e71b408aa2
This makes same_type_for_tbaa_p conservative in the same way get_alias_set is about void * which we allow to alias all other pointers. 2020-04-15 Richard Biener <rguenther@suse.de> PR middle-end/94539 * tree-ssa-alias.c (same_type_for_tbaa): Defer to alias_sets_conflict_p for pointers. * gcc.dg/alias-14.c: Make dg-do run.
3813 lines
116 KiB
C
3813 lines
116 KiB
C
/* Alias analysis for trees.
|
|
Copyright (C) 2004-2020 Free Software Foundation, Inc.
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "target.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "timevar.h" /* for TV_ALIAS_STMT_WALK */
|
|
#include "ssa.h"
|
|
#include "cgraph.h"
|
|
#include "tree-pretty-print.h"
|
|
#include "alias.h"
|
|
#include "fold-const.h"
|
|
#include "langhooks.h"
|
|
#include "dumpfile.h"
|
|
#include "tree-eh.h"
|
|
#include "tree-dfa.h"
|
|
#include "ipa-reference.h"
|
|
#include "varasm.h"
|
|
|
|
/* Broad overview of how alias analysis on gimple works:
|
|
|
|
Statements clobbering or using memory are linked through the
|
|
virtual operand factored use-def chain. The virtual operand
|
|
is unique per function, its symbol is accessible via gimple_vop (cfun).
|
|
Virtual operands are used for efficiently walking memory statements
|
|
in the gimple IL and are useful for things like value-numbering as
|
|
a generation count for memory references.
|
|
|
|
SSA_NAME pointers may have associated points-to information
|
|
accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
|
|
points-to information is (re-)computed by the TODO_rebuild_alias
|
|
pass manager todo. Points-to information is also used for more
|
|
precise tracking of call-clobbered and call-used variables and
|
|
related disambiguations.
|
|
|
|
This file contains functions for disambiguating memory references,
|
|
the so called alias-oracle and tools for walking of the gimple IL.
|
|
|
|
The main alias-oracle entry-points are
|
|
|
|
bool stmt_may_clobber_ref_p (gimple *, tree)
|
|
|
|
This function queries if a statement may invalidate (parts of)
|
|
the memory designated by the reference tree argument.
|
|
|
|
bool ref_maybe_used_by_stmt_p (gimple *, tree)
|
|
|
|
This function queries if a statement may need (parts of) the
|
|
memory designated by the reference tree argument.
|
|
|
|
There are variants of these functions that only handle the call
|
|
part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
|
|
Note that these do not disambiguate against a possible call lhs.
|
|
|
|
bool refs_may_alias_p (tree, tree)
|
|
|
|
This function tries to disambiguate two reference trees.
|
|
|
|
bool ptr_deref_may_alias_global_p (tree)
|
|
|
|
This function queries if dereferencing a pointer variable may
|
|
alias global memory.
|
|
|
|
More low-level disambiguators are available and documented in
|
|
this file. Low-level disambiguators dealing with points-to
|
|
information are in tree-ssa-structalias.c. */
|
|
|
|
static int nonoverlapping_refs_since_match_p (tree, tree, tree, tree, bool);
|
|
static bool nonoverlapping_component_refs_p (const_tree, const_tree);
|
|
|
|
/* Query statistics for the different low-level disambiguators.
|
|
A high-level query may trigger multiple of them. */
|
|
|
|
static struct {
|
|
unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
|
|
unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
|
|
unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
|
|
unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
|
|
unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
|
|
unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
|
|
unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
|
|
unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
|
|
unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_may_alias;
|
|
unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_no_alias;
|
|
unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_may_alias;
|
|
unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_must_overlap;
|
|
unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_no_alias;
|
|
} alias_stats;
|
|
|
|
void
|
|
dump_alias_stats (FILE *s)
|
|
{
|
|
fprintf (s, "\nAlias oracle query stats:\n");
|
|
fprintf (s, " refs_may_alias_p: "
|
|
HOST_WIDE_INT_PRINT_DEC" disambiguations, "
|
|
HOST_WIDE_INT_PRINT_DEC" queries\n",
|
|
alias_stats.refs_may_alias_p_no_alias,
|
|
alias_stats.refs_may_alias_p_no_alias
|
|
+ alias_stats.refs_may_alias_p_may_alias);
|
|
fprintf (s, " ref_maybe_used_by_call_p: "
|
|
HOST_WIDE_INT_PRINT_DEC" disambiguations, "
|
|
HOST_WIDE_INT_PRINT_DEC" queries\n",
|
|
alias_stats.ref_maybe_used_by_call_p_no_alias,
|
|
alias_stats.refs_may_alias_p_no_alias
|
|
+ alias_stats.ref_maybe_used_by_call_p_may_alias);
|
|
fprintf (s, " call_may_clobber_ref_p: "
|
|
HOST_WIDE_INT_PRINT_DEC" disambiguations, "
|
|
HOST_WIDE_INT_PRINT_DEC" queries\n",
|
|
alias_stats.call_may_clobber_ref_p_no_alias,
|
|
alias_stats.call_may_clobber_ref_p_no_alias
|
|
+ alias_stats.call_may_clobber_ref_p_may_alias);
|
|
fprintf (s, " nonoverlapping_component_refs_p: "
|
|
HOST_WIDE_INT_PRINT_DEC" disambiguations, "
|
|
HOST_WIDE_INT_PRINT_DEC" queries\n",
|
|
alias_stats.nonoverlapping_component_refs_p_no_alias,
|
|
alias_stats.nonoverlapping_component_refs_p_no_alias
|
|
+ alias_stats.nonoverlapping_component_refs_p_may_alias);
|
|
fprintf (s, " nonoverlapping_refs_since_match_p: "
|
|
HOST_WIDE_INT_PRINT_DEC" disambiguations, "
|
|
HOST_WIDE_INT_PRINT_DEC" must overlaps, "
|
|
HOST_WIDE_INT_PRINT_DEC" queries\n",
|
|
alias_stats.nonoverlapping_refs_since_match_p_no_alias,
|
|
alias_stats.nonoverlapping_refs_since_match_p_must_overlap,
|
|
alias_stats.nonoverlapping_refs_since_match_p_no_alias
|
|
+ alias_stats.nonoverlapping_refs_since_match_p_may_alias
|
|
+ alias_stats.nonoverlapping_refs_since_match_p_must_overlap);
|
|
fprintf (s, " aliasing_component_refs_p: "
|
|
HOST_WIDE_INT_PRINT_DEC" disambiguations, "
|
|
HOST_WIDE_INT_PRINT_DEC" queries\n",
|
|
alias_stats.aliasing_component_refs_p_no_alias,
|
|
alias_stats.aliasing_component_refs_p_no_alias
|
|
+ alias_stats.aliasing_component_refs_p_may_alias);
|
|
dump_alias_stats_in_alias_c (s);
|
|
}
|
|
|
|
|
|
/* Return true, if dereferencing PTR may alias with a global variable. */
|
|
|
|
bool
|
|
ptr_deref_may_alias_global_p (tree ptr)
|
|
{
|
|
struct ptr_info_def *pi;
|
|
|
|
/* If we end up with a pointer constant here that may point
|
|
to global memory. */
|
|
if (TREE_CODE (ptr) != SSA_NAME)
|
|
return true;
|
|
|
|
pi = SSA_NAME_PTR_INFO (ptr);
|
|
|
|
/* If we do not have points-to information for this variable,
|
|
we have to punt. */
|
|
if (!pi)
|
|
return true;
|
|
|
|
/* ??? This does not use TBAA to prune globals ptr may not access. */
|
|
return pt_solution_includes_global (&pi->pt);
|
|
}
|
|
|
|
/* Return true if dereferencing PTR may alias DECL.
|
|
The caller is responsible for applying TBAA to see if PTR
|
|
may access DECL at all. */
|
|
|
|
static bool
|
|
ptr_deref_may_alias_decl_p (tree ptr, tree decl)
|
|
{
|
|
struct ptr_info_def *pi;
|
|
|
|
/* Conversions are irrelevant for points-to information and
|
|
data-dependence analysis can feed us those. */
|
|
STRIP_NOPS (ptr);
|
|
|
|
/* Anything we do not explicilty handle aliases. */
|
|
if ((TREE_CODE (ptr) != SSA_NAME
|
|
&& TREE_CODE (ptr) != ADDR_EXPR
|
|
&& TREE_CODE (ptr) != POINTER_PLUS_EXPR)
|
|
|| !POINTER_TYPE_P (TREE_TYPE (ptr))
|
|
|| (!VAR_P (decl)
|
|
&& TREE_CODE (decl) != PARM_DECL
|
|
&& TREE_CODE (decl) != RESULT_DECL))
|
|
return true;
|
|
|
|
/* Disregard pointer offsetting. */
|
|
if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
|
|
{
|
|
do
|
|
{
|
|
ptr = TREE_OPERAND (ptr, 0);
|
|
}
|
|
while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
|
|
return ptr_deref_may_alias_decl_p (ptr, decl);
|
|
}
|
|
|
|
/* ADDR_EXPR pointers either just offset another pointer or directly
|
|
specify the pointed-to set. */
|
|
if (TREE_CODE (ptr) == ADDR_EXPR)
|
|
{
|
|
tree base = get_base_address (TREE_OPERAND (ptr, 0));
|
|
if (base
|
|
&& (TREE_CODE (base) == MEM_REF
|
|
|| TREE_CODE (base) == TARGET_MEM_REF))
|
|
ptr = TREE_OPERAND (base, 0);
|
|
else if (base
|
|
&& DECL_P (base))
|
|
return compare_base_decls (base, decl) != 0;
|
|
else if (base
|
|
&& CONSTANT_CLASS_P (base))
|
|
return false;
|
|
else
|
|
return true;
|
|
}
|
|
|
|
/* Non-aliased variables cannot be pointed to. */
|
|
if (!may_be_aliased (decl))
|
|
return false;
|
|
|
|
/* If we do not have useful points-to information for this pointer
|
|
we cannot disambiguate anything else. */
|
|
pi = SSA_NAME_PTR_INFO (ptr);
|
|
if (!pi)
|
|
return true;
|
|
|
|
return pt_solution_includes (&pi->pt, decl);
|
|
}
|
|
|
|
/* Return true if dereferenced PTR1 and PTR2 may alias.
|
|
The caller is responsible for applying TBAA to see if accesses
|
|
through PTR1 and PTR2 may conflict at all. */
|
|
|
|
bool
|
|
ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
|
|
{
|
|
struct ptr_info_def *pi1, *pi2;
|
|
|
|
/* Conversions are irrelevant for points-to information and
|
|
data-dependence analysis can feed us those. */
|
|
STRIP_NOPS (ptr1);
|
|
STRIP_NOPS (ptr2);
|
|
|
|
/* Disregard pointer offsetting. */
|
|
if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
|
|
{
|
|
do
|
|
{
|
|
ptr1 = TREE_OPERAND (ptr1, 0);
|
|
}
|
|
while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
|
|
return ptr_derefs_may_alias_p (ptr1, ptr2);
|
|
}
|
|
if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
|
|
{
|
|
do
|
|
{
|
|
ptr2 = TREE_OPERAND (ptr2, 0);
|
|
}
|
|
while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
|
|
return ptr_derefs_may_alias_p (ptr1, ptr2);
|
|
}
|
|
|
|
/* ADDR_EXPR pointers either just offset another pointer or directly
|
|
specify the pointed-to set. */
|
|
if (TREE_CODE (ptr1) == ADDR_EXPR)
|
|
{
|
|
tree base = get_base_address (TREE_OPERAND (ptr1, 0));
|
|
if (base
|
|
&& (TREE_CODE (base) == MEM_REF
|
|
|| TREE_CODE (base) == TARGET_MEM_REF))
|
|
return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
|
|
else if (base
|
|
&& DECL_P (base))
|
|
return ptr_deref_may_alias_decl_p (ptr2, base);
|
|
else
|
|
return true;
|
|
}
|
|
if (TREE_CODE (ptr2) == ADDR_EXPR)
|
|
{
|
|
tree base = get_base_address (TREE_OPERAND (ptr2, 0));
|
|
if (base
|
|
&& (TREE_CODE (base) == MEM_REF
|
|
|| TREE_CODE (base) == TARGET_MEM_REF))
|
|
return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
|
|
else if (base
|
|
&& DECL_P (base))
|
|
return ptr_deref_may_alias_decl_p (ptr1, base);
|
|
else
|
|
return true;
|
|
}
|
|
|
|
/* From here we require SSA name pointers. Anything else aliases. */
|
|
if (TREE_CODE (ptr1) != SSA_NAME
|
|
|| TREE_CODE (ptr2) != SSA_NAME
|
|
|| !POINTER_TYPE_P (TREE_TYPE (ptr1))
|
|
|| !POINTER_TYPE_P (TREE_TYPE (ptr2)))
|
|
return true;
|
|
|
|
/* We may end up with two empty points-to solutions for two same pointers.
|
|
In this case we still want to say both pointers alias, so shortcut
|
|
that here. */
|
|
if (ptr1 == ptr2)
|
|
return true;
|
|
|
|
/* If we do not have useful points-to information for either pointer
|
|
we cannot disambiguate anything else. */
|
|
pi1 = SSA_NAME_PTR_INFO (ptr1);
|
|
pi2 = SSA_NAME_PTR_INFO (ptr2);
|
|
if (!pi1 || !pi2)
|
|
return true;
|
|
|
|
/* ??? This does not use TBAA to prune decls from the intersection
|
|
that not both pointers may access. */
|
|
return pt_solutions_intersect (&pi1->pt, &pi2->pt);
|
|
}
|
|
|
|
/* Return true if dereferencing PTR may alias *REF.
|
|
The caller is responsible for applying TBAA to see if PTR
|
|
may access *REF at all. */
|
|
|
|
static bool
|
|
ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
|
|
{
|
|
tree base = ao_ref_base (ref);
|
|
|
|
if (TREE_CODE (base) == MEM_REF
|
|
|| TREE_CODE (base) == TARGET_MEM_REF)
|
|
return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
|
|
else if (DECL_P (base))
|
|
return ptr_deref_may_alias_decl_p (ptr, base);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
|
|
|
|
bool
|
|
ptrs_compare_unequal (tree ptr1, tree ptr2)
|
|
{
|
|
/* First resolve the pointers down to a SSA name pointer base or
|
|
a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
|
|
not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
|
|
or STRING_CSTs which needs points-to adjustments to track them
|
|
in the points-to sets. */
|
|
tree obj1 = NULL_TREE;
|
|
tree obj2 = NULL_TREE;
|
|
if (TREE_CODE (ptr1) == ADDR_EXPR)
|
|
{
|
|
tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
|
|
if (! tem)
|
|
return false;
|
|
if (VAR_P (tem)
|
|
|| TREE_CODE (tem) == PARM_DECL
|
|
|| TREE_CODE (tem) == RESULT_DECL)
|
|
obj1 = tem;
|
|
else if (TREE_CODE (tem) == MEM_REF)
|
|
ptr1 = TREE_OPERAND (tem, 0);
|
|
}
|
|
if (TREE_CODE (ptr2) == ADDR_EXPR)
|
|
{
|
|
tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
|
|
if (! tem)
|
|
return false;
|
|
if (VAR_P (tem)
|
|
|| TREE_CODE (tem) == PARM_DECL
|
|
|| TREE_CODE (tem) == RESULT_DECL)
|
|
obj2 = tem;
|
|
else if (TREE_CODE (tem) == MEM_REF)
|
|
ptr2 = TREE_OPERAND (tem, 0);
|
|
}
|
|
|
|
/* Canonicalize ptr vs. object. */
|
|
if (TREE_CODE (ptr1) == SSA_NAME && obj2)
|
|
{
|
|
std::swap (ptr1, ptr2);
|
|
std::swap (obj1, obj2);
|
|
}
|
|
|
|
if (obj1 && obj2)
|
|
/* Other code handles this correctly, no need to duplicate it here. */;
|
|
else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
|
|
{
|
|
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
|
|
/* We may not use restrict to optimize pointer comparisons.
|
|
See PR71062. So we have to assume that restrict-pointed-to
|
|
may be in fact obj1. */
|
|
if (!pi
|
|
|| pi->pt.vars_contains_restrict
|
|
|| pi->pt.vars_contains_interposable)
|
|
return false;
|
|
if (VAR_P (obj1)
|
|
&& (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
|
|
{
|
|
varpool_node *node = varpool_node::get (obj1);
|
|
/* If obj1 may bind to NULL give up (see below). */
|
|
if (! node
|
|
|| ! node->nonzero_address ()
|
|
|| ! decl_binds_to_current_def_p (obj1))
|
|
return false;
|
|
}
|
|
return !pt_solution_includes (&pi->pt, obj1);
|
|
}
|
|
|
|
/* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
|
|
but those require pt.null to be conservatively correct. */
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Returns whether reference REF to BASE may refer to global memory. */
|
|
|
|
static bool
|
|
ref_may_alias_global_p_1 (tree base)
|
|
{
|
|
if (DECL_P (base))
|
|
return is_global_var (base);
|
|
else if (TREE_CODE (base) == MEM_REF
|
|
|| TREE_CODE (base) == TARGET_MEM_REF)
|
|
return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ref_may_alias_global_p (ao_ref *ref)
|
|
{
|
|
tree base = ao_ref_base (ref);
|
|
return ref_may_alias_global_p_1 (base);
|
|
}
|
|
|
|
bool
|
|
ref_may_alias_global_p (tree ref)
|
|
{
|
|
tree base = get_base_address (ref);
|
|
return ref_may_alias_global_p_1 (base);
|
|
}
|
|
|
|
/* Return true whether STMT may clobber global memory. */
|
|
|
|
bool
|
|
stmt_may_clobber_global_p (gimple *stmt)
|
|
{
|
|
tree lhs;
|
|
|
|
if (!gimple_vdef (stmt))
|
|
return false;
|
|
|
|
/* ??? We can ask the oracle whether an artificial pointer
|
|
dereference with a pointer with points-to information covering
|
|
all global memory (what about non-address taken memory?) maybe
|
|
clobbered by this call. As there is at the moment no convenient
|
|
way of doing that without generating garbage do some manual
|
|
checking instead.
