gcc/libstdc++-v3/testsuite/util/testsuite_random.h
Jonathan Wakely 5f070ba298 libstdc++: Add PRNG fallback to std::random_device
This makes std::random_device usable on VxWorks when running on older
x86 hardware. Since the r10-728 fix for PR libstdc++/85494 the library
will use the new code unconditionally on x86, but the cpuid checks for
RDSEED and RDRAND can fail at runtime, depending on the hardware where
the code is executing. If the OS does not provide /dev/urandom then this
means the std::random_device constructor always fails. In previous
releases if /dev/urandom is unavailable then std::mt19937 was used
unconditionally.

This patch adds a fallback for the case where the runtime cpuid checks
for x86 hardware instructions fail, and no /dev/urandom is available.
When this happens a std::linear_congruential_engine object will be used,
with a seed based on hashing the engine's address and the current time.
Distinct std::random_device objects will use different seeds, unless an
object is created and destroyed and a new object created at the same
memory location within the clock tick. This is not great, but is better
than always throwing from the constructor, and better than always using
std::mt19937 with the same seed (as GCC 9 and earlier do).

libstdc++-v3/ChangeLog:

	* src/c++11/random.cc (USE_LCG): Define when a pseudo-random
	fallback is needed.
	[USE_LCG] (bad_seed, construct_lcg_at, destroy_lcg_at, __lcg):
	New helper functions and callback.
	(random_device::_M_init): Add 'prng' and 'all' enumerators.
	Replace switch with fallthrough with a series of 'if' statements.
	[USE_LCG]: Construct an lcg_type engine and use __lcg when cpuid
	checks fail.
	(random_device::_M_init_pretr1) [USE_MT19937]: Accept "prng"
	token.
	(random_device::_M_getval): Check for callback unconditionally
	and always pass _M_file pointer.
	* testsuite/26_numerics/random/random_device/85494.cc: Remove
	effective-target check. Use new random_device_available helper.
	* testsuite/26_numerics/random/random_device/94087.cc: Likewise.
	* testsuite/26_numerics/random/random_device/cons/default-cow.cc:
	Remove effective-target check.
	* testsuite/26_numerics/random/random_device/cons/default.cc:
	Likewise.
	* testsuite/26_numerics/random/random_device/cons/token.cc: Use
	new random_device_available helper. Test "prng" token.
	* testsuite/util/testsuite_random.h (random_device_available):
	New helper function.
2021-03-26 19:12:12 +00:00

215 lines
4.5 KiB
C++

// -*- C++ -*-
// Copyright (C) 2011-2021 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 3, or (at your option) any later
// version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
/**
* @file testsuite_random.h
*/
#ifndef _GLIBCXX_TESTSUITE_RANDOM_H
#define _GLIBCXX_TESTSUITE_RANDOM_H
#include <cmath>
#include <initializer_list>
#include <testsuite_hooks.h>
namespace __gnu_test
{
// Adapted for libstdc++ from GNU gsl-1.14/randist/test.c
// Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010
// James Theiler, Brian Gough
template<unsigned long BINS = 100,
unsigned long N = 100000,
typename Distribution, typename Pdf>
void
testDiscreteDist(Distribution& f, Pdf pdf)
{
double count[BINS], p[BINS];
for (unsigned long i = 0; i < BINS; i++)
count[i] = 0;
for (unsigned long i = 0; i < N; i++)
{
auto r = f();
if (r >= 0 && (unsigned long)r < BINS)
count[r]++;
}
for (unsigned long i = 0; i < BINS; i++)
p[i] = pdf(i);
for (unsigned long i = 0; i < BINS; i++)
{
bool status_i;
double d = std::abs(count[i] - N * p[i]);
if (p[i] != 0)
{
double s = d / std::sqrt(N * p[i]);
status_i = (s > 5) && (d > 1);
}
else
status_i = (count[i] != 0);
VERIFY( !status_i );
}
}
inline double
bernoulli_pdf(int k, double p)
{
if (k == 0)
return 1 - p;
else if (k == 1)
return p;
else
return 0.0;
}
#ifdef _GLIBCXX_USE_C99_MATH_TR1
inline double
binomial_pdf(int k, int n, double p)
{
if (k < 0 || k > n)
return 0.0;
else
{
double q;
if (p == 0.0)
q = (k == 0) ? 1.0 : 0.0;
else if (p == 1.0)
q = (k == n) ? 1.0 : 0.0;
else
{
double ln_Cnk = (std::lgamma(n + 1.0) - std::lgamma(k + 1.0)
- std::lgamma(n - k + 1.0));
q = ln_Cnk + k * std::log(p) + (n - k) * std::log1p(-p);
q = std::exp(q);
}
return q;
}
}
#endif
inline double
discrete_pdf(int k, std::initializer_list<double> wl)
{
if (!wl.size())
{
static std::initializer_list<double> one = { 1.0 };
wl = one;
}
if (k < 0 || (std::size_t)k >= wl.size())
return 0.0;
else
{
double sum = 0.0;
for (auto it = wl.begin(); it != wl.end(); ++it)
sum += *it;
return wl.begin()[k] / sum;
}
}
inline double
geometric_pdf(int k, double p)
{
if (k < 0)
return 0.0;
else if (k == 0)
return p;
else
return p * std::pow(1 - p, k);
}
#ifdef _GLIBCXX_USE_C99_MATH_TR1
inline double
negative_binomial_pdf(int k, int n, double p)
{
if (k < 0)
return 0.0;
else
{
double f = std::lgamma(k + (double)n);
double a = std::lgamma(n);
double b = std::lgamma(k + 1.0);
return std::exp(f - a - b) * std::pow(p, n) * std::pow(1 - p, k);
}
}
inline double
poisson_pdf(int k, double mu)
{
if (k < 0)
return 0.0;
else
{
double lf = std::lgamma(k + 1.0);
return std::exp(std::log(mu) * k - lf - mu);
}
}
#endif
inline double
uniform_int_pdf(int k, int a, int b)
{
if (k < 0 || k < a || k > b)
return 0.0;
else
return 1.0 / (b - a + 1.0);
}
#ifdef _GLIBCXX_USE_C99_MATH_TR1
inline double
lbincoef(int n, int k)
{
return std::lgamma(double(1 + n))
- std::lgamma(double(1 + k))
- std::lgamma(double(1 + n - k));
}
inline double
hypergeometric_pdf(int k, int N, int K, int n)
{
if (k < 0 || k < std::max(0, n - (N - K)) || k > std::min(K, n))
return 0.0;
else
return lbincoef(K, k) + lbincoef(N - K, n - k) - lbincoef(N, n);
}
#endif
// Check whether TOKEN can construct a std::random_device successfully.
inline bool
random_device_available(const std::string& token) noexcept
{
try {
std::random_device dev(token);
return true;
} catch (...) {
return false;
}
}
} // namespace __gnu_test
#endif // #ifndef _GLIBCXX_TESTSUITE_RANDOM_H