8d9254fc8a
From-SVN: r279813
653 lines
16 KiB
C++
653 lines
16 KiB
C++
/* A typesafe wrapper around libiberty's splay-tree.h.
|
|
Copyright (C) 2015-2020 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef GCC_TYPED_SPLAY_TREE_H
|
|
#define GCC_TYPED_SPLAY_TREE_H
|
|
|
|
/* Typesafe wrapper around libiberty's splay-tree.h. */
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
class typed_splay_tree
|
|
{
|
|
public:
|
|
typedef KEY_TYPE key_type;
|
|
typedef VALUE_TYPE value_type;
|
|
|
|
typedef int (*compare_fn) (key_type, key_type);
|
|
typedef void (*delete_key_fn) (key_type);
|
|
typedef void (*delete_value_fn) (value_type);
|
|
typedef int (*foreach_fn) (key_type, value_type, void *);
|
|
|
|
typed_splay_tree (compare_fn,
|
|
delete_key_fn,
|
|
delete_value_fn);
|
|
~typed_splay_tree ();
|
|
|
|
value_type lookup (key_type k);
|
|
value_type predecessor (key_type k);
|
|
value_type successor (key_type k);
|
|
void insert (key_type k, value_type v);
|
|
void remove (key_type k);
|
|
value_type max ();
|
|
value_type min ();
|
|
int foreach (foreach_fn, void *);
|
|
|
|
private:
|
|
/* Copy and assignment ops are not supported. */
|
|
typed_splay_tree (const typed_splay_tree &);
|
|
typed_splay_tree & operator = (const typed_splay_tree &);
|
|
|
|
typedef key_type splay_tree_key;
|
|
typedef value_type splay_tree_value;
|
|
|
|
/* The nodes in the splay tree. */
|
|
struct splay_tree_node_s {
|
|
/* The key. */
|
|
splay_tree_key key;
|
|
|
|
/* The value. */
|
|
splay_tree_value value;
|
|
|
|
/* The left and right children, respectively. */
|
|
splay_tree_node_s *left, *right;
|
|
|
|
/* Used as temporary value for tree traversals. */
|
|
splay_tree_node_s *back;
|
|
};
|
|
typedef splay_tree_node_s *splay_tree_node;
|
|
|
|
inline void KDEL (splay_tree_key);
|
|
inline void VDEL (splay_tree_value);
|
|
void splay_tree_delete_helper (splay_tree_node);
|
|
static inline void rotate_left (splay_tree_node *,
|
|
splay_tree_node, splay_tree_node);
|
|
static inline void rotate_right (splay_tree_node *,
|
|
splay_tree_node, splay_tree_node);
|
|
void splay_tree_splay (splay_tree_key);
|
|
static int splay_tree_foreach_helper (splay_tree_node,
|
|
foreach_fn, void*);
|
|
splay_tree_node splay_tree_insert (splay_tree_key, splay_tree_value);
|
|
void splay_tree_remove (splay_tree_key key);
|
|
splay_tree_node splay_tree_lookup (splay_tree_key key);
|
|
splay_tree_node splay_tree_predecessor (splay_tree_key);
|
|
splay_tree_node splay_tree_successor (splay_tree_key);
|
|
splay_tree_node splay_tree_max ();
|
|
splay_tree_node splay_tree_min ();
|
|
|
|
static value_type node_to_value (splay_tree_node node);
|
|
|
|
/* The root of the tree. */
|
|
splay_tree_node root;
|
|
|
|
/* The comparision function. */
|
|
compare_fn comp;
|
|
|
|
/* The deallocate-key function. NULL if no cleanup is necessary. */
|
|
delete_key_fn delete_key;
|
|
|
|
/* The deallocate-value function. NULL if no cleanup is necessary. */
|
|
delete_value_fn delete_value;
|
|
};
|
|
|
|
/* Constructor for typed_splay_tree <K, V>. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline typed_splay_tree<KEY_TYPE, VALUE_TYPE>::
|
|
typed_splay_tree (compare_fn compare_fn,
|
|
delete_key_fn delete_key_fn,
|
|
delete_value_fn delete_value_fn)
|
|
{
|
|
root = NULL;
|
|
comp = compare_fn;
|
|
delete_key = delete_key_fn;
|
|
delete_value = delete_value_fn;
|
|
}
|
|
|
|
/* Destructor for typed_splay_tree <K, V>. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline typed_splay_tree<KEY_TYPE, VALUE_TYPE>::
|
|
~typed_splay_tree ()
|
|
{
|
|
splay_tree_delete_helper (root);
|
|
}
|
|
|
|
/* Lookup KEY, returning a value if present, and NULL
|
|
otherwise. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline VALUE_TYPE
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::lookup (key_type key)
|
|
{
|
|
splay_tree_node node = splay_tree_lookup (key);
|
|
return node_to_value (node);
|
|
}
|
|
|
|
/* Return the immediate predecessor of KEY, or NULL if there is no
|
|
predecessor. KEY need not be present in the tree. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline VALUE_TYPE