|
|
??? We could make a NULL ao_ref argument to the various
|
|
predicates special, meaning any global memory. */
|
|
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
lhs = gimple_assign_lhs (stmt);
|
|
return (TREE_CODE (lhs) != SSA_NAME
|
|
&& ref_may_alias_global_p (lhs));
|
|
case GIMPLE_CALL:
|
|
return true;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
/* Dump alias information on FILE. */
|
|
|
|
void
|
|
dump_alias_info (FILE *file)
|
|
{
|
|
unsigned i;
|
|
tree ptr;
|
|
const char *funcname
|
|
= lang_hooks.decl_printable_name (current_function_decl, 2);
|
|
tree var;
|
|
|
|
fprintf (file, "\n\nAlias information for %s\n\n", funcname);
|
|
|
|
fprintf (file, "Aliased symbols\n\n");
|
|
|
|
FOR_EACH_LOCAL_DECL (cfun, i, var)
|
|
{
|
|
if (may_be_aliased (var))
|
|
dump_variable (file, var);
|
|
}
|
|
|
|
fprintf (file, "\nCall clobber information\n");
|
|
|
|
fprintf (file, "\nESCAPED");
|
|
dump_points_to_solution (file, &cfun->gimple_df->escaped);
|
|
|
|
fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
|
|
|
|
FOR_EACH_SSA_NAME (i, ptr, cfun)
|
|
{
|
|
struct ptr_info_def *pi;
|
|
|
|
if (!POINTER_TYPE_P (TREE_TYPE (ptr))
|
|
|| SSA_NAME_IN_FREE_LIST (ptr))
|
|
continue;
|
|
|
|
pi = SSA_NAME_PTR_INFO (ptr);
|
|
if (pi)
|
|
dump_points_to_info_for (file, ptr);
|
|
}
|
|
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
|
|
/* Dump alias information on stderr. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_alias_info (void)
|
|
{
|
|
dump_alias_info (stderr);
|
|
}
|
|
|
|
|
|
/* Dump the points-to set *PT into FILE. */
|
|
|
|
void
|
|
dump_points_to_solution (FILE *file, struct pt_solution *pt)
|
|
{
|
|
if (pt->anything)
|
|
fprintf (file, ", points-to anything");
|
|
|
|
if (pt->nonlocal)
|
|
fprintf (file, ", points-to non-local");
|
|
|
|
if (pt->escaped)
|
|
fprintf (file, ", points-to escaped");
|
|
|
|
if (pt->ipa_escaped)
|
|
fprintf (file, ", points-to unit escaped");
|
|
|
|
if (pt->null)
|
|
fprintf (file, ", points-to NULL");
|
|
|
|
if (pt->vars)
|
|
{
|
|
fprintf (file, ", points-to vars: ");
|
|
dump_decl_set (file, pt->vars);
|
|
if (pt->vars_contains_nonlocal
|
|
|| pt->vars_contains_escaped
|
|
|| pt->vars_contains_escaped_heap
|
|
|| pt->vars_contains_restrict)
|
|
{
|
|
const char *comma = "";
|
|
fprintf (file, " (");
|
|
if (pt->vars_contains_nonlocal)
|
|
{
|
|
fprintf (file, "nonlocal");
|
|
comma = ", ";
|
|
}
|
|
if (pt->vars_contains_escaped)
|
|
{
|
|
fprintf (file, "%sescaped", comma);
|
|
comma = ", ";
|
|
}
|
|
if (pt->vars_contains_escaped_heap)
|
|
{
|
|
fprintf (file, "%sescaped heap", comma);
|
|
comma = ", ";
|
|
}
|
|
if (pt->vars_contains_restrict)
|
|
{
|
|
fprintf (file, "%srestrict", comma);
|
|
comma = ", ";
|
|
}
|
|
if (pt->vars_contains_interposable)
|
|
fprintf (file, "%sinterposable", comma);
|
|
fprintf (file, ")");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Unified dump function for pt_solution. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug (pt_solution &ref)
|
|
{
|
|
dump_points_to_solution (stderr, &ref);
|
|
}
|
|
|
|
DEBUG_FUNCTION void
|
|
debug (pt_solution *ptr)
|
|
{
|
|
if (ptr)
|
|
debug (*ptr);
|
|
else
|
|
fprintf (stderr, "<nil>\n");
|
|
}
|
|
|
|
|
|
/* Dump points-to information for SSA_NAME PTR into FILE. */
|
|
|
|
void
|
|
dump_points_to_info_for (FILE *file, tree ptr)
|
|
{
|
|
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
|
|
|
|
print_generic_expr (file, ptr, dump_flags);
|
|
|
|
if (pi)
|
|
dump_points_to_solution (file, &pi->pt);
|
|
else
|
|
fprintf (file, ", points-to anything");
|
|
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
|
|
/* Dump points-to information for VAR into stderr. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_points_to_info_for (tree var)
|
|
{
|
|
dump_points_to_info_for (stderr, var);
|
|
}
|
|
|
|
|
|
/* Initializes the alias-oracle reference representation *R from REF. */
|
|
|
|
void
|
|
ao_ref_init (ao_ref *r, tree ref)
|
|
{
|
|
r->ref = ref;
|
|
r->base = NULL_TREE;
|
|
r->offset = 0;
|
|
r->size = -1;
|
|
r->max_size = -1;
|
|
r->ref_alias_set = -1;
|
|
r->base_alias_set = -1;
|
|
r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
|
|
}
|
|
|
|
/* Returns the base object of the memory reference *REF. */
|
|
|
|
tree
|
|
ao_ref_base (ao_ref *ref)
|
|
{
|
|
bool reverse;
|
|
|
|
if (ref->base)
|
|
return ref->base;
|
|
ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
|
|
&ref->max_size, &reverse);
|
|
return ref->base;
|
|
}
|
|
|
|
/* Returns the base object alias set of the memory reference *REF. */
|
|
|
|
alias_set_type
|
|
ao_ref_base_alias_set (ao_ref *ref)
|
|
{
|
|
tree base_ref;
|
|
if (ref->base_alias_set != -1)
|
|
return ref->base_alias_set;
|
|
if (!ref->ref)
|
|
return 0;
|
|
base_ref = ref->ref;
|
|
while (handled_component_p (base_ref))
|
|
base_ref = TREE_OPERAND (base_ref, 0);
|
|
ref->base_alias_set = get_alias_set (base_ref);
|
|
return ref->base_alias_set;
|
|
}
|
|
|
|
/* Returns the reference alias set of the memory reference *REF. */
|
|
|
|
alias_set_type
|
|
ao_ref_alias_set (ao_ref *ref)
|
|
{
|
|
if (ref->ref_alias_set != -1)
|
|
return ref->ref_alias_set;
|
|
if (!ref->ref)
|
|
return 0;
|
|
ref->ref_alias_set = get_alias_set (ref->ref);
|
|
return ref->ref_alias_set;
|
|
}
|
|
|
|
/* Init an alias-oracle reference representation from a gimple pointer
|
|
PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
|
|
size is assumed to be unknown. The access is assumed to be only
|
|
to or after of the pointer target, not before it. */
|
|
|
|
void
|
|
ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
|
|
{
|
|
poly_int64 t, size_hwi, extra_offset = 0;
|
|
ref->ref = NULL_TREE;
|
|
if (TREE_CODE (ptr) == SSA_NAME)
|
|
{
|
|
gimple *stmt = SSA_NAME_DEF_STMT (ptr);
|
|
if (gimple_assign_single_p (stmt)
|
|
&& gimple_assign_rhs_code (stmt) == ADDR_EXPR)
|
|
ptr = gimple_assign_rhs1 (stmt);
|
|
else if (is_gimple_assign (stmt)
|
|
&& gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
|
|
&& ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
|
|
{
|
|
ptr = gimple_assign_rhs1 (stmt);
|
|
extra_offset *= BITS_PER_UNIT;
|
|
}
|
|
}
|
|
|
|
if (TREE_CODE (ptr) == ADDR_EXPR)
|
|
{
|
|
ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
|
|
if (ref->base)
|
|
ref->offset = BITS_PER_UNIT * t;
|
|
else
|
|
{
|
|
size = NULL_TREE;
|
|
ref->offset = 0;
|
|
ref->base = get_base_address (TREE_OPERAND (ptr, 0));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
|
|
ref->base = build2 (MEM_REF, char_type_node,
|
|
ptr, null_pointer_node);
|
|
ref->offset = 0;
|
|
}
|
|
ref->offset += extra_offset;
|
|
if (size
|
|
&& poly_int_tree_p (size, &size_hwi)
|
|
&& coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
|
|
ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
|
|
else
|
|
ref->max_size = ref->size = -1;
|
|
ref->ref_alias_set = 0;
|
|
ref->base_alias_set = 0;
|
|
ref->volatile_p = false;
|
|
}
|
|
|
|
/* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them:
|
|
Return -1 if S1 < S2
|
|
Return 1 if S1 > S2
|
|
Return 0 if equal or incomparable. */
|
|
|
|
static int
|
|
compare_sizes (tree s1, tree s2)
|
|
{
|
|
if (!s1 || !s2)
|
|
return 0;
|
|
|
|
poly_uint64 size1;
|
|
poly_uint64 size2;
|
|
|
|
if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
|
|
return 0;
|
|
if (known_lt (size1, size2))
|
|
return -1;
|
|
if (known_lt (size2, size1))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Compare TYPE1 and TYPE2 by its size.
|
|
Return -1 if size of TYPE1 < size of TYPE2
|
|
Return 1 if size of TYPE1 > size of TYPE2
|
|
Return 0 if types are of equal sizes or we can not compare them. */
|
|
|
|
static int
|
|
compare_type_sizes (tree type1, tree type2)
|
|
{
|
|
/* Be conservative for arrays and vectors. We want to support partial
|
|
overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */
|
|
while (TREE_CODE (type1) == ARRAY_TYPE
|
|
|| TREE_CODE (type1) == VECTOR_TYPE)
|
|
type1 = TREE_TYPE (type1);
|
|
while (TREE_CODE (type2) == ARRAY_TYPE
|
|
|| TREE_CODE (type2) == VECTOR_TYPE)
|
|
type2 = TREE_TYPE (type2);
|
|
return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
|
|
}
|
|
|
|
/* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
|
|
purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
|
|
decide. */
|
|
|
|
static inline int
|
|
same_type_for_tbaa (tree type1, tree type2)
|
|
{
|
|
type1 = TYPE_MAIN_VARIANT (type1);
|
|
type2 = TYPE_MAIN_VARIANT (type2);
|
|
|
|
/* Handle the most common case first. */
|
|
if (type1 == type2)
|
|
return 1;
|
|
|
|
/* If we would have to do structural comparison bail out. */
|
|
if (TYPE_STRUCTURAL_EQUALITY_P (type1)
|
|
|| TYPE_STRUCTURAL_EQUALITY_P (type2))
|
|
return -1;
|
|
|
|
/* Compare the canonical types. */
|
|
if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
|
|
return 1;
|
|
|
|
/* ??? Array types are not properly unified in all cases as we have
|
|
spurious changes in the index types for example. Removing this
|
|
causes all sorts of problems with the Fortran frontend. */
|
|
if (TREE_CODE (type1) == ARRAY_TYPE
|
|
&& TREE_CODE (type2) == ARRAY_TYPE)
|
|
return -1;
|
|
|
|
/* ??? In Ada, an lvalue of an unconstrained type can be used to access an
|
|
object of one of its constrained subtypes, e.g. when a function with an
|
|
unconstrained parameter passed by reference is called on an object and
|
|
inlined. But, even in the case of a fixed size, type and subtypes are
|
|
not equivalent enough as to share the same TYPE_CANONICAL, since this
|
|
would mean that conversions between them are useless, whereas they are
|
|
not (e.g. type and subtypes can have different modes). So, in the end,
|
|
they are only guaranteed to have the same alias set. */
|
|
alias_set_type set1 = get_alias_set (type1);
|
|
alias_set_type set2 = get_alias_set (type2);
|
|
if (set1 == set2)
|
|
return -1;
|
|
|
|
/* Pointers to void are considered compatible with all other pointers,
|
|
so for two pointers see what the alias set resolution thinks. */
|
|
if (POINTER_TYPE_P (type1)
|
|
&& POINTER_TYPE_P (type2)
|
|
&& alias_sets_conflict_p (set1, set2))
|
|
return -1;
|
|
|
|
/* The types are known to be not equal. */
|
|
return 0;
|
|
}
|
|
|
|
/* Return true if TYPE is a composite type (i.e. we may apply one of handled
|
|
components on it). */
|
|
|
|
static bool
|
|
type_has_components_p (tree type)
|
|
{
|
|
return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)
|
|
|| TREE_CODE (type) == COMPLEX_TYPE;
|
|
}
|
|
|
|
/* MATCH1 and MATCH2 which are part of access path of REF1 and REF2
|
|
respectively are either pointing to same address or are completely
|
|
disjoint. If PARTIAL_OVERLAP is true, assume that outermost arrays may
|
|
just partly overlap.
|
|
|
|
Try to disambiguate using the access path starting from the match
|
|
and return false if there is no conflict.
|
|
|
|
Helper for aliasing_component_refs_p. */
|
|
|
|
static bool
|
|
aliasing_matching_component_refs_p (tree match1, tree ref1,
|
|
poly_int64 offset1, poly_int64 max_size1,
|
|
tree match2, tree ref2,
|
|
poly_int64 offset2, poly_int64 max_size2,
|
|
bool partial_overlap)
|
|
{
|
|
poly_int64 offadj, sztmp, msztmp;
|
|
bool reverse;
|
|
|
|
if (!partial_overlap)
|
|
{
|
|
get_ref_base_and_extent (match2, &offadj, &sztmp, &msztmp, &reverse);
|
|
offset2 -= offadj;
|
|
get_ref_base_and_extent (match1, &offadj, &sztmp, &msztmp, &reverse);
|
|
offset1 -= offadj;
|
|
if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
|
|
{
|
|
++alias_stats.aliasing_component_refs_p_no_alias;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int cmp = nonoverlapping_refs_since_match_p (match1, ref1, match2, ref2,
|
|
partial_overlap);
|
|
if (cmp == 1
|
|
|| (cmp == -1 && nonoverlapping_component_refs_p (ref1, ref2)))
|
|
{
|
|
++alias_stats.aliasing_component_refs_p_no_alias;
|
|
return false;
|
|
}
|
|
++alias_stats.aliasing_component_refs_p_may_alias;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if REF is reference to zero sized trailing array. I.e.
|
|
struct foo {int bar; int array[0];} *fooptr;
|
|
fooptr->array. */
|
|
|
|
static bool
|
|
component_ref_to_zero_sized_trailing_array_p (tree ref)
|
|
{
|
|
return (TREE_CODE (ref) == COMPONENT_REF
|
|
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE
|
|
&& (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1)))
|
|
|| integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1)))))
|
|
&& array_at_struct_end_p (ref));
|
|
}
|
|
|
|
/* Worker for aliasing_component_refs_p. Most parameters match parameters of
|
|
aliasing_component_refs_p.
|
|
|
|
Walk access path REF2 and try to find type matching TYPE1
|
|
(which is a start of possibly aliasing access path REF1).
|
|
If match is found, try to disambiguate.
|
|
|
|
Return 0 for sucessful disambiguation.
|
|
Return 1 if match was found but disambiguation failed
|
|
Return -1 if there is no match.
|
|
In this case MAYBE_MATCH is set to 0 if there is no type matching TYPE1
|
|
in access patch REF2 and -1 if we are not sure. */
|
|
|
|
static int
|
|
aliasing_component_refs_walk (tree ref1, tree type1, tree base1,
|
|
poly_int64 offset1, poly_int64 max_size1,
|
|
tree end_struct_ref1,
|
|
tree ref2, tree base2,
|
|
poly_int64 offset2, poly_int64 max_size2,
|
|
bool *maybe_match)
|
|
{
|
|
tree ref = ref2;
|
|
int same_p = 0;
|
|
|
|
while (true)
|
|
{
|
|
/* We walk from inner type to the outer types. If type we see is
|
|
already too large to be part of type1, terminate the search. */
|
|
int cmp = compare_type_sizes (type1, TREE_TYPE (ref));
|
|
|
|
if (cmp < 0
|
|
&& (!end_struct_ref1
|
|
|| compare_type_sizes (TREE_TYPE (end_struct_ref1),
|
|
TREE_TYPE (ref)) < 0))
|
|
break;
|
|
/* If types may be of same size, see if we can decide about their
|
|
equality. */
|
|
if (cmp == 0)
|
|
{
|
|
same_p = same_type_for_tbaa (TREE_TYPE (ref), type1);
|
|
if (same_p == 1)
|
|
break;
|
|
/* In case we can't decide whether types are same try to
|
|
continue looking for the exact match.
|
|
Remember however that we possibly saw a match
|
|
to bypass the access path continuations tests we do later. */
|
|
if (same_p == -1)
|
|
*maybe_match = true;
|
|
}
|
|
if (!handled_component_p (ref))
|
|
break;
|
|
ref = TREE_OPERAND (ref, 0);
|
|
}
|
|
if (same_p == 1)
|
|
{
|
|
bool partial_overlap = false;
|
|
|
|
/* We assume that arrays can overlap by multiple of their elements
|
|
size as tested in gcc.dg/torture/alias-2.c.
|
|
This partial overlap happen only when both arrays are bases of
|
|
the access and not contained within another component ref.
|
|
To be safe we also assume partial overlap for VLAs. */
|
|
if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
|
|
&& (!TYPE_SIZE (TREE_TYPE (base1))
|
|
|| TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST
|
|
|| ref == base2))
|
|
{
|
|
/* Setting maybe_match to true triggers
|
|
nonoverlapping_component_refs_p test later that still may do
|
|
useful disambiguation. */
|
|
*maybe_match = true;
|
|
partial_overlap = true;
|
|
}
|
|
return aliasing_matching_component_refs_p (base1, ref1,
|
|
offset1, max_size1,
|
|
ref, ref2,
|
|
offset2, max_size2,
|
|
partial_overlap);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* Consider access path1 base1....ref1 and access path2 base2...ref2.
