gcc/gcc/ada/eval_fat.adb
Arnaud Charlet 4dfba737a4 [Ada] Bump copyright notices to 2018
2018-01-11  Arnaud Charlet  <charlet@adacore.com>

gcc/ada/

	Bump copyright notices to 2018.

From-SVN: r256519
2018-01-11 08:55:25 +00:00

803 lines
23 KiB
Ada

------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E V A L _ F A T --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Einfo; use Einfo;
with Errout; use Errout;
with Opt; use Opt;
with Sem_Util; use Sem_Util;
package body Eval_Fat is
Radix : constant Int := 2;
-- This code is currently only correct for the radix 2 case. We use the
-- symbolic value Radix where possible to help in the unlikely case of
-- anyone ever having to adjust this code for another value, and for
-- documentation purposes.
-- Another assumption is that the range of the floating-point type is
-- symmetric around zero.
type Radix_Power_Table is array (Int range 1 .. 4) of Int;
Radix_Powers : constant Radix_Power_Table :=
(Radix ** 1, Radix ** 2, Radix ** 3, Radix ** 4);
-----------------------
-- Local Subprograms --
-----------------------
procedure Decompose
(RT : R;
X : T;
Fraction : out T;
Exponent : out UI;
Mode : Rounding_Mode := Round);
-- Decomposes a non-zero floating-point number into fraction and exponent
-- parts. The fraction is in the interval 1.0 / Radix .. T'Pred (1.0) and
-- uses Rbase = Radix. The result is rounded to a nearest machine number.
--------------
-- Adjacent --
--------------
function Adjacent (RT : R; X, Towards : T) return T is
begin
if Towards = X then
return X;
elsif Towards > X then
return Succ (RT, X);
else
return Pred (RT, X);
end if;
end Adjacent;
-------------
-- Ceiling --
-------------
function Ceiling (RT : R; X : T) return T is
XT : constant T := Truncation (RT, X);
begin
if UR_Is_Negative (X) then
return XT;
elsif X = XT then
return X;
else
return XT + Ureal_1;
end if;
end Ceiling;
-------------
-- Compose --
-------------
function Compose (RT : R; Fraction : T; Exponent : UI) return T is
Arg_Frac : T;
Arg_Exp : UI;
pragma Warnings (Off, Arg_Exp);
begin
Decompose (RT, Fraction, Arg_Frac, Arg_Exp);
return Scaling (RT, Arg_Frac, Exponent);
end Compose;
---------------
-- Copy_Sign --
---------------
function Copy_Sign (RT : R; Value, Sign : T) return T is
pragma Warnings (Off, RT);
Result : T;
begin
Result := abs Value;
if UR_Is_Negative (Sign) then
return -Result;
else
return Result;
end if;
end Copy_Sign;
---------------
-- Decompose --
---------------
procedure Decompose
(RT : R;
X : T;
Fraction : out T;
Exponent : out UI;
Mode : Rounding_Mode := Round)
is
Int_F : UI;
begin
Decompose_Int (RT, abs X, Int_F, Exponent, Mode);
Fraction := UR_From_Components
(Num => Int_F,
Den => Machine_Mantissa_Value (RT),
Rbase => Radix,
Negative => False);
if UR_Is_Negative (X) then
Fraction := -Fraction;
end if;
return;
end Decompose;
-------------------
-- Decompose_Int --
-------------------
-- This procedure should be modified with care, as there are many non-
-- obvious details that may cause problems that are hard to detect. For
-- zero arguments, Fraction and Exponent are set to zero. Note that sign
-- of zero cannot be preserved.
procedure Decompose_Int
(RT : R;
X : T;
Fraction : out UI;
Exponent : out UI;
Mode : Rounding_Mode)
is
Base : Int := Rbase (X);
N : UI := abs Numerator (X);
D : UI := Denominator (X);
N_Times_Radix : UI;
Even : Boolean;
-- True iff Fraction is even
Most_Significant_Digit : constant UI :=
Radix ** (Machine_Mantissa_Value (RT) - 1);
Uintp_Mark : Uintp.Save_Mark;
-- The code is divided into blocks that systematically release
-- intermediate values (this routine generates lots of junk).
begin
if N = Uint_0 then
Fraction := Uint_0;
Exponent := Uint_0;
return;
end if;
Calculate_D_And_Exponent_1 : begin
Uintp_Mark := Mark;
Exponent := Uint_0;
-- In cases where Base > 1, the actual denominator is Base**D. For
