnhandledCriticalExtension{}
|
|
}
|
|
}
|
|
|
|
return out, nil
|
|
}
|
|
|
|
// ParseCertificate parses a single certificate from the given ASN.1 DER data.
|
|
func ParseCertificate(asn1Data []byte) (*Certificate, error) {
|
|
var cert certificate
|
|
rest, err := asn1.Unmarshal(asn1Data, &cert)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if len(rest) > 0 {
|
|
return nil, asn1.SyntaxError{Msg: "trailing data"}
|
|
}
|
|
|
|
return parseCertificate(&cert)
|
|
}
|
|
|
|
// ParseCertificates parses one or more certificates from the given ASN.1 DER
|
|
// data. The certificates must be concatenated with no intermediate padding.
|
|
func ParseCertificates(asn1Data []byte) ([]*Certificate, error) {
|
|
var v []*certificate
|
|
|
|
for len(asn1Data) > 0 {
|
|
cert := new(certificate)
|
|
var err error
|
|
asn1Data, err = asn1.Unmarshal(asn1Data, cert)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
v = append(v, cert)
|
|
}
|
|
|
|
ret := make([]*Certificate, len(v))
|
|
for i, ci := range v {
|
|
cert, err := parseCertificate(ci)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
ret[i] = cert
|
|
}
|
|
|
|
return ret, nil
|
|
}
|
|
|
|
func reverseBitsInAByte(in byte) byte {
|
|
b1 := in>>4 | in<<4
|
|
b2 := b1>>2&0x33 | b1<<2&0xcc
|
|
b3 := b2>>1&0x55 | b2<<1&0xaa
|
|
return b3
|
|
}
|
|
|
|
var (
|
|
oidExtensionSubjectKeyId = []int{2, 5, 29, 14}
|
|
oidExtensionKeyUsage = []int{2, 5, 29, 15}
|
|
oidExtensionExtendedKeyUsage = []int{2, 5, 29, 37}
|
|
oidExtensionAuthorityKeyId = []int{2, 5, 29, 35}
|
|
oidExtensionBasicConstraints = []int{2, 5, 29, 19}
|
|
oidExtensionSubjectAltName = []int{2, 5, 29, 17}
|
|
oidExtensionCertificatePolicies = []int{2, 5, 29, 32}
|
|
oidExtensionNameConstraints = []int{2, 5, 29, 30}
|
|
)
|
|
|
|
func buildExtensions(template *Certificate) (ret []pkix.Extension, err error) {
|
|
ret = make([]pkix.Extension, 8 /* maximum number of elements. */)
|
|
n := 0
|
|
|
|
if template.KeyUsage != 0 {
|
|
ret[n].Id = oidExtensionKeyUsage
|
|
ret[n].Critical = true
|
|
|
|
var a [2]byte
|
|
a[0] = reverseBitsInAByte(byte(template.KeyUsage))
|
|
a[1] = reverseBitsInAByte(byte(template.KeyUsage >> 8))
|
|
|
|
l := 1
|
|
if a[1] != 0 {
|
|
l = 2
|
|
}
|
|
|
|
ret[n].Value, err = asn1.Marshal(asn1.BitString{Bytes: a[0:l], BitLength: l * 8})
|
|
if err != nil {
|
|
return
|
|
}
|
|
n++
|
|
}
|
|
|
|
if len(template.ExtKeyUsage) > 0 || len(template.UnknownExtKeyUsage) > 0 {
|
|
ret[n].Id = oidExtensionExtendedKeyUsage
|
|
|
|
var oids []asn1.ObjectIdentifier
|
|
for _, u := range template.ExtKeyUsage {
|
|
if oid, ok := oidFromExtKeyUsage(u); ok {
|
|
oids = append(oids, oid)
|
|
} else {
|
|
panic("internal error")
|
|
}
|
|
}
|
|
|
|
oids = append(oids, template.UnknownExtKeyUsage...)