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::predecessor (key_type key)
|
|
{
|
|
splay_tree_node node = splay_tree_predecessor (key);
|
|
return node_to_value (node);
|
|
}
|
|
|
|
/* Return the immediate successor of KEY, or NULL if there is no
|
|
successor. KEY need not be present in the tree. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline VALUE_TYPE
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::successor (key_type key)
|
|
{
|
|
splay_tree_node node = splay_tree_successor (key);
|
|
return node_to_value (node);
|
|
}
|
|
|
|
/* Insert a new node (associating KEY with VALUE). If a
|
|
previous node with the indicated KEY exists, its data is replaced
|
|
with the new value. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline void
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::insert (key_type key,
|
|
value_type value)
|
|
{
|
|
splay_tree_insert (key, value);
|
|
}
|
|
|
|
/* Remove a node (associating KEY with VALUE). */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline void
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::remove (key_type key)
|
|
{
|
|
splay_tree_remove (key);
|
|
}
|
|
|
|
/* Get the value with maximal key. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline VALUE_TYPE
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::max ()
|
|
{
|
|
return node_to_value (splay_tree_max ());
|
|
}
|
|
|
|
/* Get the value with minimal key. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline VALUE_TYPE
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::min ()
|
|
{
|
|
return node_to_value (splay_tree_min ());
|
|
}
|
|
|
|
/* Call OUTER_CB, passing it the OUTER_USER_DATA, for every node,
|
|
following an in-order traversal. If OUTER_CB ever returns a non-zero
|
|
value, the iteration ceases immediately, and the value is returned.
|
|
Otherwise, this function returns 0. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline int
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::foreach (foreach_fn foreach_fn,
|
|
void *user_data)
|
|
{
|
|
return splay_tree_foreach_helper (root, foreach_fn, user_data);
|
|
}
|
|
|
|
/* Internal function for converting from splay_tree_node to
|
|
VALUE_TYPE. */
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline VALUE_TYPE
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::node_to_value (splay_tree_node node)
|
|
{
|
|
if (node)
|
|
return node->value;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline void
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::KDEL(splay_tree_key x)
|
|
{
|
|
if (delete_key)
|
|
(*delete_key)(x);
|
|
}
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline void
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::VDEL(splay_tree_value x)
|
|
{
|
|
if (delete_value)
|
|
(*delete_value)(x);
|
|
}
|
|
|
|
/* Deallocate NODE (a member of SP), and all its sub-trees. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
void
|
|
typed_splay_tree<KEY_TYPE,
|
|
VALUE_TYPE>::splay_tree_delete_helper (splay_tree_node node)
|
|
{
|
|
splay_tree_node pending = NULL;
|
|
splay_tree_node active = NULL;
|
|
|
|
if (!node)
|
|
return;
|
|
|
|
KDEL (node->key);
|
|
VDEL (node->value);
|
|
|
|
/* We use the "back" field to hold the "next" pointer. */
|
|
node->back = pending;
|
|
pending = node;
|
|
|
|
/* Now, keep processing the pending list until there aren't any
|
|
more. This is a little more complicated than just recursing, but
|
|
it doesn't toast the stack for large trees. */
|
|
|
|
while (pending)
|
|
{
|
|
active = pending;
|
|
pending = NULL;
|
|
while (active)
|
|
{
|
|
splay_tree_node temp;
|
|
|
|
/* active points to a node which has its key and value
|
|
deallocated, we just need to process left and right. */
|
|
|
|
if (active->left)
|
|
{
|
|
KDEL (active->left->key);
|
|
VDEL (active->left->value);
|
|
active->left->back = pending;
|
|
pending = active->left;
|
|
}
|
|
if (active->right)
|
|
{
|
|
KDEL (active->right->key);
|
|
VDEL (active->right->value);
|
|
active->right->back = pending;
|
|
pending = active->right;
|
|
}
|
|
|
|
temp = active;
|
|
active = temp->back;
|
|