|
|
Return true if they can be composed to single access path
|
|
base1...ref1...base2...ref2.
|
|
|
|
REF_TYPE1 if type of REF1. END_STRUCT_PAST_END1 is true if there is
|
|
a trailing array access after REF1 in the non-TBAA part of the access.
|
|
REF1_ALIAS_SET is the alias set of REF1.
|
|
|
|
BASE_TYPE2 is type of base2. END_STRUCT_REF2 is non-NULL if there is
|
|
a traling array access in the TBAA part of access path2.
|
|
BASE2_ALIAS_SET is the alias set of base2. */
|
|
|
|
bool
|
|
access_path_may_continue_p (tree ref_type1, bool end_struct_past_end1,
|
|
alias_set_type ref1_alias_set,
|
|
tree base_type2, tree end_struct_ref2,
|
|
alias_set_type base2_alias_set)
|
|
{
|
|
/* Access path can not continue past types with no components. */
|
|
if (!type_has_components_p (ref_type1))
|
|
return false;
|
|
|
|
/* If first access path ends by too small type to hold base of
|
|
the second access path, typically paths can not continue.
|
|
|
|
Punt if end_struct_past_end1 is true. We want to support arbitrary
|
|
type puning past first COMPONENT_REF to union because redundant store
|
|
elimination depends on this, see PR92152. For this reason we can not
|
|
check size of the reference because types may partially overlap. */
|
|
if (!end_struct_past_end1)
|
|
{
|
|
if (compare_type_sizes (ref_type1, base_type2) < 0)
|
|
return false;
|
|
/* If the path2 contains trailing array access we can strenghten the check
|
|
to verify that also the size of element of the trailing array fits.
|
|
In fact we could check for offset + type_size, but we do not track
|
|
offsets and this is quite side case. */
|
|
if (end_struct_ref2
|
|
&& compare_type_sizes (ref_type1, TREE_TYPE (end_struct_ref2)) < 0)
|
|
return false;
|
|
}
|
|
return (base2_alias_set == ref1_alias_set
|
|
|| alias_set_subset_of (base2_alias_set, ref1_alias_set));
|
|
}
|
|
|
|
/* Determine if the two component references REF1 and REF2 which are
|
|
based on access types TYPE1 and TYPE2 and of which at least one is based
|
|
on an indirect reference may alias.
|
|
REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
|
|
are the respective alias sets. */
|
|
|
|
static bool
|
|
aliasing_component_refs_p (tree ref1,
|
|
alias_set_type ref1_alias_set,
|
|
alias_set_type base1_alias_set,
|
|
poly_int64 offset1, poly_int64 max_size1,
|
|
tree ref2,
|
|
alias_set_type ref2_alias_set,
|
|
alias_set_type base2_alias_set,
|
|
poly_int64 offset2, poly_int64 max_size2)
|
|
{
|
|
/* If one reference is a component references through pointers try to find a
|
|
common base and apply offset based disambiguation. This handles
|
|
for example
|
|
struct A { int i; int j; } *q;
|
|
struct B { struct A a; int k; } *p;
|
|
disambiguating q->i and p->a.j. */
|
|
tree base1, base2;
|
|
tree type1, type2;
|
|
bool maybe_match = false;
|
|
tree end_struct_ref1 = NULL, end_struct_ref2 = NULL;
|
|
bool end_struct_past_end1 = false;
|
|
bool end_struct_past_end2 = false;
|
|
|
|
/* Choose bases and base types to search for.
|
|
The access path is as follows:
|
|
base....end_of_tbaa_ref...actual_ref
|
|
At one place in the access path may be a reference to zero sized or
|
|
trailing array.
|
|
|
|
We generally discard the segment after end_of_tbaa_ref however
|
|
we need to be careful in case it contains zero sized or traling array.
|
|
These may happen after refernce to union and in this case we need to
|
|
not disambiguate type puning scenarios.
|
|
|
|
We set:
|
|
base1 to point to base
|
|
|
|
ref1 to point to end_of_tbaa_ref
|
|
|
|
end_struct_ref1 to point the trailing reference (if it exists
|
|
in range base....end_of_tbaa_ref
|
|
|
|
end_struct_past_end1 is true if this traling refernece occurs in
|
|
end_of_tbaa_ref...actual_ref. */
|
|
base1 = ref1;
|
|
while (handled_component_p (base1))
|
|
{
|
|
/* Generally access paths are monotous in the size of object. The
|
|
exception are trailing arrays of structures. I.e.
|
|
struct a {int array[0];};
|
|
or
|
|
struct a {int array1[0]; int array[];};
|
|
Such struct has size 0 but accesses to a.array may have non-zero size.
|
|
In this case the size of TREE_TYPE (base1) is smaller than
|
|
size of TREE_TYPE (TREE_OPERNAD (base1, 0)).
|
|
|
|
Because we compare sizes of arrays just by sizes of their elements,
|
|
we only need to care about zero sized array fields here. */
|
|
if (component_ref_to_zero_sized_trailing_array_p (base1))
|
|
{
|
|
gcc_checking_assert (!end_struct_ref1);
|
|
end_struct_ref1 = base1;
|
|
}
|
|
if (ends_tbaa_access_path_p (base1))
|
|
{
|
|
ref1 = TREE_OPERAND (base1, 0);
|
|
if (end_struct_ref1)
|
|
{
|
|
end_struct_past_end1 = true;
|
|
end_struct_ref1 = NULL;
|
|
}
|
|
}
|
|
base1 = TREE_OPERAND (base1, 0);
|
|
}
|
|
type1 = TREE_TYPE (base1);
|
|
base2 = ref2;
|
|
while (handled_component_p (base2))
|
|
{
|
|
if (component_ref_to_zero_sized_trailing_array_p (base2))
|
|
{
|
|
gcc_checking_assert (!end_struct_ref2);
|
|
end_struct_ref2 = base2;
|
|
}
|
|
if (ends_tbaa_access_path_p (base2))
|
|
{
|
|
ref2 = TREE_OPERAND (base2, 0);
|
|
if (end_struct_ref2)
|
|
{
|
|
end_struct_past_end2 = true;
|
|
end_struct_ref2 = NULL;
|
|
}
|
|
}
|
|
base2 = TREE_OPERAND (base2, 0);
|
|
}
|
|
type2 = TREE_TYPE (base2);
|
|
|
|
/* Now search for the type1 in the access path of ref2. This
|
|
would be a common base for doing offset based disambiguation on.
|
|
This however only makes sense if type2 is big enough to hold type1. */
|
|
int cmp_outer = compare_type_sizes (type2, type1);
|
|
|
|
/* If type2 is big enough to contain type1 walk its access path.
|
|
We also need to care of arrays at the end of structs that may extend
|
|
beyond the end of structure. If this occurs in the TBAA part of the
|
|
access path, we need to consider the increased type as well. */
|
|
if (cmp_outer >= 0
|
|
|| (end_struct_ref2
|
|
&& compare_type_sizes (TREE_TYPE (end_struct_ref2), type1) >= 0))
|
|
{
|
|
int res = aliasing_component_refs_walk (ref1, type1, base1,
|
|
offset1, max_size1,
|
|
end_struct_ref1,
|
|
ref2, base2, offset2, max_size2,
|
|
&maybe_match);
|
|
if (res != -1)
|
|
return res;
|
|
}
|
|
|
|
/* If we didn't find a common base, try the other way around. */
|
|
if (cmp_outer <= 0
|
|
|| (end_struct_ref1
|
|
&& compare_type_sizes (TREE_TYPE (end_struct_ref1), type1) <= 0))
|
|
{
|
|
int res = aliasing_component_refs_walk (ref2, type2, base2,
|
|
offset2, max_size2,
|
|
end_struct_ref2,
|
|
ref1, base1, offset1, max_size1,
|
|
&maybe_match);
|
|
if (res != -1)
|
|
return res;
|
|
}
|
|
|
|
/* In the following code we make an assumption that the types in access
|
|
paths do not overlap and thus accesses alias only if one path can be
|
|
continuation of another. If we was not able to decide about equivalence,
|
|
we need to give up. */
|
|
if (maybe_match)
|
|
{
|
|
if (!nonoverlapping_component_refs_p (ref1, ref2))
|
|
{
|
|
++alias_stats.aliasing_component_refs_p_may_alias;
|
|
return true;
|
|
}
|
|
++alias_stats.aliasing_component_refs_p_no_alias;
|
|
return false;
|
|
}
|
|
|
|
if (access_path_may_continue_p (TREE_TYPE (ref1), end_struct_past_end1,
|
|
ref1_alias_set,
|
|
type2, end_struct_ref2,
|
|
base2_alias_set)
|
|
|| access_path_may_continue_p (TREE_TYPE (ref2), end_struct_past_end2,
|
|
ref2_alias_set,
|
|
type1, end_struct_ref1,
|
|
base1_alias_set))
|
|
{
|
|
++alias_stats.aliasing_component_refs_p_may_alias;
|
|
return true;
|
|
}
|
|
++alias_stats.aliasing_component_refs_p_no_alias;
|
|
return false;
|
|
}
|
|
|
|
/* FIELD1 and FIELD2 are two fields of component refs. We assume
|
|
that bases of both component refs are either equivalent or nonoverlapping.
|
|
We do not assume that the containers of FIELD1 and FIELD2 are of the
|
|
same type or size.
|
|
|
|
Return 0 in case the base address of component_refs are same then
|
|
FIELD1 and FIELD2 have same address. Note that FIELD1 and FIELD2
|
|
may not be of same type or size.
|
|
|
|
Return 1 if FIELD1 and FIELD2 are non-overlapping.
|
|
|
|
Return -1 otherwise.
|
|
|
|
Main difference between 0 and -1 is to let
|
|
nonoverlapping_component_refs_since_match_p discover the semantically
|
|
equivalent part of the access path.
|
|
|
|
Note that this function is used even with -fno-strict-aliasing
|
|
and makes use of no TBAA assumptions. */
|
|
|
|
static int
|
|
nonoverlapping_component_refs_p_1 (const_tree field1, const_tree field2)
|
|
{
|
|
/* If both fields are of the same type, we could save hard work of
|
|
comparing offsets. */
|
|
tree type1 = DECL_CONTEXT (field1);
|
|
tree type2 = DECL_CONTEXT (field2);
|
|
|
|
if (TREE_CODE (type1) == RECORD_TYPE
|
|
&& DECL_BIT_FIELD_REPRESENTATIVE (field1))
|
|
field1 = DECL_BIT_FIELD_REPRESENTATIVE (field1);
|
|
if (TREE_CODE (type2) == RECORD_TYPE
|
|
&& DECL_BIT_FIELD_REPRESENTATIVE (field2))
|
|
field2 = DECL_BIT_FIELD_REPRESENTATIVE (field2);
|
|
|
|
/* ??? Bitfields can overlap at RTL level so punt on them.
|
|
FIXME: RTL expansion should be fixed by adjusting the access path
|
|
when producing MEM_ATTRs for MEMs which are wider than
|
|
the bitfields similarly as done in set_mem_attrs_minus_bitpos. */
|
|
if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
|
|
return -1;
|
|
|
|
/* Assume that different FIELD_DECLs never overlap within a RECORD_TYPE. */
|
|
if (type1 == type2 && TREE_CODE (type1) == RECORD_TYPE)
|
|
return field1 != field2;
|
|
|
|
/* In common case the offsets and bit offsets will be the same.
|
|
However if frontends do not agree on the alignment, they may be
|
|
different even if they actually represent same address.
|
|
Try the common case first and if that fails calcualte the
|
|
actual bit offset. */
|
|
if (tree_int_cst_equal (DECL_FIELD_OFFSET (field1),
|
|
DECL_FIELD_OFFSET (field2))
|
|
&& tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (field1),
|
|
DECL_FIELD_BIT_OFFSET (field2)))
|
|
return 0;
|
|
|
|
/* Note that it may be possible to use component_ref_field_offset
|
|
which would provide offsets as trees. However constructing and folding
|
|
trees is expensive and does not seem to be worth the compile time
|
|
cost. */
|
|
|
|
poly_uint64 offset1, offset2;
|
|
poly_uint64 bit_offset1, bit_offset2;
|
|
|
|
if (poly_int_tree_p (DECL_FIELD_OFFSET (field1), &offset1)
|
|
&& poly_int_tree_p (DECL_FIELD_OFFSET (field2), &offset2)
|
|
&& poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field1), &bit_offset1)
|
|
&& poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field2), &bit_offset2))
|
|
{
|
|
offset1 = (offset1 << LOG2_BITS_PER_UNIT) + bit_offset1;
|
|
offset2 = (offset2 << LOG2_BITS_PER_UNIT) + bit_offset2;
|
|
|
|
if (known_eq (offset1, offset2))
|
|
return 0;
|
|
|
|
poly_uint64 size1, size2;
|
|
|
|
if (poly_int_tree_p (DECL_SIZE (field1), &size1)
|
|
&& poly_int_tree_p (DECL_SIZE (field2), &size2)
|
|
&& !ranges_maybe_overlap_p (offset1, size1, offset2, size2))
|
|
return 1;
|
|
}
|
|
/* Resort to slower overlap checking by looking for matching types in
|
|
the middle of access path. */
|
|
return -1;
|
|
}
|
|
|
|
/* Return low bound of array. Do not produce new trees
|
|
and thus do not care about particular type of integer constant
|
|
and placeholder exprs. */
|
|
|
|
static tree
|
|
cheap_array_ref_low_bound (tree ref)
|
|
{
|
|
tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
|
|
|
|
/* Avoid expensive array_ref_low_bound.
|
|
low bound is either stored in operand2, or it is TYPE_MIN_VALUE of domain
|
|
type or it is zero. */
|
|
if (TREE_OPERAND (ref, 2))
|
|
return TREE_OPERAND (ref, 2);
|
|
else if (domain_type && TYPE_MIN_VALUE (domain_type))
|
|
return TYPE_MIN_VALUE (domain_type);
|
|
else
|
|
return integer_zero_node;
|
|
}
|
|
|
|
/* REF1 and REF2 are ARRAY_REFs with either same base address or which are
|
|
completely disjoint.
|
|
|
|
Return 1 if the refs are non-overlapping.
|
|
Return 0 if they are possibly overlapping but if so the overlap again
|
|
starts on the same address.
|
|
Return -1 otherwise. */
|
|
|
|
int
|
|
nonoverlapping_array_refs_p (tree ref1, tree ref2)
|
|
{
|
|
tree index1 = TREE_OPERAND (ref1, 1);
|
|
tree index2 = TREE_OPERAND (ref2, 1);
|
|
tree low_bound1 = cheap_array_ref_low_bound(ref1);
|
|
tree low_bound2 = cheap_array_ref_low_bound(ref2);
|
|
|
|
/* Handle zero offsets first: we do not need to match type size in this
|
|
case. */
|
|
if (operand_equal_p (index1, low_bound1, 0)
|
|
&& operand_equal_p (index2, low_bound2, 0))
|
|
return 0;
|
|
|
|
/* If type sizes are different, give up.
|
|
|
|
Avoid expensive array_ref_element_size.
|
|
If operand 3 is present it denotes size in the alignmnet units.
|
|
Otherwise size is TYPE_SIZE of the element type.
|
|
Handle only common cases where types are of the same "kind". */
|
|
if ((TREE_OPERAND (ref1, 3) == NULL) != (TREE_OPERAND (ref2, 3) == NULL))
|
|
return -1;
|
|
|
|
tree elmt_type1 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref1, 0)));
|
|
tree elmt_type2 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref2, 0)));
|
|
|
|
if (TREE_OPERAND (ref1, 3))
|
|
{
|
|
if (TYPE_ALIGN (elmt_type1) != TYPE_ALIGN (elmt_type2)
|
|
|| !operand_equal_p (TREE_OPERAND (ref1, 3),
|
|
TREE_OPERAND (ref2, 3), 0))
|
|
return -1;
|
|
}
|
|
else
|
|
{
|
|
if (!operand_equal_p (TYPE_SIZE_UNIT (elmt_type1),
|
|
TYPE_SIZE_UNIT (elmt_type2), 0))
|
|
return -1;
|
|
}
|
|
|
|
/* Since we know that type sizes are the same, there is no need to return
|
|
-1 after this point. Partial overlap can not be introduced. */
|
|
|
|
/* We may need to fold trees in this case.
|
|
TODO: Handle integer constant case at least. */
|
|
if (!operand_equal_p (low_bound1, low_bound2, 0))
|
|
return 0;
|
|
|
|
if (TREE_CODE (index1) == INTEGER_CST && TREE_CODE (index2) == INTEGER_CST)
|
|
{
|
|
if (tree_int_cst_equal (index1, index2))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
/* TODO: We can use VRP to further disambiguate here. */
|
|
return 0;
|
|
}
|
|
|
|
/* Try to disambiguate REF1 and REF2 under the assumption that MATCH1 and
|
|
MATCH2 either point to the same address or are disjoint.
|
|
MATCH1 and MATCH2 are assumed to be ref in the access path of REF1 and REF2
|
|
respectively or NULL in the case we established equivalence of bases.
|
|
If PARTIAL_OVERLAP is true assume that the toplevel arrays may actually
|
|
overlap by exact multiply of their element size.
|
|
|
|
This test works by matching the initial segment of the access path
|
|
and does not rely on TBAA thus is safe for !flag_strict_aliasing if
|
|
match was determined without use of TBAA oracle.
|
|
|
|
Return 1 if we can determine that component references REF1 and REF2,
|
|
that are within a common DECL, cannot overlap.
|
|
|
|
Return 0 if paths are same and thus there is nothing to disambiguate more
|
|
(i.e. there is must alias assuming there is must alias between MATCH1 and
|
|
MATCH2)
|
|
|
|
Return -1 if we can not determine 0 or 1 - this happens when we met
|
|
non-matching types was met in the path.