|
|
|
|
ret[n].Value, err = asn1.Marshal(oids)
|
|
if err != nil {
|
|
return
|
|
}
|
|
n++
|
|
}
|
|
|
|
if template.BasicConstraintsValid {
|
|
ret[n].Id = oidExtensionBasicConstraints
|
|
ret[n].Value, err = asn1.Marshal(basicConstraints{template.IsCA, template.MaxPathLen})
|
|
ret[n].Critical = true
|
|
if err != nil {
|
|
return
|
|
}
|
|
n++
|
|
}
|
|
|
|
if len(template.SubjectKeyId) > 0 {
|
|
ret[n].Id = oidExtensionSubjectKeyId
|
|
ret[n].Value, err = asn1.Marshal(template.SubjectKeyId)
|
|
if err != nil {
|
|
return
|
|
}
|
|
n++
|
|
}
|
|
|
|
if len(template.AuthorityKeyId) > 0 {
|
|
ret[n].Id = oidExtensionAuthorityKeyId
|
|
ret[n].Value, err = asn1.Marshal(authKeyId{template.AuthorityKeyId})
|
|
if err != nil {
|
|
return
|
|
}
|
|
n++
|
|
}
|
|
|
|
if len(template.DNSNames) > 0 || len(template.EmailAddresses) > 0 || len(template.IPAddresses) > 0 {
|
|
ret[n].Id = oidExtensionSubjectAltName
|
|
var rawValues []asn1.RawValue
|
|
for _, name := range template.DNSNames {
|
|
rawValues = append(rawValues, asn1.RawValue{Tag: 2, Class: 2, Bytes: []byte(name)})
|
|
}
|
|
for _, email := range template.EmailAddresses {
|
|
rawValues = append(rawValues, asn1.RawValue{Tag: 1, Class: 2, Bytes: []byte(email)})
|
|
}
|
|
for _, rawIP := range template.IPAddresses {
|
|
// If possible, we always want to encode IPv4 addresses in 4 bytes.
|
|
ip := rawIP.To4()
|
|
if ip == nil {
|
|
ip = rawIP
|
|
}
|
|
rawValues = append(rawValues, asn1.RawValue{Tag: 7, Class: 2, Bytes: ip})
|
|
}
|
|
ret[n].Value, err = asn1.Marshal(rawValues)
|
|
if err != nil {
|
|
return
|
|
}
|
|
n++
|
|
}
|
|
|
|
if len(template.PolicyIdentifiers) > 0 {
|
|
ret[n].Id = oidExtensionCertificatePolicies
|
|
policies := make([]policyInformation, len(template.PolicyIdentifiers))
|
|
for i, policy := range template.PolicyIdentifiers {
|
|
policies[i].Policy = policy
|
|
}
|
|
ret[n].Value, err = asn1.Marshal(policies)
|
|
if err != nil {
|
|
return
|
|
}
|
|
n++
|
|
}
|
|
|
|
if len(template.PermittedDNSDomains) > 0 {
|
|
ret[n].Id = oidExtensionNameConstraints
|
|
ret[n].Critical = template.PermittedDNSDomainsCritical
|
|
|
|
var out nameConstraints
|
|
out.Permitted = make([]generalSubtree, len(template.PermittedDNSDomains))
|
|
for i, permitted := range template.PermittedDNSDomains {
|
|
out.Permitted[i] = generalSubtree{Name: permitted}
|
|
}
|
|
ret[n].Value, err = asn1.Marshal(out)
|
|
if err != nil {
|
|
return
|
|
}
|
|
n++
|
|
}
|
|
|
|
// Adding another extension here? Remember to update the maximum number
|
|
// of elements in the make() at the top of the function.
|
|
|
|
return ret[0:n], nil
|
|
}
|
|
|
|
func subjectBytes(cert *Certificate) ([]byte, error) {
|
|
if len(cert.RawSubject) > 0 {
|
|
return cert.RawSubject, nil
|
|
}
|
|
|
|
return asn1.Marshal(cert.Subject.ToRDNSequence())
|
|
}
|
|
|
|
// CreateCertificate creates a new certificate based on a template. The
|
|
// following members of template are used: SerialNumber, Subject, NotBefore,
|
|
// NotAfter, KeyUsage, ExtKeyUsage, UnknownExtKeyUsage, BasicConstraintsValid,
|
|
// IsCA, MaxPathLen, SubjectKeyId, DNSNames, PermittedDNSDomainsCritical,
|
|
// PermittedDNSDomains.