-- cases where Base is a power of Radix, use the value 1 for the
-- Denominator and adjust the exponent.
-- Note: Exponent has different sign from D, because D is a divisor
for Power in 1 .. Radix_Powers'Last loop
if Base = Radix_Powers (Power) then
Exponent := -D * Power;
Base := 0;
D := Uint_1;
exit;
end if;
end loop;
Release_And_Save (Uintp_Mark, D, Exponent);
end Calculate_D_And_Exponent_1;
if Base > 0 then
Calculate_Exponent : begin
Uintp_Mark := Mark;
-- For bases that are a multiple of the Radix, divide the base by
-- Radix and adjust the Exponent. This will help because D will be
-- much smaller and faster to process.
-- This occurs for decimal bases on machines with binary floating-
-- point for example. When calculating 1E40, with Radix = 2, N
-- will be 93 bits instead of 133.
-- N E
-- ------ * Radix
-- D
-- Base
-- N E
-- = -------------------------- * Radix
-- D D
-- (Base/Radix) * Radix
-- N E-D
-- = --------------- * Radix
-- D
-- (Base/Radix)
-- This code is commented out, because it causes numerous
-- failures in the regression suite. To be studied ???
while False and then Base > 0 and then Base mod Radix = 0 loop
Base := Base / Radix;
Exponent := Exponent + D;
end loop;
Release_And_Save (Uintp_Mark, Exponent);
end Calculate_Exponent;
-- For remaining bases we must actually compute the exponentiation
-- Because the exponentiation can be negative, and D must be integer,
-- the numerator is corrected instead.
Calculate_N_And_D : begin
Uintp_Mark := Mark;
if D < 0 then
N := N * Base ** (-D);
D := Uint_1;
else
D := Base ** D;
end if;
Release_And_Save (Uintp_Mark, N, D);
end Calculate_N_And_D;
Base := 0;
end if;
-- Now scale N and D so that N / D is a value in the interval [1.0 /
-- Radix, 1.0) and adjust Exponent accordingly, so the value N / D *
-- Radix ** Exponent remains unchanged.
-- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0
-- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D.
-- As this scaling is not possible for N is Uint_0, zero is handled
-- explicitly at the start of this subprogram.
Calculate_N_And_Exponent : begin
Uintp_Mark := Mark;
N_Times_Radix := N * Radix;
while not (N_Times_Radix >= D) loop
N := N_Times_Radix;
Exponent := Exponent - 1;
N_Times_Radix := N * Radix;
end loop;
Release_And_Save (Uintp_Mark, N, Exponent);
end Calculate_N_And_Exponent;
-- Step 2 - Adjust D so N / D < 1
-- Scale up D so N / D < 1, so N < D
Calculate_D_And_Exponent_2 : begin
Uintp_Mark := Mark;
while not (N < D) loop
-- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix, so
-- the result of Step 1 stays valid
D := D * Radix;
Exponent := Exponent + 1;
end loop;
Release_And_Save (Uintp_Mark, D, Exponent);
end Calculate_D_And_Exponent_2;
-- Here the value N / D is in the range [1.0 / Radix .. 1.0)
-- Now find the fraction by doing a very simple-minded division until
-- enough digits have been computed.
-- This division works for all radices, but is only efficient for a
-- binary radix. It is just like a manual division algorithm, but
-- instead of moving the denominator one digit right, we move the
-- numerator one digit left so the numerator and denominator remain
-- integral.
Fraction := Uint_0;
Even := True;
Calculate_Fraction_And_N : begin
Uintp_Mark := Mark;
loop
while N >= D loop
N := N - D;
Fraction := Fraction + 1;
Even := not Even;
end loop;
-- Stop when the result is in [1.0 / Radix, 1.0)
exit when Fraction >= Most_Significant_Digit;
N := N * Radix;
Fraction := Fraction * Radix;
Even := True;
end loop;
Release_And_Save (Uintp_Mark, Fraction, N);
end Calculate_Fraction_And_N;
Calculate_Fraction_And_Exponent : begin
Uintp_Mark := Mark;
-- Determine correct rounding based on the remainder which is in
-- N and the divisor D. The rounding is performed on the absolute
-- value of X, so Ceiling and Floor need to check for the sign of