|
|
In this case it may make sense to continue by other disambiguation
|
|
oracles. */
|
|
|
|
static int
|
|
nonoverlapping_refs_since_match_p (tree match1, tree ref1,
|
|
tree match2, tree ref2,
|
|
bool partial_overlap)
|
|
{
|
|
int ntbaa1 = 0, ntbaa2 = 0;
|
|
/* Early return if there are no references to match, we do not need
|
|
to walk the access paths.
|
|
|
|
Do not consider this as may-alias for stats - it is more useful
|
|
to have information how many disambiguations happened provided that
|
|
the query was meaningful. */
|
|
|
|
if (match1 == ref1 || !handled_component_p (ref1)
|
|
|| match2 == ref2 || !handled_component_p (ref2))
|
|
return -1;
|
|
|
|
auto_vec<tree, 16> component_refs1;
|
|
auto_vec<tree, 16> component_refs2;
|
|
|
|
/* Create the stack of handled components for REF1. */
|
|
while (handled_component_p (ref1) && ref1 != match1)
|
|
{
|
|
/* We use TBAA only to re-synchronize after mismatched refs. So we
|
|
do not need to truncate access path after TBAA part ends. */
|
|
if (ends_tbaa_access_path_p (ref1))
|
|
ntbaa1 = 0;
|
|
else
|
|
ntbaa1++;
|
|
component_refs1.safe_push (ref1);
|
|
ref1 = TREE_OPERAND (ref1, 0);
|
|
}
|
|
|
|
/* Create the stack of handled components for REF2. */
|
|
while (handled_component_p (ref2) && ref2 != match2)
|
|
{
|
|
if (ends_tbaa_access_path_p (ref2))
|
|
ntbaa2 = 0;
|
|
else
|
|
ntbaa2++;
|
|
component_refs2.safe_push (ref2);
|
|
ref2 = TREE_OPERAND (ref2, 0);
|
|
}
|
|
|
|
if (!flag_strict_aliasing)
|
|
{
|
|
ntbaa1 = 0;
|
|
ntbaa2 = 0;
|
|
}
|
|
|
|
bool mem_ref1 = TREE_CODE (ref1) == MEM_REF && ref1 != match1;
|
|
bool mem_ref2 = TREE_CODE (ref2) == MEM_REF && ref2 != match2;
|
|
|
|
/* If only one of access path starts with MEM_REF check that offset is 0
|
|
so the addresses stays the same after stripping it.
|
|
TODO: In this case we may walk the other access path until we get same
|
|
offset.
|
|
|
|
If both starts with MEM_REF, offset has to be same. */
|
|
if ((mem_ref1 && !mem_ref2 && !integer_zerop (TREE_OPERAND (ref1, 1)))
|
|
|| (mem_ref2 && !mem_ref1 && !integer_zerop (TREE_OPERAND (ref2, 1)))
|
|
|| (mem_ref1 && mem_ref2
|
|
&& !tree_int_cst_equal (TREE_OPERAND (ref1, 1),
|
|
TREE_OPERAND (ref2, 1))))
|
|
{
|
|
++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
|
|
return -1;
|
|
}
|
|
|
|
/* TARGET_MEM_REF are never wrapped in handled components, so we do not need
|
|
to handle them here at all. */
|
|
gcc_checking_assert (TREE_CODE (ref1) != TARGET_MEM_REF
|
|
&& TREE_CODE (ref2) != TARGET_MEM_REF);
|
|
|
|
/* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
|
|
rank. This is sufficient because we start from the same DECL and you
|
|
cannot reference several fields at a time with COMPONENT_REFs (unlike
|
|
with ARRAY_RANGE_REFs for arrays) so you always need the same number
|
|
of them to access a sub-component, unless you're in a union, in which
|
|
case the return value will precisely be false. */
|
|
while (true)
|
|
{
|
|
/* Track if we seen unmatched ref with non-zero offset. In this case
|
|
we must look for partial overlaps. */
|
|
bool seen_unmatched_ref_p = false;
|
|
|
|
/* First match ARRAY_REFs an try to disambiguate. */
|
|
if (!component_refs1.is_empty ()
|
|
&& !component_refs2.is_empty ())
|
|
{
|
|
unsigned int narray_refs1=0, narray_refs2=0;
|
|
|
|
/* We generally assume that both access paths starts by same sequence
|
|
of refs. However if number of array refs is not in sync, try
|
|
to recover and pop elts until number match. This helps the case
|
|
where one access path starts by array and other by element. */
|
|
for (narray_refs1 = 0; narray_refs1 < component_refs1.length ();
|
|
narray_refs1++)
|
|
if (TREE_CODE (component_refs1 [component_refs1.length()
|
|
- 1 - narray_refs1]) != ARRAY_REF)
|
|
break;
|
|
|
|
for (narray_refs2 = 0; narray_refs2 < component_refs2.length ();
|
|
narray_refs2++)
|
|
if (TREE_CODE (component_refs2 [component_refs2.length()
|
|
- 1 - narray_refs2]) != ARRAY_REF)
|
|
break;
|
|
for (; narray_refs1 > narray_refs2; narray_refs1--)
|
|
{
|
|
ref1 = component_refs1.pop ();
|
|
ntbaa1--;
|
|
|
|
/* If index is non-zero we need to check whether the reference
|
|
does not break the main invariant that bases are either
|
|
disjoint or equal. Consider the example:
|
|
|
|
unsigned char out[][1];
|
|
out[1]="a";
|
|
out[i][0];
|
|
|
|
Here bases out and out are same, but after removing the
|
|
[i] index, this invariant no longer holds, because
|
|
out[i] points to the middle of array out.
|
|
|
|
TODO: If size of type of the skipped reference is an integer
|
|
multiply of the size of type of the other reference this
|
|
invariant can be verified, but even then it is not completely
|
|
safe with !flag_strict_aliasing if the other reference contains
|
|
unbounded array accesses.
|
|
See */
|
|
|
|
if (!operand_equal_p (TREE_OPERAND (ref1, 1),
|
|
cheap_array_ref_low_bound (ref1), 0))
|
|
return 0;
|
|
}
|
|
for (; narray_refs2 > narray_refs1; narray_refs2--)
|
|
{
|
|
ref2 = component_refs2.pop ();
|
|
ntbaa2--;
|
|
if (!operand_equal_p (TREE_OPERAND (ref2, 1),
|
|
cheap_array_ref_low_bound (ref2), 0))
|
|
return 0;
|
|
}
|
|
/* Try to disambiguate matched arrays. */
|
|
for (unsigned int i = 0; i < narray_refs1; i++)
|
|
{
|
|
int cmp = nonoverlapping_array_refs_p (component_refs1.pop (),
|
|
component_refs2.pop ());
|
|
ntbaa1--;
|
|
ntbaa2--;
|
|
if (cmp == 1 && !partial_overlap)
|
|
{
|
|
++alias_stats
|
|
.nonoverlapping_refs_since_match_p_no_alias;
|
|
return 1;
|
|
}
|
|
if (cmp == -1)
|
|
{
|
|
seen_unmatched_ref_p = true;
|
|
/* We can not maintain the invariant that bases are either
|
|
same or completely disjoint. However we can still recover
|
|
from type based alias analysis if we reach referneces to
|
|
same sizes. We do not attempt to match array sizes, so
|
|
just finish array walking and look for component refs. */
|
|
if (ntbaa1 < 0 || ntbaa2 < 0)
|
|
{
|
|
++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
|
|
return -1;
|
|
}
|
|
for (i++; i < narray_refs1; i++)
|
|
{
|
|
component_refs1.pop ();
|
|
component_refs2.pop ();
|
|
ntbaa1--;
|
|
ntbaa2--;
|
|
}
|
|
break;
|
|
}
|
|
partial_overlap = false;
|
|
}
|
|
}
|
|
|
|
/* Next look for component_refs. */
|
|
do
|
|
{
|
|
if (component_refs1.is_empty ())
|
|
{
|
|
++alias_stats
|
|
.nonoverlapping_refs_since_match_p_must_overlap;
|
|
return 0;
|
|
}
|
|
ref1 = component_refs1.pop ();
|
|
ntbaa1--;
|
|
if (TREE_CODE (ref1) != COMPONENT_REF)
|
|
{
|
|
seen_unmatched_ref_p = true;
|
|
if (ntbaa1 < 0 || ntbaa2 < 0)
|
|
{
|
|
++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
|
|
|
|
do
|
|
{
|
|
if (component_refs2.is_empty ())
|
|
{
|
|
++alias_stats
|
|
.nonoverlapping_refs_since_match_p_must_overlap;
|
|
return 0;
|
|
}
|
|
ref2 = component_refs2.pop ();
|
|
ntbaa2--;
|
|
if (TREE_CODE (ref2) != COMPONENT_REF)
|
|
{
|
|
if (ntbaa1 < 0 || ntbaa2 < 0)
|
|
{
|
|
++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
|
|
return -1;
|
|
}
|
|
seen_unmatched_ref_p = true;
|
|
}
|
|
}
|
|
while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
|
|
|
|
/* BIT_FIELD_REF and VIEW_CONVERT_EXPR are taken off the vectors
|
|
earlier. */
|
|
gcc_checking_assert (TREE_CODE (ref1) == COMPONENT_REF
|
|
&& TREE_CODE (ref2) == COMPONENT_REF);
|
|
|
|
tree field1 = TREE_OPERAND (ref1, 1);
|
|
tree field2 = TREE_OPERAND (ref2, 1);
|
|
|
|
/* ??? We cannot simply use the type of operand #0 of the refs here
|
|
as the Fortran compiler smuggles type punning into COMPONENT_REFs
|
|
for common blocks instead of using unions like everyone else. */
|
|
tree type1 = DECL_CONTEXT (field1);
|
|
tree type2 = DECL_CONTEXT (field2);
|
|
|
|
partial_overlap = false;
|
|
|
|
/* If we skipped array refs on type of different sizes, we can
|
|
no longer be sure that there are not partial overlaps. */
|
|
if (seen_unmatched_ref_p && ntbaa1 >= 0 && ntbaa2 >= 0
|
|
&& !operand_equal_p (TYPE_SIZE (type1), TYPE_SIZE (type2), 0))
|
|
{
|
|
++alias_stats
|
|
.nonoverlapping_refs_since_match_p_may_alias;
|
|
return -1;
|
|
}
|
|
|
|
int cmp = nonoverlapping_component_refs_p_1 (field1, field2);
|
|
if (cmp == -1)
|
|
{
|
|
++alias_stats
|
|
.nonoverlapping_refs_since_match_p_may_alias;
|
|
return -1;
|
|
}
|
|
else if (cmp == 1)
|
|
{
|
|
++alias_stats
|
|
.nonoverlapping_refs_since_match_p_no_alias;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
++alias_stats.nonoverlapping_refs_since_match_p_must_overlap;
|
|
return 0;
|
|
}
|
|
|
|
/* Return TYPE_UID which can be used to match record types we consider
|
|
same for TBAA purposes. */
|
|
|
|
static inline int
|
|
ncr_type_uid (const_tree field)
|
|
{
|
|
/* ??? We cannot simply use the type of operand #0 of the refs here
|
|
as the Fortran compiler smuggles type punning into COMPONENT_REFs
|
|
for common blocks instead of using unions like everyone else. */
|
|
tree type = DECL_FIELD_CONTEXT (field);
|
|
/* With LTO types considered same_type_for_tbaa_p
|
|
from different translation unit may not have same
|
|
main variant. They however have same TYPE_CANONICAL. */
|
|
if (TYPE_CANONICAL (type))
|
|
return TYPE_UID (TYPE_CANONICAL (type));
|
|
return TYPE_UID (type);
|
|
}
|
|
|
|
/* qsort compare function to sort FIELD_DECLs after their
|
|
DECL_FIELD_CONTEXT TYPE_UID. */
|
|
|
|
static inline int
|
|
ncr_compar (const void *field1_, const void *field2_)
|
|
{
|
|
const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
|
|
const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
|
|
unsigned int uid1 = ncr_type_uid (field1);
|
|
unsigned int uid2 = ncr_type_uid (field2);
|
|
|
|
if (uid1 < uid2)
|
|
return -1;
|
|
else if (uid1 > uid2)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Return true if we can determine that the fields referenced cannot
|
|
overlap for any pair of objects. This relies on TBAA. */
|
|
|
|
static bool
|
|
nonoverlapping_component_refs_p (const_tree x, const_tree y)
|
|
{
|
|
/* Early return if we have nothing to do.
|
|
|
|
Do not consider this as may-alias for stats - it is more useful
|
|
to have information how many disambiguations happened provided that
|
|
the query was meaningful. */
|
|
if (!flag_strict_aliasing
|
|
|| !x || !y
|
|
|| !handled_component_p (x)
|
|
|| !handled_component_p (y))
|
|
return false;
|
|
|
|
auto_vec<const_tree, 16> fieldsx;
|
|
while (handled_component_p (x))
|
|
{
|
|
if (TREE_CODE (x) == COMPONENT_REF)
|
|
{
|
|
tree field = TREE_OPERAND (x, 1);
|
|
tree type = DECL_FIELD_CONTEXT (field);
|
|
if (TREE_CODE (type) == RECORD_TYPE)
|
|
fieldsx.safe_push (field);
|
|
}
|
|
else if (ends_tbaa_access_path_p (x))
|
|
fieldsx.truncate (0);
|
|
x = TREE_OPERAND (x, 0);
|
|
}
|
|
if (fieldsx.length () == 0)
|
|
return false;
|
|
auto_vec<const_tree, 16> fieldsy;
|
|
while (handled_component_p (y))
|
|
{
|
|
if (TREE_CODE (y) == COMPONENT_REF)
|
|
{
|
|
tree field = TREE_OPERAND (y, 1);
|
|
tree type = DECL_FIELD_CONTEXT (field);
|
|
if (TREE_CODE (type) == RECORD_TYPE)
|
|
fieldsy.safe_push (TREE_OPERAND (y, 1));
|
|
}
|
|
else if (ends_tbaa_access_path_p (y))
|
|
fieldsy.truncate (0);
|
|
y = TREE_OPERAND (y, 0);
|
|
}
|
|
if (fieldsy.length () == 0)
|
|
{
|
|
++alias_stats.nonoverlapping_component_refs_p_may_alias;
|
|
return false;
|
|
}
|
|
|
|
/* Most common case first. */
|
|
if (fieldsx.length () == 1
|
|
&& fieldsy.length () == 1)
|
|
{
|
|
if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldsx[0]),
|
|
DECL_FIELD_CONTEXT (fieldsy[0])) == 1
|
|
&& nonoverlapping_component_refs_p_1 (fieldsx[0], fieldsy[0]) == 1)
|
|
{
|
|
++alias_stats.nonoverlapping_component_refs_p_no_alias;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
++alias_stats.nonoverlapping_component_refs_p_may_alias;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (fieldsx.length () == 2)
|
|
{
|
|
if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
|
|
std::swap (fieldsx[0], fieldsx[1]);
|
|
}
|
|
else
|
|
fieldsx.qsort (ncr_compar);
|
|
|
|
if (fieldsy.length () == 2)
|
|
{
|
|
if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
|
|
std::swap (fieldsy[0], fieldsy[1]);
|
|
}
|
|
else
|
|
fieldsy.qsort (ncr_compar);
|
|
|
|
unsigned i = 0, j = 0;
|
|
do
|
|
{
|
|
const_tree fieldx = fieldsx[i];
|
|
const_tree fieldy = fieldsy[j];
|
|
|
|
/* We're left with accessing different fields of a structure,
|
|
no possible overlap. */
|
|
if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldx),
|
|
DECL_FIELD_CONTEXT (fieldy)) == 1
|
|
&& nonoverlapping_component_refs_p_1 (fieldx, fieldy) == 1)
|
|
{
|
|
++alias_stats.nonoverlapping_component_refs_p_no_alias;
|
|
return true;
|
|
}
|
|
|
|
if (ncr_type_uid (fieldx) < ncr_type_uid (fieldy))
|
|
{
|
|
i++;
|
|
if (i == fieldsx.length ())
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
j++;
|
|
if (j == fieldsy.length ())
|
|
break;
|
|
}
|
|
}
|
|
while (1);
|
|
|
|
++alias_stats.nonoverlapping_component_refs_p_may_alias;
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return true if two memory references based on the variables BASE1
|
|
and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
|
|
[OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
|
|
if non-NULL are the complete memory reference trees. */
|
|
|
|
static bool
|
|
decl_refs_may_alias_p (tree ref1, tree base1,
|
|
poly_int64 offset1, poly_int64 max_size1,
|
|
poly_int64 size1,
|
|
tree ref2, tree base2,
|
|
poly_int64 offset2, poly_int64 max_size2,
|
|
poly_int64 size2)
|
|
{
|
|
gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
|
|
|
|
/* If both references are based on different variables, they cannot alias. */
|
|
if (compare_base_decls (base1, base2) == 0)
|
|
return false;
|
|
|
|
/* If both references are based on the same variable, they cannot alias if
|
|
the accesses do not overlap. */
|
|
if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
|
|
return false;
|
|
|
|
/* If there is must alias, there is no use disambiguating further. */
|
|
if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
|
|
return true;
|
|
|
|
/* For components with variable position, the above test isn't sufficient,
|
|
so we disambiguate component references manually. */
|
|
if (ref1 && ref2
|
|
&& handled_component_p (ref1) && handled_component_p (ref2)
|
|
&& nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2, false) == 1)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true if an indirect reference based on *PTR1 constrained
|
|
to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
|
|
constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
|
|
the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
|
|
in which case they are computed on-demand. REF1 and REF2
|
|
if non-NULL are the complete memory reference trees. */
|
|
|
|
static bool
|
|
indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
|
|
poly_int64 offset1, poly_int64 max_size1,
|
|
poly_int64 size1,
|
|
alias_set_type ref1_alias_set,
|
|
alias_set_type base1_alias_set,
|
|
tree ref2 ATTRIBUTE_UNUSED, tree base2,
|
|
poly_int64 offset2, poly_int64 max_size2,
|
|
poly_int64 size2,
|
|
alias_set_type ref2_alias_set,
|
|
alias_set_type base2_alias_set, bool tbaa_p)
|
|
{
|
|
tree ptr1;
|
|
tree ptrtype1, dbase2;
|
|
|
|
gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
|
|
|| TREE_CODE (base1) == TARGET_MEM_REF)
|
|
&& DECL_P (base2));
|
|
|
|
ptr1 = TREE_OPERAND (base1, 0);
|
|
poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
|
|
|
|
/* If only one reference is based on a variable, they cannot alias if
|
|
the pointer access is beyond the extent of the variable access.