|
|
//
|
|
// The certificate is signed by parent. If parent is equal to template then the
|
|
// certificate is self-signed. The parameter pub is the public key of the
|
|
// signee and priv is the private key of the signer.
|
|
//
|
|
// The returned slice is the certificate in DER encoding.
|
|
//
|
|
// The only supported key types are RSA and ECDSA (*rsa.PublicKey or
|
|
// *ecdsa.PublicKey for pub, *rsa.PrivateKey or *ecdsa.PublicKey for priv).
|
|
func CreateCertificate(rand io.Reader, template, parent *Certificate, pub interface{}, priv interface{}) (cert []byte, err error) {
|
|
var publicKeyBytes []byte
|
|
var publicKeyAlgorithm pkix.AlgorithmIdentifier
|
|
|
|
switch pub := pub.(type) {
|
|
case *rsa.PublicKey:
|
|
publicKeyBytes, err = asn1.Marshal(rsaPublicKey{
|
|
N: pub.N,
|
|
E: pub.E,
|
|
})
|
|
publicKeyAlgorithm.Algorithm = oidPublicKeyRSA
|
|
case *ecdsa.PublicKey:
|
|
oid, ok := oidFromNamedCurve(pub.Curve)
|
|
if !ok {
|
|
return nil, errors.New("x509: unknown elliptic curve")
|
|
}
|
|
publicKeyAlgorithm.Algorithm = oidPublicKeyECDSA
|
|
var paramBytes []byte
|
|
paramBytes, err = asn1.Marshal(oid)
|
|
if err != nil {
|
|
return
|
|
}
|
|
publicKeyAlgorithm.Parameters.FullBytes = paramBytes
|
|
publicKeyBytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y)
|
|
default:
|
|
return nil, errors.New("x509: only RSA and ECDSA public keys supported")
|
|
}
|
|
|
|
var signatureAlgorithm pkix.AlgorithmIdentifier
|
|
var hashFunc crypto.Hash
|
|
|
|
switch priv := priv.(type) {
|
|
case *rsa.PrivateKey:
|
|
signatureAlgorithm.Algorithm = oidSignatureSHA1WithRSA
|
|
hashFunc = crypto.SHA1
|
|
case *ecdsa.PrivateKey:
|
|
switch priv.Curve {
|
|
case elliptic.P224(), elliptic.P256():
|
|
hashFunc = crypto.SHA256
|
|
signatureAlgorithm.Algorithm = oidSignatureECDSAWithSHA256
|
|
case elliptic.P384():
|
|
hashFunc = crypto.SHA384
|
|
signatureAlgorithm.Algorithm = oidSignatureECDSAWithSHA384
|
|
case elliptic.P521():
|
|
hashFunc = crypto.SHA512
|
|
signatureAlgorithm.Algorithm = oidSignatureECDSAWithSHA512
|
|
default:
|
|
return nil, errors.New("x509: unknown elliptic curve")
|
|
}
|
|
default:
|
|
return nil, errors.New("x509: only RSA and ECDSA private keys supported")
|
|
}
|
|
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
if len(parent.SubjectKeyId) > 0 {
|
|
template.AuthorityKeyId = parent.SubjectKeyId
|
|
}
|
|
|
|
extensions, err := buildExtensions(template)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
asn1Issuer, err := subjectBytes(parent)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
asn1Subject, err := subjectBytes(template)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
encodedPublicKey := asn1.BitString{BitLength: len(publicKeyBytes) * 8, Bytes: publicKeyBytes}
|
|
c := tbsCertificate{
|
|
Version: 2,
|
|
SerialNumber: template.SerialNumber,
|
|
SignatureAlgorithm: signatureAlgorithm,
|
|
Issuer: asn1.RawValue{FullBytes: asn1Issuer},
|
|
Validity: validity{template.NotBefore.UTC(), template.NotAfter.UTC()},
|
|
Subject: asn1.RawValue{FullBytes: asn1Subject},
|
|
PublicKey: publicKeyInfo{nil, publicKeyAlgorithm, encodedPublicKey},
|
|
Extensions: extensions,
|
|
}
|
|
|
|
tbsCertContents, err := asn1.Marshal(c)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
c.Raw = tbsCertContents
|
|
|
|
h := hashFunc.New()
|
|
h.Write(tbsCertContents)
|
|
digest := h.Sum(nil)
|
|
|
|
var signature []byte
|
|
|
|
switch priv := priv.(type) {
|
|
case *rsa.PrivateKey:
|
|
signature, err = rsa.SignPKCS1v15(rand, priv, hashFunc, digest)
|
|
case *ecdsa.PrivateKey:
|
|
var r, s *big.Int
|
|
if r, s, err = ecdsa.Sign(rand, priv, digest); err == nil {
|
|
signature, err = asn1.Marshal(ecdsaSignature{r, s})
|
|
}
|
|
default:
|
|
panic("internal error")
|
|
}
|
|
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
cert, err = asn1.Marshal(certificate{
|
|
nil,
|
|
c,
|
|
signatureAlgorithm,
|
|
asn1.BitString{Bytes: signature, BitLength: len(signature) * 8},
|
|
})
|
|
return
|
|
}
|
|
|
|
// pemCRLPrefix is the magic string that indicates that we have a PEM encoded
|
|
// CRL.