delete temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Rotate the edge joining the left child N with its parent P. PP is the
|
|
grandparents' pointer to P. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline void
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::rotate_left (splay_tree_node *pp,
|
|
splay_tree_node p,
|
|
splay_tree_node n)
|
|
{
|
|
splay_tree_node tmp;
|
|
tmp = n->right;
|
|
n->right = p;
|
|
p->left = tmp;
|
|
*pp = n;
|
|
}
|
|
|
|
/* Rotate the edge joining the right child N with its parent P. PP is the
|
|
grandparents' pointer to P. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
inline void
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::rotate_right (splay_tree_node *pp,
|
|
splay_tree_node p,
|
|
splay_tree_node n)
|
|
{
|
|
splay_tree_node tmp;
|
|
tmp = n->left;
|
|
n->left = p;
|
|
p->right = tmp;
|
|
*pp = n;
|
|
}
|
|
|
|
/* Bottom up splay of key. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
void
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_splay (splay_tree_key key)
|
|
{
|
|
if (root == NULL)
|
|
return;
|
|
|
|
do {
|
|
int cmp1, cmp2;
|
|
splay_tree_node n, c;
|
|
|
|
n = root;
|
|
cmp1 = (*comp) (key, n->key);
|
|
|
|
/* Found. */
|
|
if (cmp1 == 0)
|
|
return;
|
|
|
|
/* Left or right? If no child, then we're done. */
|
|
if (cmp1 < 0)
|
|
c = n->left;
|
|
else
|
|
c = n->right;
|
|
if (!c)
|
|
return;
|
|
|
|
/* Next one left or right? If found or no child, we're done
|
|
after one rotation. */
|
|
cmp2 = (*comp) (key, c->key);
|
|
if (cmp2 == 0
|
|
|| (cmp2 < 0 && !c->left)
|
|
|| (cmp2 > 0 && !c->right))
|
|
{
|
|
if (cmp1 < 0)
|
|
rotate_left (&root, n, c);
|
|
else
|
|
rotate_right (&root, n, c);
|
|
return;
|
|
}
|
|
|
|
/* Now we have the four cases of double-rotation. */
|
|
if (cmp1 < 0 && cmp2 < 0)
|
|
{
|
|
rotate_left (&n->left, c, c->left);
|
|
rotate_left (&root, n, n->left);
|
|
}
|
|
else if (cmp1 > 0 && cmp2 > 0)
|
|
{
|
|
rotate_right (&n->right, c, c->right);
|
|
rotate_right (&root, n, n->right);
|
|
}
|
|
else if (cmp1 < 0 && cmp2 > 0)
|
|
{
|
|
rotate_right (&n->left, c, c->right);
|
|
rotate_left (&root, n, n->left);
|
|
}
|
|
else if (cmp1 > 0 && cmp2 < 0)
|
|
{
|
|
rotate_left (&n->right, c, c->left);
|
|
rotate_right (&root, n, n->right);
|
|
}
|
|
} while (1);
|
|
}
|
|
|
|
/* Call FN, passing it the DATA, for every node below NODE, all of
|
|
which are from SP, following an in-order traversal. If FN every
|
|
returns a non-zero value, the iteration ceases immediately, and the
|
|
value is returned. Otherwise, this function returns 0. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
int
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_foreach_helper (
|
|
splay_tree_node node,
|
|
foreach_fn fn, void *data)
|
|
{
|
|
int val;
|
|
splay_tree_node stack;
|
|
|
|
/* A non-recursive implementation is used to avoid filling the stack
|
|
for large trees. Splay trees are worst case O(n) in the depth of
|
|
the tree. */
|
|
|
|
stack = NULL;
|
|
val = 0;
|
|
|
|
for (;;)
|
|
{
|
|
while (node != NULL)
|
|
{
|
|
node->back = stack;
|
|
stack = node;
|
|
node = node->left;
|
|
}
|
|
|
|
if (stack == NULL)
|
|
break;
|
|
|
|
node = stack;
|
|
stack = stack->back;
|
|
|
|
val = (*fn) (node->key, node->value, data);
|
|
if (val)
|
|
break;
|
|
|
|
node = node->right;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/* Insert a new node (associating KEY with DATA) into SP. If a
|
|
previous node with the indicated KEY exists, its data is replaced
|
|
with the new value. Returns the new node. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_insert (
|
|
splay_tree_key key,
|
|
splay_tree_value value)
|
|
{
|
|
int comparison = 0;
|
|
|
|
splay_tree_splay (key);
|
|
|
|
if (root)
|
|
comparison = (*comp)(root->key, key);
|
|
|
|
if (root && comparison == 0)
|
|
{
|
|
/* If the root of the tree already has the indicated KEY, just
|
|
replace the value with VALUE. */
|
|
VDEL(root->value);
|
|
root->value = value;
|
|
}
|
|
else
|
|
{
|
|
/* Create a new node, and insert it at the root. */
|
|
splay_tree_node node;
|
|
|
|
node = new splay_tree_node_s;