|
|
(the pointer base cannot validly point to an offset less than zero
|
|
of the variable).
|
|
??? IVOPTs creates bases that do not honor this restriction,
|
|
so do not apply this optimization for TARGET_MEM_REFs. */
|
|
if (TREE_CODE (base1) != TARGET_MEM_REF
|
|
&& !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
|
|
return false;
|
|
/* They also cannot alias if the pointer may not point to the decl. */
|
|
if (!ptr_deref_may_alias_decl_p (ptr1, base2))
|
|
return false;
|
|
|
|
/* Disambiguations that rely on strict aliasing rules follow. */
|
|
if (!flag_strict_aliasing || !tbaa_p)
|
|
return true;
|
|
|
|
/* If the alias set for a pointer access is zero all bets are off. */
|
|
if (base1_alias_set == 0 || base2_alias_set == 0)
|
|
return true;
|
|
|
|
/* When we are trying to disambiguate an access with a pointer dereference
|
|
as base versus one with a decl as base we can use both the size
|
|
of the decl and its dynamic type for extra disambiguation.
|
|
??? We do not know anything about the dynamic type of the decl
|
|
other than that its alias-set contains base2_alias_set as a subset
|
|
which does not help us here. */
|
|
/* As we know nothing useful about the dynamic type of the decl just
|
|
use the usual conflict check rather than a subset test.
|
|
??? We could introduce -fvery-strict-aliasing when the language
|
|
does not allow decls to have a dynamic type that differs from their
|
|
static type. Then we can check
|
|
!alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
|
|
if (base1_alias_set != base2_alias_set
|
|
&& !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
|
|
return false;
|
|
|
|
ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
|
|
|
|
/* If the size of the access relevant for TBAA through the pointer
|
|
is bigger than the size of the decl we can't possibly access the
|
|
decl via that pointer. */
|
|
if (/* ??? This in turn may run afoul when a decl of type T which is
|
|
a member of union type U is accessed through a pointer to
|
|
type U and sizeof T is smaller than sizeof U. */
|
|
TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
|
|
&& TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
|
|
&& compare_sizes (DECL_SIZE (base2),
|
|
TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
|
|
return false;
|
|
|
|
if (!ref2)
|
|
return true;
|
|
|
|
/* If the decl is accessed via a MEM_REF, reconstruct the base
|
|
we can use for TBAA and an appropriately adjusted offset. */
|
|
dbase2 = ref2;
|
|
while (handled_component_p (dbase2))
|
|
dbase2 = TREE_OPERAND (dbase2, 0);
|
|
poly_int64 doffset1 = offset1;
|
|
poly_offset_int doffset2 = offset2;
|
|
if (TREE_CODE (dbase2) == MEM_REF
|
|
|| TREE_CODE (dbase2) == TARGET_MEM_REF)
|
|
{
|
|
doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
|
|
tree ptrtype2 = TREE_TYPE (TREE_OPERAND (dbase2, 1));
|
|
/* If second reference is view-converted, give up now. */
|
|
if (same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (ptrtype2)) != 1)
|
|
return true;
|
|
}
|
|
|
|
/* If first reference is view-converted, give up now. */
|
|
if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1)
|
|
return true;
|
|
|
|
/* If both references are through the same type, they do not alias
|
|
if the accesses do not overlap. This does extra disambiguation
|
|
for mixed/pointer accesses but requires strict aliasing.
|
|
For MEM_REFs we require that the component-ref offset we computed
|
|
is relative to the start of the type which we ensure by
|
|
comparing rvalue and access type and disregarding the constant
|
|
pointer offset.
|
|
|
|
But avoid treating variable length arrays as "objects", instead assume they
|
|
can overlap by an exact multiple of their element size.
|
|
See gcc.dg/torture/alias-2.c. */
|
|
if (((TREE_CODE (base1) != TARGET_MEM_REF
|
|
|| (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
|
|
&& (TREE_CODE (dbase2) != TARGET_MEM_REF
|
|
|| (!TMR_INDEX (dbase2) && !TMR_INDEX2 (dbase2))))
|
|
&& same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1)
|
|
{
|
|
bool partial_overlap = (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
|
|
&& (TYPE_SIZE (TREE_TYPE (base1))
|
|
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (base1)))
|
|
!= INTEGER_CST));
|
|
if (!partial_overlap
|
|
&& !ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2))
|
|
return false;
|
|
if (!ref1 || !ref2
|
|
/* If there is must alias, there is no use disambiguating further. */
|
|
|| (!partial_overlap
|
|
&& known_eq (size1, max_size1) && known_eq (size2, max_size2)))
|
|
return true;
|
|
int res = nonoverlapping_refs_since_match_p (base1, ref1, base2, ref2,
|
|
partial_overlap);
|
|
if (res == -1)
|
|
return !nonoverlapping_component_refs_p (ref1, ref2);
|
|
return !res;
|
|
}
|
|
|
|
/* Do access-path based disambiguation. */
|
|
if (ref1 && ref2
|
|
&& (handled_component_p (ref1) || handled_component_p (ref2)))
|
|
return aliasing_component_refs_p (ref1,
|
|
ref1_alias_set, base1_alias_set,
|
|
offset1, max_size1,
|
|
ref2,
|
|
ref2_alias_set, base2_alias_set,
|
|
offset2, max_size2);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true if two indirect references based on *PTR1
|
|
and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
|
|
[OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
|
|
the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
|
|
in which case they are computed on-demand. REF1 and REF2
|
|
if non-NULL are the complete memory reference trees. */
|
|
|
|
static bool
|
|
indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
|
|
poly_int64 offset1, poly_int64 max_size1,
|
|
poly_int64 size1,
|
|
alias_set_type ref1_alias_set,
|
|
alias_set_type base1_alias_set,
|
|
tree ref2 ATTRIBUTE_UNUSED, tree base2,
|
|
poly_int64 offset2, poly_int64 max_size2,
|
|
poly_int64 size2,
|
|
alias_set_type ref2_alias_set,
|
|
alias_set_type base2_alias_set, bool tbaa_p)
|
|
{
|
|
tree ptr1;
|
|
tree ptr2;
|
|
tree ptrtype1, ptrtype2;
|
|
|
|
gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
|
|
|| TREE_CODE (base1) == TARGET_MEM_REF)
|
|
&& (TREE_CODE (base2) == MEM_REF
|
|
|| TREE_CODE (base2) == TARGET_MEM_REF));
|
|
|
|
ptr1 = TREE_OPERAND (base1, 0);
|
|
ptr2 = TREE_OPERAND (base2, 0);
|
|
|
|
/* If both bases are based on pointers they cannot alias if they may not
|
|
point to the same memory object or if they point to the same object
|
|
and the accesses do not overlap. */
|
|
if ((!cfun || gimple_in_ssa_p (cfun))
|
|
&& operand_equal_p (ptr1, ptr2, 0)
|
|
&& (((TREE_CODE (base1) != TARGET_MEM_REF
|
|
|| (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
|
|
&& (TREE_CODE (base2) != TARGET_MEM_REF
|
|
|| (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
|
|
|| (TREE_CODE (base1) == TARGET_MEM_REF
|
|
&& TREE_CODE (base2) == TARGET_MEM_REF
|
|
&& (TMR_STEP (base1) == TMR_STEP (base2)
|
|
|| (TMR_STEP (base1) && TMR_STEP (base2)
|
|
&& operand_equal_p (TMR_STEP (base1),
|
|
TMR_STEP (base2), 0)))
|
|
&& (TMR_INDEX (base1) == TMR_INDEX (base2)
|
|
|| (TMR_INDEX (base1) && TMR_INDEX (base2)
|
|
&& operand_equal_p (TMR_INDEX (base1),
|
|
TMR_INDEX (base2), 0)))
|
|
&& (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
|
|
|| (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
|
|
&& operand_equal_p (TMR_INDEX2 (base1),
|
|
TMR_INDEX2 (base2), 0))))))
|
|
{
|
|
poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
|
|
poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
|
|
if (!ranges_maybe_overlap_p (offset1 + moff1, max_size1,
|
|
offset2 + moff2, max_size2))
|
|
return false;
|
|
/* If there is must alias, there is no use disambiguating further. */
|
|
if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
|
|
return true;
|
|
if (ref1 && ref2)
|
|
{
|
|
int res = nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2,
|
|
false);
|
|
if (res != -1)
|
|
return !res;
|
|
}
|
|
}
|
|
if (!ptr_derefs_may_alias_p (ptr1, ptr2))
|
|
return false;
|
|
|
|
/* Disambiguations that rely on strict aliasing rules follow. */
|
|
if (!flag_strict_aliasing || !tbaa_p)
|
|
return true;
|
|
|
|
ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
|
|
ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
|
|
|
|
/* If the alias set for a pointer access is zero all bets are off. */
|
|
if (base1_alias_set == 0
|
|
|| base2_alias_set == 0)
|
|
return true;
|
|
|
|
/* Do type-based disambiguation. */
|
|
if (base1_alias_set != base2_alias_set
|
|
&& !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
|
|
return false;
|
|
|
|
/* If either reference is view-converted, give up now. */
|
|
if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
|
|
|| same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
|
|
return true;
|
|
|
|
/* If both references are through the same type, they do not alias
|
|
if the accesses do not overlap. This does extra disambiguation
|
|
for mixed/pointer accesses but requires strict aliasing. */
|
|
if ((TREE_CODE (base1) != TARGET_MEM_REF
|
|
|| (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
|
|
&& (TREE_CODE (base2) != TARGET_MEM_REF
|
|
|| (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
|
|
&& same_type_for_tbaa (TREE_TYPE (ptrtype1),
|
|
TREE_TYPE (ptrtype2)) == 1)
|
|
{
|
|
/* But avoid treating arrays as "objects", instead assume they
|
|
can overlap by an exact multiple of their element size.
|
|
See gcc.dg/torture/alias-2.c. */
|
|
bool partial_overlap = TREE_CODE (TREE_TYPE (ptrtype1)) == ARRAY_TYPE;
|
|
|
|
if (!partial_overlap
|
|
&& !ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
|
|
return false;
|
|
if (!ref1 || !ref2
|
|
|| (!partial_overlap
|
|
&& known_eq (size1, max_size1) && known_eq (size2, max_size2)))
|
|
return true;
|
|
int res = nonoverlapping_refs_since_match_p (base1, ref1, base2, ref2,
|
|
partial_overlap);
|
|
if (res == -1)
|
|
return !nonoverlapping_component_refs_p (ref1, ref2);
|
|
return !res;
|
|
}
|
|
|
|
/* Do access-path based disambiguation. */
|
|
if (ref1 && ref2
|
|
&& (handled_component_p (ref1) || handled_component_p (ref2)))
|
|
return aliasing_component_refs_p (ref1,
|
|
ref1_alias_set, base1_alias_set,
|
|
offset1, max_size1,
|
|
ref2,
|
|
ref2_alias_set, base2_alias_set,
|
|
offset2, max_size2);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true, if the two memory references REF1 and REF2 may alias. */
|
|
|
|
static bool
|
|
refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
|
|
{
|
|
tree base1, base2;
|
|
poly_int64 offset1 = 0, offset2 = 0;
|
|
poly_int64 max_size1 = -1, max_size2 = -1;
|
|
bool var1_p, var2_p, ind1_p, ind2_p;
|
|
|
|
gcc_checking_assert ((!ref1->ref
|
|
|| TREE_CODE (ref1->ref) == SSA_NAME
|
|
|| DECL_P (ref1->ref)
|
|
|| TREE_CODE (ref1->ref) == STRING_CST
|
|
|| handled_component_p (ref1->ref)
|
|
|| TREE_CODE (ref1->ref) == MEM_REF
|
|
|| TREE_CODE (ref1->ref) == TARGET_MEM_REF)
|
|
&& (!ref2->ref
|
|
|| TREE_CODE (ref2->ref) == SSA_NAME
|
|
|| DECL_P (ref2->ref)
|
|
|| TREE_CODE (ref2->ref) == STRING_CST
|
|
|| handled_component_p (ref2->ref)
|
|
|| TREE_CODE (ref2->ref) == MEM_REF
|
|
|| TREE_CODE (ref2->ref) == TARGET_MEM_REF));
|
|
|
|
/* Decompose the references into their base objects and the access. */
|
|
base1 = ao_ref_base (ref1);
|
|
offset1 = ref1->offset;
|
|
max_size1 = ref1->max_size;
|
|
base2 = ao_ref_base (ref2);
|
|
offset2 = ref2->offset;
|
|
max_size2 = ref2->max_size;
|
|
|
|
/* We can end up with registers or constants as bases for example from
|
|
*D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
|
|
which is seen as a struct copy. */
|
|
if (TREE_CODE (base1) == SSA_NAME
|
|
|| TREE_CODE (base1) == CONST_DECL
|
|
|| TREE_CODE (base1) == CONSTRUCTOR
|
|
|| TREE_CODE (base1) == ADDR_EXPR
|
|
|| CONSTANT_CLASS_P (base1)
|
|
|| TREE_CODE (base2) == SSA_NAME
|
|
|| TREE_CODE (base2) == CONST_DECL
|
|
|| TREE_CODE (base2) == CONSTRUCTOR
|
|
|| TREE_CODE (base2) == ADDR_EXPR
|
|
|| CONSTANT_CLASS_P (base2))
|
|
return false;
|
|
|
|
/* We can end up referring to code via function and label decls.
|
|
As we likely do not properly track code aliases conservatively
|
|
bail out. */
|
|
if (TREE_CODE (base1) == FUNCTION_DECL
|
|
|| TREE_CODE (base1) == LABEL_DECL
|
|
|| TREE_CODE (base2) == FUNCTION_DECL
|
|
|| TREE_CODE (base2) == LABEL_DECL)
|
|
return true;
|
|
|
|
/* Two volatile accesses always conflict. */
|
|
if (ref1->volatile_p
|
|
&& ref2->volatile_p)
|
|
return true;
|
|
|
|
/* Defer to simple offset based disambiguation if we have
|
|
references based on two decls. Do this before defering to
|
|
TBAA to handle must-alias cases in conformance with the
|
|
GCC extension of allowing type-punning through unions. */
|
|
var1_p = DECL_P (base1);
|
|
var2_p = DECL_P (base2);
|
|
if (var1_p && var2_p)
|
|
return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
|
|
ref1->size,
|
|
ref2->ref, base2, offset2, max_size2,
|
|
ref2->size);
|
|
|
|
/* Handle restrict based accesses.