|
|
var pemCRLPrefix = []byte("-----BEGIN X509 CRL")
|
|
|
|
// pemType is the type of a PEM encoded CRL.
|
|
var pemType = "X509 CRL"
|
|
|
|
// ParseCRL parses a CRL from the given bytes. It's often the case that PEM
|
|
// encoded CRLs will appear where they should be DER encoded, so this function
|
|
// will transparently handle PEM encoding as long as there isn't any leading
|
|
// garbage.
|
|
func ParseCRL(crlBytes []byte) (certList *pkix.CertificateList, err error) {
|
|
if bytes.HasPrefix(crlBytes, pemCRLPrefix) {
|
|
block, _ := pem.Decode(crlBytes)
|
|
if block != nil && block.Type == pemType {
|
|
crlBytes = block.Bytes
|
|
}
|
|
}
|
|
return ParseDERCRL(crlBytes)
|
|
}
|
|
|
|
// ParseDERCRL parses a DER encoded CRL from the given bytes.
|
|
func ParseDERCRL(derBytes []byte) (certList *pkix.CertificateList, err error) {
|
|
certList = new(pkix.CertificateList)
|
|
_, err = asn1.Unmarshal(derBytes, certList)
|
|
if err != nil {
|
|
certList = nil
|
|
}
|
|
return
|
|
}
|
|
|
|
// CreateCRL returns a DER encoded CRL, signed by this Certificate, that
|
|
// contains the given list of revoked certificates.
|
|
//
|
|
// The only supported key type is RSA (*rsa.PrivateKey for priv).
|
|
func (c *Certificate) CreateCRL(rand io.Reader, priv interface{}, revokedCerts []pkix.RevokedCertificate, now, expiry time.Time) (crlBytes []byte, err error) {
|
|
rsaPriv, ok := priv.(*rsa.PrivateKey)
|
|
if !ok {
|
|
return nil, errors.New("x509: non-RSA private keys not supported")
|
|
}
|
|
tbsCertList := pkix.TBSCertificateList{
|
|
Version: 2,
|
|
Signature: pkix.AlgorithmIdentifier{
|
|
Algorithm: oidSignatureSHA1WithRSA,
|
|
},
|
|
Issuer: c.Subject.ToRDNSequence(),
|
|
ThisUpdate: now.UTC(),
|
|
NextUpdate: expiry.UTC(),
|
|
RevokedCertificates: revokedCerts,
|
|
}
|
|
|
|
tbsCertListContents, err := asn1.Marshal(tbsCertList)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
h := sha1.New()
|
|
h.Write(tbsCertListContents)
|
|
digest := h.Sum(nil)
|
|
|
|
signature, err := rsa.SignPKCS1v15(rand, rsaPriv, crypto.SHA1, digest)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
return asn1.Marshal(pkix.CertificateList{
|
|
TBSCertList: tbsCertList,
|
|
SignatureAlgorithm: pkix.AlgorithmIdentifier{
|
|
Algorithm: oidSignatureSHA1WithRSA,
|
|
},
|
|
SignatureValue: asn1.BitString{Bytes: signature, BitLength: len(signature) * 8},
|
|
})
|
|
}
|