|
|
node->key = key;
|
|
node->value = value;
|
|
|
|
if (!root)
|
|
node->left = node->right = 0;
|
|
else if (comparison < 0)
|
|
{
|
|
node->left = root;
|
|
node->right = node->left->right;
|
|
node->left->right = 0;
|
|
}
|
|
else
|
|
{
|
|
node->right = root;
|
|
node->left = node->right->left;
|
|
node->right->left = 0;
|
|
}
|
|
|
|
root = node;
|
|
}
|
|
|
|
return root;
|
|
}
|
|
|
|
/* Remove KEY from SP. It is not an error if it did not exist. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
void
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_remove (splay_tree_key key)
|
|
{
|
|
splay_tree_splay (key);
|
|
|
|
if (root && (*comp) (root->key, key) == 0)
|
|
{
|
|
splay_tree_node left, right;
|
|
|
|
left = root->left;
|
|
right = root->right;
|
|
|
|
/* Delete the root node itself. */
|
|
VDEL (root->value);
|
|
delete root;
|
|
|
|
/* One of the children is now the root. Doesn't matter much
|
|
which, so long as we preserve the properties of the tree. */
|
|
if (left)
|
|
{
|
|
root = left;
|
|
|
|
/* If there was a right child as well, hang it off the
|
|
right-most leaf of the left child. */
|
|
if (right)
|
|
{
|
|
while (left->right)
|
|
left = left->right;
|
|
left->right = right;
|
|
}
|
|
}
|
|
else
|
|
root = right;
|
|
}
|
|
}
|
|
|
|
/* Lookup KEY in SP, returning VALUE if present, and NULL
|
|
otherwise. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_lookup (splay_tree_key key)
|
|
{
|
|
splay_tree_splay (key);
|
|
|
|
if (root && (*comp)(root->key, key) == 0)
|
|
return root;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Return the node in SP with the greatest key. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_max ()
|
|
{
|
|
splay_tree_node n = root;
|
|
|
|
if (!n)
|
|
return NULL;
|
|
|
|
while (n->right)
|
|
n = n->right;
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Return the node in SP with the smallest key. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
|
|
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_min ()
|
|
{
|
|
splay_tree_node n = root;
|
|
|
|
if (!n)
|
|
return NULL;
|
|
|
|
while (n->left)
|
|
n = n->left;
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Return the immediate predecessor KEY, or NULL if there is no
|
|
predecessor. KEY need not be present in the tree. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
|
|
typed_splay_tree<KEY_TYPE,
|
|
VALUE_TYPE>::splay_tree_predecessor (splay_tree_key key)
|
|
{
|
|
int comparison;
|
|
splay_tree_node node;
|
|
|
|
/* If the tree is empty, there is certainly no predecessor. */
|
|
if (!root)
|
|
return NULL;
|
|
|
|
/* Splay the tree around KEY. That will leave either the KEY
|
|
itself, its predecessor, or its successor at the root. */
|
|
splay_tree_splay (key);
|
|
comparison = (*comp)(root->key, key);
|
|
|
|
/* If the predecessor is at the root, just return it. */
|
|
if (comparison < 0)
|
|
return root;
|
|
|
|
/* Otherwise, find the rightmost element of the left subtree. */
|
|
node = root->left;
|
|
if (node)
|
|
while (node->right)
|
|
node = node->right;
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Return the immediate successor KEY, or NULL if there is no
|
|
successor. KEY need not be present in the tree. */
|
|
|
|
template <typename KEY_TYPE, typename VALUE_TYPE>
|
|
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
|
|
typed_splay_tree<KEY_TYPE,
|
|
VALUE_TYPE>::splay_tree_successor (splay_tree_key key)
|
|
{
|
|
int comparison;
|
|
splay_tree_node node;
|
|
|
|
/* If the tree is empty, there is certainly no successor. */
|
|
if (!root)
|
|
return NULL;
|
|
|
|
/* Splay the tree around KEY. That will leave either the KEY
|
|
itself, its predecessor, or its successor at the root. */
|
|
splay_tree_splay (key);
|
|
comparison = (*comp)(root->key, key);
|
|
|
|
/* If the successor is at the root, just return it. */
|
|
if (comparison > 0)
|
|
return root;
|
|
|
|
/* Otherwise, find the leftmost element of the right subtree. */
|
|
node = root->right;
|
|
if (node)
|
|
while (node->left)
|
|
node = node->left;
|
|
|
|
return node;
|
|
}
|
|
|
|
#endif /* GCC_TYPED_SPLAY_TREE_H */
|