|
|
??? ao_ref_base strips inner MEM_REF [&decl], recover from that
|
|
here. */
|
|
tree rbase1 = base1;
|
|
tree rbase2 = base2;
|
|
if (var1_p)
|
|
{
|
|
rbase1 = ref1->ref;
|
|
if (rbase1)
|
|
while (handled_component_p (rbase1))
|
|
rbase1 = TREE_OPERAND (rbase1, 0);
|
|
}
|
|
if (var2_p)
|
|
{
|
|
rbase2 = ref2->ref;
|
|
if (rbase2)
|
|
while (handled_component_p (rbase2))
|
|
rbase2 = TREE_OPERAND (rbase2, 0);
|
|
}
|
|
if (rbase1 && rbase2
|
|
&& (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
|
|
&& (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
|
|
/* If the accesses are in the same restrict clique... */
|
|
&& MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
|
|
/* But based on different pointers they do not alias. */
|
|
&& MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
|
|
return false;
|
|
|
|
ind1_p = (TREE_CODE (base1) == MEM_REF
|
|
|| TREE_CODE (base1) == TARGET_MEM_REF);
|
|
ind2_p = (TREE_CODE (base2) == MEM_REF
|
|
|| TREE_CODE (base2) == TARGET_MEM_REF);
|
|
|
|
/* Canonicalize the pointer-vs-decl case. */
|
|
if (ind1_p && var2_p)
|
|
{
|
|
std::swap (offset1, offset2);
|
|
std::swap (max_size1, max_size2);
|
|
std::swap (base1, base2);
|
|
std::swap (ref1, ref2);
|
|
var1_p = true;
|
|
ind1_p = false;
|
|
var2_p = false;
|
|
ind2_p = true;
|
|
}
|
|
|
|
/* First defer to TBAA if possible. */
|
|
if (tbaa_p
|
|
&& flag_strict_aliasing
|
|
&& !alias_sets_conflict_p (ao_ref_alias_set (ref1),
|
|
ao_ref_alias_set (ref2)))
|
|
return false;
|
|
|
|
/* If the reference is based on a pointer that points to memory
|
|
that may not be written to then the other reference cannot possibly
|
|
clobber it. */
|
|
if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
|
|
&& SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
|
|
|| (ind1_p
|
|
&& TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
|
|
&& SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
|
|
return false;
|
|
|
|
/* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
|
|
if (var1_p && ind2_p)
|
|
return indirect_ref_may_alias_decl_p (ref2->ref, base2,
|
|
offset2, max_size2, ref2->size,
|
|
ao_ref_alias_set (ref2),
|
|
ao_ref_base_alias_set (ref2),
|
|
ref1->ref, base1,
|
|
offset1, max_size1, ref1->size,
|
|
ao_ref_alias_set (ref1),
|
|
ao_ref_base_alias_set (ref1),
|
|
tbaa_p);
|
|
else if (ind1_p && ind2_p)
|
|
return indirect_refs_may_alias_p (ref1->ref, base1,
|
|
offset1, max_size1, ref1->size,
|
|
ao_ref_alias_set (ref1),
|
|
ao_ref_base_alias_set (ref1),
|
|
ref2->ref, base2,
|
|
offset2, max_size2, ref2->size,
|
|
ao_ref_alias_set (ref2),
|
|
ao_ref_base_alias_set (ref2),
|
|
tbaa_p);
|
|
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Return true, if the two memory references REF1 and REF2 may alias
|
|
and update statistics. */
|
|
|
|
bool
|
|
refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
|
|
{
|
|
bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
|
|
if (res)
|
|
++alias_stats.refs_may_alias_p_may_alias;
|
|
else
|
|
++alias_stats.refs_may_alias_p_no_alias;
|
|
return res;
|
|
}
|
|
|
|
static bool
|
|
refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
|
|
{
|
|
ao_ref r1;
|
|
ao_ref_init (&r1, ref1);
|
|
return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
|
|
}
|
|
|
|
bool
|
|
refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
|
|
{
|
|
ao_ref r1, r2;
|
|
ao_ref_init (&r1, ref1);
|
|
ao_ref_init (&r2, ref2);
|
|
return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
|
|
}
|
|
|
|
/* Returns true if there is a anti-dependence for the STORE that
|
|
executes after the LOAD. */
|
|
|
|
bool
|
|
refs_anti_dependent_p (tree load, tree store)
|
|
{
|
|
ao_ref r1, r2;
|
|
ao_ref_init (&r1, load);
|
|
ao_ref_init (&r2, store);
|
|
return refs_may_alias_p_1 (&r1, &r2, false);
|
|
}
|
|
|
|
/* Returns true if there is a output dependence for the stores
|
|
STORE1 and STORE2. */
|
|
|
|
bool
|
|
refs_output_dependent_p (tree store1, tree store2)
|
|
{
|
|
ao_ref r1, r2;
|
|
ao_ref_init (&r1, store1);
|
|
ao_ref_init (&r2, store2);
|
|
return refs_may_alias_p_1 (&r1, &r2, false);
|
|
}
|
|
|
|
/* If the call CALL may use the memory reference REF return true,
|
|
otherwise return false. */
|
|
|
|
static bool
|
|
ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
|
|
{
|
|
tree base, callee;
|
|
unsigned i;
|
|
int flags = gimple_call_flags (call);
|
|
|
|
/* Const functions without a static chain do not implicitly use memory. */
|
|
if (!gimple_call_chain (call)
|
|
&& (flags & (ECF_CONST|ECF_NOVOPS)))
|
|
goto process_args;
|
|
|
|
base = ao_ref_base (ref);
|
|
if (!base)
|
|
return true;
|
|
|
|
/* A call that is not without side-effects might involve volatile
|
|
accesses and thus conflicts with all other volatile accesses. */
|
|
if (ref->volatile_p)
|
|
return true;
|
|
|
|
/* If the reference is based on a decl that is not aliased the call
|
|
cannot possibly use it. */
|
|
if (DECL_P (base)
|
|
&& !may_be_aliased (base)
|
|
/* But local statics can be used through recursion. */
|
|
&& !is_global_var (base))
|
|
goto process_args;
|
|
|
|
callee = gimple_call_fndecl (call);
|
|
|
|
/* Handle those builtin functions explicitly that do not act as
|
|
escape points. See tree-ssa-structalias.c:find_func_aliases
|
|
for the list of builtins we might need to handle here. */
|
|
if (callee != NULL_TREE
|
|
&& gimple_call_builtin_p (call, BUILT_IN_NORMAL))
|
|
switch (DECL_FUNCTION_CODE (callee))
|
|
{
|
|
/* All the following functions read memory pointed to by
|
|
their second argument. strcat/strncat additionally
|
|
reads memory pointed to by the first argument. */
|
|
case BUILT_IN_STRCAT:
|
|
case BUILT_IN_STRNCAT:
|
|
{
|
|
ao_ref dref;
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 0),
|
|
NULL_TREE);
|
|
if (refs_may_alias_p_1 (&dref, ref, false))
|
|
return true;
|
|
}
|
|
/* FALLTHRU */
|
|
case BUILT_IN_STRCPY:
|
|
case BUILT_IN_STRNCPY:
|
|
case BUILT_IN_MEMCPY:
|
|
case BUILT_IN_MEMMOVE:
|
|
case BUILT_IN_MEMPCPY:
|
|
case BUILT_IN_STPCPY:
|
|
case BUILT_IN_STPNCPY:
|
|
case BUILT_IN_TM_MEMCPY:
|
|
case BUILT_IN_TM_MEMMOVE:
|
|
{
|
|
ao_ref dref;
|
|
tree size = NULL_TREE;
|
|
if (gimple_call_num_args (call) == 3)
|
|
size = gimple_call_arg (call, 2);
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 1),
|
|
size);
|
|
return refs_may_alias_p_1 (&dref, ref, false);
|
|
}
|
|
case BUILT_IN_STRCAT_CHK:
|
|
case BUILT_IN_STRNCAT_CHK:
|
|
{
|
|
ao_ref dref;
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 0),
|
|
NULL_TREE);
|
|
if (refs_may_alias_p_1 (&dref, ref, false))
|
|
return true;
|
|
}
|
|
/* FALLTHRU */
|
|
case BUILT_IN_STRCPY_CHK:
|
|
case BUILT_IN_STRNCPY_CHK:
|
|
case BUILT_IN_MEMCPY_CHK:
|
|
case BUILT_IN_MEMMOVE_CHK:
|
|
case BUILT_IN_MEMPCPY_CHK:
|
|
case BUILT_IN_STPCPY_CHK:
|
|
case BUILT_IN_STPNCPY_CHK:
|
|
{
|
|
ao_ref dref;
|
|
tree size = NULL_TREE;
|
|
if (gimple_call_num_args (call) == 4)
|
|
size = gimple_call_arg (call, 2);
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 1),
|
|
size);
|
|
return refs_may_alias_p_1 (&dref, ref, false);
|
|
}
|
|
case BUILT_IN_BCOPY:
|
|
{
|
|
ao_ref dref;
|
|
tree size = gimple_call_arg (call, 2);
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 0),
|
|
size);
|
|
return refs_may_alias_p_1 (&dref, ref, false);
|
|
}
|
|
|
|
/* The following functions read memory pointed to by their
|
|
first argument. */
|
|
CASE_BUILT_IN_TM_LOAD (1):
|
|
CASE_BUILT_IN_TM_LOAD (2):
|
|
CASE_BUILT_IN_TM_LOAD (4):
|
|
CASE_BUILT_IN_TM_LOAD (8):
|
|
CASE_BUILT_IN_TM_LOAD (FLOAT):
|
|
CASE_BUILT_IN_TM_LOAD (DOUBLE):
|
|
CASE_BUILT_IN_TM_LOAD (LDOUBLE):
|
|
CASE_BUILT_IN_TM_LOAD (M64):
|
|
CASE_BUILT_IN_TM_LOAD (M128):
|
|
CASE_BUILT_IN_TM_LOAD (M256):
|
|
case BUILT_IN_TM_LOG:
|
|
case BUILT_IN_TM_LOG_1:
|
|
case BUILT_IN_TM_LOG_2:
|
|
case BUILT_IN_TM_LOG_4:
|
|
case BUILT_IN_TM_LOG_8:
|
|
case BUILT_IN_TM_LOG_FLOAT:
|
|
case BUILT_IN_TM_LOG_DOUBLE:
|
|
case BUILT_IN_TM_LOG_LDOUBLE:
|
|
case BUILT_IN_TM_LOG_M64:
|
|
case BUILT_IN_TM_LOG_M128:
|
|
case BUILT_IN_TM_LOG_M256:
|
|
return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
|
|
|
|
/* These read memory pointed to by the first argument. */
|
|
case BUILT_IN_STRDUP:
|
|
case BUILT_IN_STRNDUP:
|
|
case BUILT_IN_REALLOC:
|
|
{
|
|
ao_ref dref;
|
|
tree size = NULL_TREE;
|
|
if (gimple_call_num_args (call) == 2)
|
|
size = gimple_call_arg (call, 1);
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 0),
|
|
size);
|
|
return refs_may_alias_p_1 (&dref, ref, false);
|
|
}
|
|
/* These read memory pointed to by the first argument. */
|
|
case BUILT_IN_INDEX:
|
|
case BUILT_IN_STRCHR:
|
|
case BUILT_IN_STRRCHR:
|
|
{
|
|
ao_ref dref;
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 0),
|
|
NULL_TREE);
|
|
return refs_may_alias_p_1 (&dref, ref, false);
|
|
}
|
|
/* These read memory pointed to by the first argument with size
|
|
in the third argument. */
|
|
case BUILT_IN_MEMCHR:
|
|
{
|
|
ao_ref dref;
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 0),
|
|
gimple_call_arg (call, 2));
|
|
return refs_may_alias_p_1 (&dref, ref, false);
|
|
}
|
|
/* These read memory pointed to by the first and second arguments. */
|
|
case BUILT_IN_STRSTR:
|
|
case BUILT_IN_STRPBRK:
|
|
{
|
|
ao_ref dref;
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 0),
|
|
NULL_TREE);
|
|
if (refs_may_alias_p_1 (&dref, ref, false))
|
|
return true;
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 1),
|
|
NULL_TREE);
|
|
return refs_may_alias_p_1 (&dref, ref, false);
|
|
}
|
|
|
|
/* The following builtins do not read from memory. */
|
|
case BUILT_IN_FREE:
|
|
case BUILT_IN_MALLOC:
|
|
case BUILT_IN_POSIX_MEMALIGN:
|
|
case BUILT_IN_ALIGNED_ALLOC:
|
|
case BUILT_IN_CALLOC:
|
|
CASE_BUILT_IN_ALLOCA:
|
|
case BUILT_IN_STACK_SAVE:
|
|
case BUILT_IN_STACK_RESTORE:
|
|
case BUILT_IN_MEMSET:
|
|
case BUILT_IN_TM_MEMSET:
|
|
case BUILT_IN_MEMSET_CHK:
|
|
case BUILT_IN_FREXP:
|
|
case BUILT_IN_FREXPF:
|
|
case BUILT_IN_FREXPL:
|
|
case BUILT_IN_GAMMA_R:
|
|
case BUILT_IN_GAMMAF_R:
|
|
case BUILT_IN_GAMMAL_R:
|
|
case BUILT_IN_LGAMMA_R:
|
|
case BUILT_IN_LGAMMAF_R:
|
|
case BUILT_IN_LGAMMAL_R:
|
|
case BUILT_IN_MODF:
|
|
case BUILT_IN_MODFF:
|
|
case BUILT_IN_MODFL:
|
|
case BUILT_IN_REMQUO:
|
|
case BUILT_IN_REMQUOF:
|
|
case BUILT_IN_REMQUOL:
|
|
case BUILT_IN_SINCOS:
|
|
case BUILT_IN_SINCOSF:
|
|
case BUILT_IN_SINCOSL:
|
|
case BUILT_IN_ASSUME_ALIGNED:
|
|
case BUILT_IN_VA_END:
|
|
return false;
|
|
/* __sync_* builtins and some OpenMP builtins act as threading
|
|
barriers. */
|
|
#undef DEF_SYNC_BUILTIN
|
|
#define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
|
|
#include "sync-builtins.def"
|
|
#undef DEF_SYNC_BUILTIN
|
|
case BUILT_IN_GOMP_ATOMIC_START:
|
|
case BUILT_IN_GOMP_ATOMIC_END:
|
|
case BUILT_IN_GOMP_BARRIER:
|
|
case BUILT_IN_GOMP_BARRIER_CANCEL:
|
|
case BUILT_IN_GOMP_TASKWAIT:
|
|
case BUILT_IN_GOMP_TASKGROUP_END:
|
|
case BUILT_IN_GOMP_CRITICAL_START:
|
|
case BUILT_IN_GOMP_CRITICAL_END:
|
|
case BUILT_IN_GOMP_CRITICAL_NAME_START:
|
|
case BUILT_IN_GOMP_CRITICAL_NAME_END:
|
|
case BUILT_IN_GOMP_LOOP_END:
|
|
case BUILT_IN_GOMP_LOOP_END_CANCEL:
|
|
case BUILT_IN_GOMP_ORDERED_START:
|
|
case BUILT_IN_GOMP_ORDERED_END:
|
|
case BUILT_IN_GOMP_SECTIONS_END:
|
|
case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
|
|
case BUILT_IN_GOMP_SINGLE_COPY_START:
|
|
case BUILT_IN_GOMP_SINGLE_COPY_END:
|
|
return true;
|
|
|
|
default:
|
|
/* Fallthru to general call handling. */;
|
|
}
|
|
|
|
/* Check if base is a global static variable that is not read
|
|
by the function. */
|
|
if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
|
|
{
|
|
struct cgraph_node *node = cgraph_node::get (callee);
|
|
bitmap read;
|
|
int id;
|
|
|
|
/* FIXME: Callee can be an OMP builtin that does not have a call graph
|
|
node yet. We should enforce that there are nodes for all decls in the
|
|
IL and remove this check instead. */
|
|
if (node
|
|
&& (id = ipa_reference_var_uid (base)) != -1
|
|
&& (read = ipa_reference_get_read_global (node))
|
|
&& !bitmap_bit_p (read, id))
|
|
goto process_args;
|
|
}
|
|
|
|
/* Check if the base variable is call-used. */
|
|
if (DECL_P (base))
|
|
{
|
|
if (pt_solution_includes (gimple_call_use_set (call), base))
|
|
return true;
|
|
}
|
|
else if ((TREE_CODE (base) == MEM_REF
|
|
|| TREE_CODE (base) == TARGET_MEM_REF)
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
|
|
{
|
|
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
|
|
if (!pi)
|
|
return true;
|
|
|
|
if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
|
|
return true;
|
|
}
|
|
else
|
|
return true;
|
|
|
|
/* Inspect call arguments for passed-by-value aliases. */
|
|
process_args:
|
|
for (i = 0; i < gimple_call_num_args (call); ++i)
|
|
{
|
|
tree op = gimple_call_arg (call, i);
|
|
int flags = gimple_call_arg_flags (call, i);
|
|
|
|
if (flags & EAF_UNUSED)
|
|
continue;
|
|
|
|
if (TREE_CODE (op) == WITH_SIZE_EXPR)
|
|
op = TREE_OPERAND (op, 0);
|
|
|
|
if (TREE_CODE (op) != SSA_NAME
|
|
&& !is_gimple_min_invariant (op))
|
|
{
|
|
ao_ref r;
|
|
ao_ref_init (&r, op);
|
|
if (refs_may_alias_p_1 (&r, ref, tbaa_p))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
|
|
{
|
|
bool res;
|
|
res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
|
|
if (res)
|
|
++alias_stats.ref_maybe_used_by_call_p_may_alias;
|
|
else
|
|
++alias_stats.ref_maybe_used_by_call_p_no_alias;
|
|
return res;
|
|
}
|
|
|
|
|
|
/* If the statement STMT may use the memory reference REF return
|
|
true, otherwise return false. */
|
|
|
|
bool
|
|
ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
|
|
{
|
|
if (is_gimple_assign (stmt))
|
|
{
|
|
tree rhs;
|
|
|
|
/* All memory assign statements are single. */
|
|
if (!gimple_assign_single_p (stmt))
|
|
return false;
|
|
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
if (is_gimple_reg (rhs)
|
|
|| is_gimple_min_invariant (rhs)
|
|
|| gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
|
|
return false;
|
|
|
|
return refs_may_alias_p (rhs, ref, tbaa_p);
|
|
}
|
|
else if (is_gimple_call (stmt))
|
|
return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
|
|
else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
|
|
{
|
|
tree retval = gimple_return_retval (return_stmt);
|
|
if (retval
|
|
&& TREE_CODE (retval) != SSA_NAME
|
|
&& !is_gimple_min_invariant (retval)
|
|
&& refs_may_alias_p (retval, ref, tbaa_p))
|
|
return true;
|
|
/* If ref escapes the function then the return acts as a use. */
|
|
tree base = ao_ref_base (ref);
|
|
if (!base)
|
|
;
|
|
else if (DECL_P (base))
|
|
return is_global_var (base);
|
|
else if (TREE_CODE (base) == MEM_REF
|
|
|| TREE_CODE (base) == TARGET_MEM_REF)
|
|
return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
|
|
{
|
|
ao_ref r;
|
|
ao_ref_init (&r, ref);
|
|
return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
|
|
}
|
|
|
|
/* If the call in statement CALL may clobber the memory reference REF
|
|
return true, otherwise return false. */
|
|
|
|
bool
|
|
call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
|
|
{
|
|
tree base;
|
|
tree callee;
|
|
|
|
/* If the call is pure or const it cannot clobber anything. */
|
|
if (gimple_call_flags (call)
|
|
& (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
|
|
return false;
|
|
if (gimple_call_internal_p (call))
|
|
switch (gimple_call_internal_fn (call))
|
|
{
|
|
/* Treat these internal calls like ECF_PURE for aliasing,
|
|
they don't write to any memory the program should care about.
|
|
They have important other side-effects, and read memory,
|
|
so can't be ECF_NOVOPS. */
|
|
case IFN_UBSAN_NULL:
|
|
case IFN_UBSAN_BOUNDS:
|
|
case IFN_UBSAN_VPTR:
|
|
case IFN_UBSAN_OBJECT_SIZE:
|
|
case IFN_UBSAN_PTR:
|
|
case IFN_ASAN_CHECK:
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
base = ao_ref_base (ref);
|
|
if (!base)
|
|
return true;
|
|
|
|
if (TREE_CODE (base) == SSA_NAME
|
|
|| CONSTANT_CLASS_P (base))
|
|
return false;
|
|
|
|
/* A call that is not without side-effects might involve volatile
|
|
accesses and thus conflicts with all other volatile accesses. */
|
|
if (ref->volatile_p)
|
|
return true;
|
|
|
|
/* If the reference is based on a decl that is not aliased the call
|
|
cannot possibly clobber it. */
|
|
if (DECL_P (base)
|
|
&& !may_be_aliased (base)
|
|
/* But local non-readonly statics can be modified through recursion
|
|
or the call may implement a threading barrier which we must
|
|
treat as may-def. */
|
|
&& (TREE_READONLY (base)
|
|
|| !is_global_var (base)))
|
|
return false;
|
|
|
|
/* If the reference is based on a pointer that points to memory
|
|
that may not be written to then the call cannot possibly clobber it. */
|
|
if ((TREE_CODE (base) == MEM_REF
|
|
|| TREE_CODE (base) == TARGET_MEM_REF)
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
|
|
&& SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
|
|
return false;
|
|
|
|
callee = gimple_call_fndecl (call);
|
|
|
|
/* Handle those builtin functions explicitly that do not act as
|
|
escape points. See tree-ssa-structalias.c:find_func_aliases
|
|
for the list of builtins we might need to handle here. */
|
|
if (callee != NULL_TREE
|
|
&& gimple_call_builtin_p (call, BUILT_IN_NORMAL))
|
|
switch (DECL_FUNCTION_CODE (callee))
|
|
{
|
|
/* All the following functions clobber memory pointed to by
|
|
their first argument. */
|
|
case BUILT_IN_STRCPY:
|
|
case BUILT_IN_STRNCPY:
|
|
case BUILT_IN_MEMCPY:
|
|
case BUILT_IN_MEMMOVE:
|
|
case BUILT_IN_MEMPCPY:
|
|
case BUILT_IN_STPCPY:
|
|
case BUILT_IN_STPNCPY:
|
|
case BUILT_IN_STRCAT:
|
|
case BUILT_IN_STRNCAT:
|
|
case BUILT_IN_MEMSET:
|
|
case BUILT_IN_TM_MEMSET:
|
|
CASE_BUILT_IN_TM_STORE (1):
|
|
CASE_BUILT_IN_TM_STORE (2):
|
|
CASE_BUILT_IN_TM_STORE (4):
|
|
CASE_BUILT_IN_TM_STORE (8):
|
|
CASE_BUILT_IN_TM_STORE (FLOAT):
|
|
CASE_BUILT_IN_TM_STORE (DOUBLE):
|
|
CASE_BUILT_IN_TM_STORE (LDOUBLE):
|
|
CASE_BUILT_IN_TM_STORE (M64):
|
|
CASE_BUILT_IN_TM_STORE (M128):
|
|
CASE_BUILT_IN_TM_STORE (M256):
|
|
case BUILT_IN_TM_MEMCPY:
|
|
case BUILT_IN_TM_MEMMOVE:
|
|
{
|
|
ao_ref dref;
|
|
tree size = NULL_TREE;
|
|
/* Don't pass in size for strncat, as the maximum size
|
|
is strlen (dest) + n + 1 instead of n, resp.
|
|
n + 1 at dest + strlen (dest), but strlen (dest) isn't
|
|
known. */
|
|
if (gimple_call_num_args (call) == 3
|
|
&& DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
|
|
size = gimple_call_arg (call, 2);
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 0),
|
|
size);
|
|
return refs_may_alias_p_1 (&dref, ref, false);
|
|
}
|
|
case BUILT_IN_STRCPY_CHK:
|
|
case BUILT_IN_STRNCPY_CHK:
|
|
case BUILT_IN_MEMCPY_CHK:
|
|
case BUILT_IN_MEMMOVE_CHK:
|
|
case BUILT_IN_MEMPCPY_CHK:
|
|
case BUILT_IN_STPCPY_CHK:
|
|
case BUILT_IN_STPNCPY_CHK:
|
|
case BUILT_IN_STRCAT_CHK:
|
|
case BUILT_IN_STRNCAT_CHK:
|
|
case BUILT_IN_MEMSET_CHK:
|
|
{
|
|
ao_ref dref;
|
|
tree size = NULL_TREE;
|
|
/* Don't pass in size for __strncat_chk, as the maximum size
|
|
is strlen (dest) + n + 1 instead of n, resp.
|
|
n + 1 at dest + strlen (dest), but strlen (dest) isn't
|
|
known. */
|
|
if (gimple_call_num_args (call) == 4
|
|
&& DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
|
|
size = gimple_call_arg (call, 2);
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 0),
|
|
size);
|
|
return refs_may_alias_p_1 (&dref, ref, false);
|
|
}
|
|
case BUILT_IN_BCOPY:
|
|
{
|
|
ao_ref dref;
|
|
tree size = gimple_call_arg (call, 2);
|
|
ao_ref_init_from_ptr_and_size (&dref,
|
|
gimple_call_arg (call, 1),
|
|
size);
|
|
return refs_may_alias_p_1 (&dref, ref, false);
|
|
}
|
|
/* Allocating memory does not have any side-effects apart from
|
|
being the definition point for the pointer. */
|
|
case BUILT_IN_MALLOC:
|
|
case BUILT_IN_ALIGNED_ALLOC:
|
|
case BUILT_IN_CALLOC:
|
|
case BUILT_IN_STRDUP:
|
|
case BUILT_IN_STRNDUP:
|
|
/* Unix98 specifies that errno is set on allocation failure. */
|
|
if (flag_errno_math
|
|
&& targetm.ref_may_alias_errno (ref))
|
|
return true;
|
|
return false;
|
|
case BUILT_IN_STACK_SAVE:
|
|
CASE_BUILT_IN_ALLOCA:
|
|
case BUILT_IN_ASSUME_ALIGNED:
|
|
return false;
|
|
/* But posix_memalign stores a pointer into the memory pointed to
|
|
by its first argument. */
|
|
case BUILT_IN_POSIX_MEMALIGN:
|
|
{
|
|
tree ptrptr = gimple_call_arg (call, 0);
|
|
ao_ref dref;
|
|
ao_ref_init_from_ptr_and_size (&dref, ptrptr,
|
|
TYPE_SIZE_UNIT (ptr_type_node));
|
|
return (refs_may_alias_p_1 (&dref, ref, false)
|
|
|| (flag_errno_math
|
|
&& targetm.ref_may_alias_errno (ref)));
|
|
}
|
|
/* Freeing memory kills the pointed-to memory. More importantly
|
|
the call has to serve as a barrier for moving loads and stores
|
|
across it. */
|
|
case BUILT_IN_FREE:
|
|
case BUILT_IN_VA_END:
|
|
{
|
|
tree ptr = gimple_call_arg (call, 0);
|
|
return ptr_deref_may_alias_ref_p_1 (ptr, ref);
|
|
}
|
|
/* Realloc serves both as allocation point and deallocation point. */
|
|
case BUILT_IN_REALLOC:
|
|
{
|
|
tree ptr = gimple_call_arg (call, 0);
|
|
/* Unix98 specifies that errno is set on allocation failure. */
|
|
return ((flag_errno_math
|
|
&& targetm.ref_may_alias_errno (ref))
|
|
|| ptr_deref_may_alias_ref_p_1 (ptr, ref));
|
|
}
|
|
case BUILT_IN_GAMMA_R:
|
|
case BUILT_IN_GAMMAF_R:
|
|
case BUILT_IN_GAMMAL_R:
|
|
case BUILT_IN_LGAMMA_R:
|
|
case BUILT_IN_LGAMMAF_R:
|
|
case BUILT_IN_LGAMMAL_R:
|
|
{
|
|
tree out = gimple_call_arg (call, 1);
|
|
if (ptr_deref_may_alias_ref_p_1 (out, ref))
|
|
return true;
|
|
if (flag_errno_math)
|
|
break;
|
|
return false;
|
|
}
|
|
case BUILT_IN_FREXP:
|
|
case BUILT_IN_FREXPF:
|
|
case BUILT_IN_FREXPL:
|
|
case BUILT_IN_MODF:
|
|
case BUILT_IN_MODFF:
|
|
case BUILT_IN_MODFL:
|
|
{
|
|
tree out = gimple_call_arg (call, 1);
|
|
return ptr_deref_may_alias_ref_p_1 (out, ref);
|
|
}
|
|
case BUILT_IN_REMQUO:
|
|
case BUILT_IN_REMQUOF:
|
|
case BUILT_IN_REMQUOL:
|
|
{
|
|
tree out = gimple_call_arg (call, 2);
|
|
if (ptr_deref_may_alias_ref_p_1 (out, ref))
|
|
return true;
|
|
if (flag_errno_math)
|
|
break;
|
|
return false;
|
|
}
|
|
case BUILT_IN_SINCOS:
|
|
case BUILT_IN_SINCOSF:
|
|
case BUILT_IN_SINCOSL:
|
|
{
|
|
tree sin = gimple_call_arg (call, 1);
|
|
tree cos = gimple_call_arg (call, 2);
|
|
return (ptr_deref_may_alias_ref_p_1 (sin, ref)
|
|
|| ptr_deref_may_alias_ref_p_1 (cos, ref));
|
|
}
|
|
/* __sync_* builtins and some OpenMP builtins act as threading
|
|
barriers. */
|
|
#undef DEF_SYNC_BUILTIN
|
|
#define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
|
|
#include "sync-builtins.def"
|
|
#undef DEF_SYNC_BUILTIN
|
|
case BUILT_IN_GOMP_ATOMIC_START:
|
|
case BUILT_IN_GOMP_ATOMIC_END:
|
|
case BUILT_IN_GOMP_BARRIER:
|
|
case BUILT_IN_GOMP_BARRIER_CANCEL:
|
|
case BUILT_IN_GOMP_TASKWAIT:
|
|
case BUILT_IN_GOMP_TASKGROUP_END:
|
|
case BUILT_IN_GOMP_CRITICAL_START:
|
|
case BUILT_IN_GOMP_CRITICAL_END:
|
|
case BUILT_IN_GOMP_CRITICAL_NAME_START:
|
|
case BUILT_IN_GOMP_CRITICAL_NAME_END:
|
|
case BUILT_IN_GOMP_LOOP_END:
|
|
case BUILT_IN_GOMP_LOOP_END_CANCEL:
|
|
case BUILT_IN_GOMP_ORDERED_START:
|
|
case BUILT_IN_GOMP_ORDERED_END:
|
|
case BUILT_IN_GOMP_SECTIONS_END:
|
|
case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
|
|
case BUILT_IN_GOMP_SINGLE_COPY_START:
|
|
case BUILT_IN_GOMP_SINGLE_COPY_END:
|
|
return true;
|
|
default:
|
|
/* Fallthru to general call handling. */;
|
|
}
|
|
|
|
/* Check if base is a global static variable that is not written
|
|
by the function. */
|
|
if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
|
|
{
|
|
struct cgraph_node *node = cgraph_node::get (callee);
|
|
bitmap written;
|
|
int id;
|
|
|
|
if (node
|
|
&& (id = ipa_reference_var_uid (base)) != -1
|
|
&& (written = ipa_reference_get_written_global (node))
|
|
&& !bitmap_bit_p (written, id))
|
|
return false;
|
|
}
|
|
|
|
/* Check if the base variable is call-clobbered. */
|
|
if (DECL_P (base))
|
|
return pt_solution_includes (gimple_call_clobber_set (call), base);
|
|
else if ((TREE_CODE (base) == MEM_REF
|
|
|| TREE_CODE (base) == TARGET_MEM_REF)
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
|
|
{
|
|
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
|
|
if (!pi)
|
|
return true;
|
|
|
|
return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* If the call in statement CALL may clobber the memory reference REF
|
|
return true, otherwise return false. */
|
|
|
|
bool
|
|
call_may_clobber_ref_p (gcall *call, tree ref)
|
|
{
|
|
bool res;
|
|
ao_ref r;
|
|
ao_ref_init (&r, ref);
|
|
res = call_may_clobber_ref_p_1 (call, &r);
|
|
if (res)
|
|
++alias_stats.call_may_clobber_ref_p_may_alias;
|
|
else
|
|
++alias_stats.call_may_clobber_ref_p_no_alias;
|
|
return res;
|
|
}
|
|
|
|
|
|
/* If the statement STMT may clobber the memory reference REF return true,
|
|
otherwise return false. */
|
|
|
|
bool
|
|
stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
|
|
{
|
|
if (is_gimple_call (stmt))
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (lhs
|
|
&& TREE_CODE (lhs) != SSA_NAME)
|
|
{
|
|
ao_ref r;
|
|
ao_ref_init (&r, lhs);
|
|
if (refs_may_alias_p_1 (ref, &r, tbaa_p))
|
|
return true;
|
|
}
|
|
|
|
return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
|
|
}
|
|
else if (gimple_assign_single_p (stmt))
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
|
{
|
|
ao_ref r;
|
|
ao_ref_init (&r, lhs);
|
|
return refs_may_alias_p_1 (ref, &r, tbaa_p);
|
|
}
|
|
}
|
|
else if (gimple_code (stmt) == GIMPLE_ASM)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
|
|
{
|
|
ao_ref r;
|
|
ao_ref_init (&r, ref);
|
|
return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
|
|
}
|
|
|
|
/* Return true if store1 and store2 described by corresponding tuples
|
|
<BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
|
|
address. */
|
|
|
|
static bool
|
|
same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
|
|
poly_int64 max_size1,
|
|
tree base2, poly_int64 offset2, poly_int64 size2,
|
|
poly_int64 max_size2)
|
|
{
|
|
/* Offsets need to be 0. */
|
|
if (maybe_ne (offset1, 0)
|
|
|| maybe_ne (offset2, 0))
|
|
return false;
|
|
|
|
bool base1_obj_p = SSA_VAR_P (base1);
|
|
bool base2_obj_p = SSA_VAR_P (base2);
|
|
|
|
/* We need one object. */
|
|
if (base1_obj_p == base2_obj_p)
|
|
return false;
|
|
tree obj = base1_obj_p ? base1 : base2;
|
|
|
|
/* And we need one MEM_REF. */
|
|
bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
|
|
bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
|
|
if (base1_memref_p == base2_memref_p)
|
|
return false;
|
|
tree memref = base1_memref_p ? base1 : base2;
|
|
|
|
/* Sizes need to be valid. */
|
|
if (!known_size_p (max_size1)
|
|
|| !known_size_p (max_size2)
|
|
|| !known_size_p (size1)
|
|
|| !known_size_p (size2))
|
|
return false;
|
|
|
|
/* Max_size needs to match size. */
|
|
if (maybe_ne (max_size1, size1)
|
|
|| maybe_ne (max_size2, size2))
|
|
return false;
|
|
|
|
/* Sizes need to match. */
|
|
if (maybe_ne (size1, size2))
|
|
return false;
|
|
|
|
|
|
/* Check that memref is a store to pointer with singleton points-to info. */
|
|
if (!integer_zerop (TREE_OPERAND (memref, 1)))
|
|
return false;
|
|
tree ptr = TREE_OPERAND (memref, 0);
|
|
if (TREE_CODE (ptr) != SSA_NAME)
|
|
return false;
|
|
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
|
|
unsigned int pt_uid;
|
|
if (pi == NULL
|
|
|| !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
|
|
return false;
|
|
|
|
/* Be conservative with non-call exceptions when the address might
|
|
be NULL. */
|
|
if (cfun->can_throw_non_call_exceptions && pi->pt.null)
|
|
return false;
|
|
|
|
/* Check that ptr points relative to obj. */
|
|
unsigned int obj_uid = DECL_PT_UID (obj);
|
|
if (obj_uid != pt_uid)
|
|
return false;
|
|
|
|
/* Check that the object size is the same as the store size. That ensures us
|
|
that ptr points to the start of obj. */
|
|
return (DECL_SIZE (obj)
|
|
&& poly_int_tree_p (DECL_SIZE (obj))
|
|
&& known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
|
|
}
|
|
|
|
/* If STMT kills the memory reference REF return true, otherwise
|
|
return false. */
|
|
|
|
bool
|
|
stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
|
|
{
|
|
if (!ao_ref_base (ref))
|
|
return false;
|
|
|
|
if (gimple_has_lhs (stmt)
|
|
&& TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
|
|
/* The assignment is not necessarily carried out if it can throw
|
|
and we can catch it in the current function where we could inspect
|
|
the previous value.
|
|
??? We only need to care about the RHS throwing. For aggregate
|
|
assignments or similar calls and non-call exceptions the LHS
|
|
might throw as well. */
|
|
&& !stmt_can_throw_internal (cfun, stmt))
|
|
{
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
/* If LHS is literally a base of the access we are done. */
|
|
if (ref->ref)
|
|
{
|
|
tree base = ref->ref;
|
|
tree innermost_dropped_array_ref = NULL_TREE;
|
|
if (handled_component_p (base))
|
|
{
|
|
tree saved_lhs0 = NULL_TREE;
|
|
if (handled_component_p (lhs))
|
|
{
|
|
saved_lhs0 = TREE_OPERAND (lhs, 0);
|
|
TREE_OPERAND (lhs, 0) = integer_zero_node;
|
|
}
|
|
do
|
|
{
|
|
/* Just compare the outermost handled component, if
|
|
they are equal we have found a possible common
|
|
base. */
|
|
tree saved_base0 = TREE_OPERAND (base, 0);
|
|
TREE_OPERAND (base, 0) = integer_zero_node;
|
|
bool res = operand_equal_p (lhs, base, 0);
|
|
TREE_OPERAND (base, 0) = saved_base0;
|
|
if (res)
|
|
break;
|
|
/* Remember if we drop an array-ref that we need to
|
|
double-check not being at struct end. */
|
|
if (TREE_CODE (base) == ARRAY_REF
|
|
|| TREE_CODE (base) == ARRAY_RANGE_REF)
|
|
innermost_dropped_array_ref = base;
|
|
/* Otherwise drop handled components of the access. */
|
|
base = saved_base0;
|
|
}
|
|
while (handled_component_p (base));
|
|
if (saved_lhs0)
|
|
TREE_OPERAND (lhs, 0) = saved_lhs0;
|
|
}
|
|
/* Finally check if the lhs has the same address and size as the
|
|
base candidate of the access. Watch out if we have dropped
|
|
an array-ref that was at struct end, this means ref->ref may
|
|
be outside of the TYPE_SIZE of its base. */
|
|
if ((! innermost_dropped_array_ref
|
|
|| ! array_at_struct_end_p (innermost_dropped_array_ref))
|
|
&& (lhs == base
|
|
|| (((TYPE_SIZE (TREE_TYPE (lhs))
|
|
== TYPE_SIZE (TREE_TYPE (base)))
|
|
|| (TYPE_SIZE (TREE_TYPE (lhs))
|
|
&& TYPE_SIZE (TREE_TYPE (base))
|
|
&& operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
|
|
TYPE_SIZE (TREE_TYPE (base)),
|
|
0)))
|
|
&& operand_equal_p (lhs, base,
|
|
OEP_ADDRESS_OF
|
|
| OEP_MATCH_SIDE_EFFECTS))))
|
|
return true;
|
|
}
|
|
|
|
/* Now look for non-literal equal bases with the restriction of
|
|
handling constant offset and size. */
|
|
/* For a must-alias check we need to be able to constrain
|
|
the access properly. */
|
|
if (!ref->max_size_known_p ())
|
|
return false;
|
|
poly_int64 size, offset, max_size, ref_offset = ref->offset;
|
|
bool reverse;
|
|
tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
|
|
&reverse);
|
|
/* We can get MEM[symbol: sZ, index: D.8862_1] here,
|
|
so base == ref->base does not always hold. */
|
|
if (base != ref->base)
|
|
{
|
|
/* Try using points-to info. */
|
|
if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
|
|
ref->offset, ref->size, ref->max_size))
|
|
return true;
|
|
|
|
/* If both base and ref->base are MEM_REFs, only compare the
|
|
first operand, and if the second operand isn't equal constant,
|
|
try to add the offsets into offset and ref_offset. */
|
|
if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
|
|
&& TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
|
|
{
|
|
if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
|
|
TREE_OPERAND (ref->base, 1)))
|
|
{
|
|
poly_offset_int off1 = mem_ref_offset (base);
|
|
off1 <<= LOG2_BITS_PER_UNIT;
|
|
off1 += offset;
|
|
poly_offset_int off2 = mem_ref_offset (ref->base);
|
|
off2 <<= LOG2_BITS_PER_UNIT;
|
|
off2 += ref_offset;
|
|
if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
|
|
size = -1;
|
|
}
|
|
}
|
|
else
|
|
size = -1;
|
|
}
|
|
/* For a must-alias check we need to be able to constrain
|
|
the access properly. */
|
|
if (known_eq (size, max_size)
|
|
&& known_subrange_p (ref_offset, ref->max_size, offset, size))
|
|
return true;
|
|
}
|
|
|
|
if (is_gimple_call (stmt))
|
|
{
|
|
tree callee = gimple_call_fndecl (stmt);
|
|
if (callee != NULL_TREE
|
|
&& gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
|
|
switch (DECL_FUNCTION_CODE (callee))
|
|
{
|
|
case BUILT_IN_FREE:
|
|
{
|
|
tree ptr = gimple_call_arg (stmt, 0);
|
|
tree base = ao_ref_base (ref);
|
|
if (base && TREE_CODE (base) == MEM_REF
|
|
&& TREE_OPERAND (base, 0) == ptr)
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
case BUILT_IN_MEMCPY:
|
|
case BUILT_IN_MEMPCPY:
|
|
case BUILT_IN_MEMMOVE:
|
|
case BUILT_IN_MEMSET:
|
|
case BUILT_IN_MEMCPY_CHK:
|
|
case BUILT_IN_MEMPCPY_CHK:
|
|
case BUILT_IN_MEMMOVE_CHK:
|
|
case BUILT_IN_MEMSET_CHK:
|
|
case BUILT_IN_STRNCPY:
|
|
case BUILT_IN_STPNCPY:
|
|
case BUILT_IN_CALLOC:
|
|
{
|
|
/* For a must-alias check we need to be able to constrain
|
|
the access properly. */
|
|
if (!ref->max_size_known_p ())
|
|
return false;
|
|
tree dest;
|
|
tree len;
|
|
|
|
/* In execution order a calloc call will never kill
|
|
anything. However, DSE will (ab)use this interface
|
|
to ask if a calloc call writes the same memory locations
|
|
as a later assignment, memset, etc. So handle calloc
|
|
in the expected way. */
|
|
if (DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC)
|
|
{
|
|
tree arg0 = gimple_call_arg (stmt, 0);
|
|
tree arg1 = gimple_call_arg (stmt, 1);
|
|
if (TREE_CODE (arg0) != INTEGER_CST
|
|
|| TREE_CODE (arg1) != INTEGER_CST)
|
|
return false;
|
|
|
|
dest = gimple_call_lhs (stmt);
|
|
if (!dest)
|
|
return false;
|
|
len = fold_build2 (MULT_EXPR, TREE_TYPE (arg0), arg0, arg1);
|
|
}
|
|
else
|
|
{
|
|
dest = gimple_call_arg (stmt, 0);
|
|
len = gimple_call_arg (stmt, 2);
|
|
}
|
|
if (!poly_int_tree_p (len))
|
|
return false;
|
|
tree rbase = ref->base;
|
|
poly_offset_int roffset = ref->offset;
|
|
ao_ref dref;
|
|
ao_ref_init_from_ptr_and_size (&dref, dest, len);
|
|
tree base = ao_ref_base (&dref);
|
|
poly_offset_int offset = dref.offset;
|
|
if (!base || !known_size_p (dref.size))
|
|
return false;
|
|
if (TREE_CODE (base) == MEM_REF)
|
|
{
|
|
if (TREE_CODE (rbase) != MEM_REF)
|
|
return false;
|
|
// Compare pointers.
|
|
offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
|
|
roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
|
|
base = TREE_OPERAND (base, 0);
|
|
rbase = TREE_OPERAND (rbase, 0);
|
|
}
|
|
if (base == rbase
|
|
&& known_subrange_p (roffset, ref->max_size, offset,
|
|
wi::to_poly_offset (len)
|
|
<< LOG2_BITS_PER_UNIT))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
case BUILT_IN_VA_END:
|
|
{
|
|
tree ptr = gimple_call_arg (stmt, 0);
|
|
if (TREE_CODE (ptr) == ADDR_EXPR)
|
|
{
|
|
tree base = ao_ref_base (ref);
|
|
if (TREE_OPERAND (ptr, 0) == base)
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
stmt_kills_ref_p (gimple *stmt, tree ref)
|
|
{
|
|
ao_ref r;
|
|
ao_ref_init (&r, ref);
|
|
return stmt_kills_ref_p (stmt, &r);
|
|
}
|
|
|
|
|
|
/* Walk the virtual use-def chain of VUSE until hitting the virtual operand
|
|
TARGET or a statement clobbering the memory reference REF in which
|
|
case false is returned. The walk starts with VUSE, one argument of PHI. */
|
|
|
|
static bool
|
|
maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
|
|
ao_ref *ref, tree vuse, bool tbaa_p, unsigned int &limit,
|
|
bitmap *visited, bool abort_on_visited,
|
|
void *(*translate)(ao_ref *, tree, void *, translate_flags *),
|
|
translate_flags disambiguate_only,
|
|
void *data)
|
|
{
|
|
basic_block bb = gimple_bb (phi);
|
|
|
|
if (!*visited)
|
|
*visited = BITMAP_ALLOC (NULL);
|
|
|
|
bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
|
|
|
|
/* Walk until we hit the target. */
|
|
while (vuse != target)
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
|
|
/* If we are searching for the target VUSE by walking up to
|
|
TARGET_BB dominating the original PHI we are finished once
|
|
we reach a default def or a definition in a block dominating
|
|
that block. Update TARGET and return. */
|
|
if (!target
|
|
&& (gimple_nop_p (def_stmt)
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
|
target_bb, gimple_bb (def_stmt))))
|
|
{
|
|
target = vuse;
|
|
return true;
|
|
}
|
|
|
|
/* Recurse for PHI nodes. */
|
|
if (gimple_code (def_stmt) == GIMPLE_PHI)
|
|
{
|
|
/* An already visited PHI node ends the walk successfully. */
|
|
if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
|
|
return !abort_on_visited;
|
|
vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
|
|
visited, abort_on_visited,
|
|
translate, data, disambiguate_only);
|
|
if (!vuse)
|
|
return false;
|
|
continue;
|
|
}
|
|
else if (gimple_nop_p (def_stmt))
|
|
return false;
|
|
else
|
|
{
|
|
/* A clobbering statement or the end of the IL ends it failing. */
|
|
if ((int)limit <= 0)
|
|
return false;
|
|
--limit;
|
|
if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
|
|
{
|
|
translate_flags tf = disambiguate_only;
|
|
if (translate
|
|
&& (*translate) (ref, vuse, data, &tf) == NULL)
|
|
;
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
/* If we reach a new basic-block see if we already skipped it
|
|
in a previous walk that ended successfully. */
|
|
if (gimple_bb (def_stmt) != bb)
|
|
{
|
|
if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
|
|
return !abort_on_visited;
|
|
bb = gimple_bb (def_stmt);
|
|
}
|
|
vuse = gimple_vuse (def_stmt);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Starting from a PHI node for the virtual operand of the memory reference
|
|
REF find a continuation virtual operand that allows to continue walking
|
|
statements dominating PHI skipping only statements that cannot possibly
|
|
clobber REF. Decrements LIMIT for each alias disambiguation done
|
|
and aborts the walk, returning NULL_TREE if it reaches zero.
|
|
Returns NULL_TREE if no suitable virtual operand can be found. */
|
|
|
|
tree
|
|
get_continuation_for_phi (gimple *phi, ao_ref *ref, bool tbaa_p,
|
|
unsigned int &limit, bitmap *visited,
|
|
bool abort_on_visited,
|
|
void *(*translate)(ao_ref *, tree, void *,
|
|
translate_flags *),
|
|
void *data,
|
|
translate_flags disambiguate_only)
|
|
{
|
|
unsigned nargs = gimple_phi_num_args (phi);
|
|
|
|
/* Through a single-argument PHI we can simply look through. */
|
|
if (nargs == 1)
|
|
return PHI_ARG_DEF (phi, 0);
|
|
|
|
/* For two or more arguments try to pairwise skip non-aliasing code
|
|
until we hit the phi argument definition that dominates the other one. */
|
|
basic_block phi_bb = gimple_bb (phi);
|
|
tree arg0, arg1;
|
|
unsigned i;
|
|
|
|
/* Find a candidate for the virtual operand which definition
|
|
dominates those of all others. */
|
|
/* First look if any of the args themselves satisfy this. */
|
|
for (i = 0; i < nargs; ++i)
|
|
{
|
|
arg0 = PHI_ARG_DEF (phi, i);
|
|
if (SSA_NAME_IS_DEFAULT_DEF (arg0))
|
|
break;
|
|
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
|
|
if (def_bb != phi_bb
|
|
&& dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
|
|
break;
|
|
arg0 = NULL_TREE;
|
|
}
|
|
/* If not, look if we can reach such candidate by walking defs
|
|
until we hit the immediate dominator. maybe_skip_until will
|
|
do that for us. */
|
|
basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
|
|
|
|
/* Then check against the (to be) found candidate. */
|
|
for (i = 0; i < nargs; ++i)
|
|
{
|
|
arg1 = PHI_ARG_DEF (phi, i);
|
|
if (arg1 == arg0)
|
|
;
|
|
else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, tbaa_p,
|
|
limit, visited,
|
|
abort_on_visited,
|
|
translate,
|
|
/* Do not valueize when walking over
|
|
backedges. */
|
|
dominated_by_p
|
|
(CDI_DOMINATORS,
|
|
gimple_bb (SSA_NAME_DEF_STMT (arg1)),
|
|
phi_bb)
|
|
? TR_DISAMBIGUATE
|
|
: disambiguate_only, data))
|
|
return NULL_TREE;
|
|
}
|
|
|
|
return arg0;
|
|
}
|
|
|
|
/* Based on the memory reference REF and its virtual use VUSE call
|
|
WALKER for each virtual use that is equivalent to VUSE, including VUSE
|
|
itself. That is, for each virtual use for which its defining statement
|
|
does not clobber REF.
|
|
|
|
WALKER is called with REF, the current virtual use and DATA. If
|
|
WALKER returns non-NULL the walk stops and its result is returned.
|
|
At the end of a non-successful walk NULL is returned.
|
|
|
|
TRANSLATE if non-NULL is called with a pointer to REF, the virtual
|
|
use which definition is a statement that may clobber REF and DATA.
|
|
If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
|
|
If TRANSLATE returns non-NULL the walk stops and its result is returned.
|
|
If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
|
|
to adjust REF and *DATA to make that valid.
|
|
|
|
VALUEIZE if non-NULL is called with the next VUSE that is considered
|
|
and return value is substituted for that. This can be used to
|
|
implement optimistic value-numbering for example. Note that the
|
|
VUSE argument is assumed to be valueized already.
|
|
|
|
LIMIT specifies the number of alias queries we are allowed to do,
|
|
the walk stops when it reaches zero and NULL is returned. LIMIT
|
|
is decremented by the number of alias queries (plus adjustments
|
|
done by the callbacks) upon return.
|
|
|
|
TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
|
|
|
|
void *
|
|
walk_non_aliased_vuses (ao_ref *ref, tree vuse, bool tbaa_p,
|
|
void *(*walker)(ao_ref *, tree, void *),
|
|
void *(*translate)(ao_ref *, tree, void *,
|
|
translate_flags *),
|
|
tree (*valueize)(tree),
|
|
unsigned &limit, void *data)
|
|
{
|
|
bitmap visited = NULL;
|
|
void *res;
|
|
bool translated = false;
|
|
|
|
timevar_push (TV_ALIAS_STMT_WALK);
|
|
|
|
do
|
|
{
|
|
gimple *def_stmt;
|
|
|
|
/* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
|
|
res = (*walker) (ref, vuse, data);
|
|
/* Abort walk. */
|
|
if (res == (void *)-1)
|
|
{
|
|
res = NULL;
|
|
break;
|
|
}
|
|
/* Lookup succeeded. */
|
|
else if (res != NULL)
|
|
break;
|
|
|
|
if (valueize)
|
|
{
|
|
vuse = valueize (vuse);
|
|
if (!vuse)
|
|
{
|
|
res = NULL;
|
|
break;
|
|
}
|
|
}
|
|
def_stmt = SSA_NAME_DEF_STMT (vuse);
|
|
if (gimple_nop_p (def_stmt))
|
|
break;
|
|
else if (gimple_code (def_stmt) == GIMPLE_PHI)
|
|
vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
|
|
&visited, translated, translate, data);
|
|
else
|
|
{
|
|
if ((int)limit <= 0)
|
|
{
|
|
res = NULL;
|
|
break;
|
|
}
|
|
--limit;
|
|
if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
|
|
{
|
|
if (!translate)
|
|
break;
|
|
translate_flags disambiguate_only = TR_TRANSLATE;
|
|
res = (*translate) (ref, vuse, data, &disambiguate_only);
|
|
/* Failed lookup and translation. */
|
|
if (res == (void *)-1)
|
|
{
|
|
res = NULL;
|
|
break;
|
|
}
|
|
/* Lookup succeeded. */
|
|
else if (res != NULL)
|
|
break;
|
|
/* Translation succeeded, continue walking. */
|
|
translated = translated || disambiguate_only == TR_TRANSLATE;
|
|
}
|
|
vuse = gimple_vuse (def_stmt);
|
|
}
|
|
}
|
|
while (vuse);
|
|
|
|
if (visited)
|
|
BITMAP_FREE (visited);
|
|
|
|
timevar_pop (TV_ALIAS_STMT_WALK);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/* Based on the memory reference REF call WALKER for each vdef which
|
|
defining statement may clobber REF, starting with VDEF. If REF
|
|
is NULL_TREE, each defining statement is visited.
|
|
|
|
WALKER is called with REF, the current vdef and DATA. If WALKER
|
|
returns true the walk is stopped, otherwise it continues.
|
|
|
|
If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
|
|
The pointer may be NULL and then we do not track this information.
|
|
|
|
At PHI nodes walk_aliased_vdefs forks into one walk for reach
|
|
PHI argument (but only one walk continues on merge points), the
|
|
return value is true if any of the walks was successful.
|
|
|
|
The function returns the number of statements walked or -1 if
|
|
LIMIT stmts were walked and the walk was aborted at this point.
|
|
If LIMIT is zero the walk is not aborted. */
|
|
|
|
static int
|
|
walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
|
|
bool (*walker)(ao_ref *, tree, void *), void *data,
|
|
bitmap *visited, unsigned int cnt,
|
|
bool *function_entry_reached, unsigned limit)
|
|
{
|
|
do
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
|
|
|
|
if (*visited
|
|
&& !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
|
|
return cnt;
|
|
|
|
if (gimple_nop_p (def_stmt))
|
|
{
|
|
if (function_entry_reached)
|
|
*function_entry_reached = true;
|
|
return cnt;
|
|
}
|
|
else if (gimple_code (def_stmt) == GIMPLE_PHI)
|
|
{
|
|
unsigned i;
|
|
if (!*visited)
|
|
*visited = BITMAP_ALLOC (NULL);
|
|
for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
|
|
{
|
|
int res = walk_aliased_vdefs_1 (ref,
|
|
gimple_phi_arg_def (def_stmt, i),
|
|
walker, data, visited, cnt,
|
|
function_entry_reached, limit);
|
|
if (res == -1)
|
|
return -1;
|
|
cnt = res;
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
/* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
|
|
cnt++;
|
|
if (cnt == limit)
|
|
return -1;
|
|
if ((!ref
|
|
|| stmt_may_clobber_ref_p_1 (def_stmt, ref))
|
|
&& (*walker) (ref, vdef, data))
|
|
return cnt;
|
|
|
|
vdef = gimple_vuse (def_stmt);
|
|
}
|
|
while (1);
|
|
}
|
|
|
|
int
|
|
walk_aliased_vdefs (ao_ref *ref, tree vdef,
|
|
bool (*walker)(ao_ref *, tree, void *), void *data,
|
|
bitmap *visited,
|
|
bool *function_entry_reached, unsigned int limit)
|
|
{
|
|
bitmap local_visited = NULL;
|
|
int ret;
|
|
|
|
timevar_push (TV_ALIAS_STMT_WALK);
|
|
|
|
if (function_entry_reached)
|
|
*function_entry_reached = false;
|
|
|
|
ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
|
|
visited ? visited : &local_visited, 0,
|
|
function_entry_reached, limit);
|
|
if (local_visited)
|
|
BITMAP_FREE (local_visited);
|
|
|
|
timevar_pop (TV_ALIAS_STMT_WALK);
|
|
|
|
return ret;
|
|
}
|
|
|