-- X explicitly.
case Mode is
when Round_Even =>
-- This rounding mode corresponds to the unbiased rounding
-- method that is used at run time. When the real value is
-- exactly between two machine numbers, choose the machine
-- number with its least significant bit equal to zero.
-- The recommendation advice in RM 4.9(38) is that static
-- expressions are rounded to machine numbers in the same
-- way as the target machine does.
if (Even and then N * 2 > D)
or else
(not Even and then N * 2 >= D)
then
Fraction := Fraction + 1;
end if;
when Round =>
-- Do not round to even as is done with IEEE arithmetic, but
-- instead round away from zero when the result is exactly
-- between two machine numbers. This biased rounding method
-- should not be used to convert static expressions to
-- machine numbers, see AI95-268.
if N * 2 >= D then
Fraction := Fraction + 1;
end if;
when Ceiling =>
if N > Uint_0 and then not UR_Is_Negative (X) then
Fraction := Fraction + 1;
end if;
when Floor =>
if N > Uint_0 and then UR_Is_Negative (X) then
Fraction := Fraction + 1;
end if;
end case;
-- The result must be normalized to [1.0/Radix, 1.0), so adjust if
-- the result is 1.0 because of rounding.
if Fraction = Most_Significant_Digit * Radix then
Fraction := Most_Significant_Digit;
Exponent := Exponent + 1;
end if;
-- Put back sign after applying the rounding
if UR_Is_Negative (X) then
Fraction := -Fraction;
end if;
Release_And_Save (Uintp_Mark, Fraction, Exponent);
end Calculate_Fraction_And_Exponent;
end Decompose_Int;
--------------
-- Exponent --
--------------
function Exponent (RT : R; X : T) return UI is
X_Frac : UI;
X_Exp : UI;
pragma Warnings (Off, X_Frac);
begin
Decompose_Int (RT, X, X_Frac, X_Exp, Round_Even);
return X_Exp;
end Exponent;
-----------
-- Floor --
-----------
function Floor (RT : R; X : T) return T is
XT : constant T := Truncation (RT, X);
begin
if UR_Is_Positive (X) then
return XT;
elsif XT = X then
return X;
else
return XT - Ureal_1;
end if;
end Floor;
--------------
-- Fraction --
--------------
function Fraction (RT : R; X : T) return T is
X_Frac : T;
X_Exp : UI;
pragma Warnings (Off, X_Exp);
begin
Decompose (RT, X, X_Frac, X_Exp);
return X_Frac;
end Fraction;
------------------
-- Leading_Part --
------------------
function Leading_Part (RT : R; X : T; Radix_Digits : UI) return T is
RD : constant UI := UI_Min (Radix_Digits, Machine_Mantissa_Value (RT));
L : UI;
Y : T;
begin
L := Exponent (RT, X) - RD;
Y := UR_From_Uint (UR_Trunc (Scaling (RT, X, -L)));
return Scaling (RT, Y, L);
end Leading_Part;
-------------
-- Machine --
-------------
function Machine
(RT : R;
X : T;
Mode : Rounding_Mode;
Enode : Node_Id) return T
is
X_Frac : T;
X_Exp : UI;
Emin : constant UI := Machine_Emin_Value (RT);
begin
Decompose (RT, X, X_Frac, X_Exp, Mode);
-- Case of denormalized number or (gradual) underflow
-- A denormalized number is one with the minimum exponent Emin, but that
-- breaks the assumption that the first digit of the mantissa is a one.
-- This allows the first non-zero digit to be in any of the remaining
-- Mant - 1 spots. The gap between subsequent denormalized numbers is
-- the same as for the smallest normalized numbers. However, the number
-- of significant digits left decreases as a result of the mantissa now
-- having leading seros.
if X_Exp < Emin then
declare
Emin_Den : constant UI := Machine_Emin_Value (RT) -
Machine_Mantissa_Value (RT) + Uint_1;
begin
-- Do not issue warnings about underflows in GNATprove mode,
-- as calling Machine as part of interval checking may lead
-- to spurious warnings.
if X_Exp < Emin_Den or not Has_Denormals (RT) then
if Has_Signed_Zeros (RT) and then UR_Is_Negative (X) then
if not GNATprove_Mode then
Error_Msg_N
("floating-point value underflows to -0.0??", Enode);
end if;
return Ureal_M_0;
else
if not GNATprove_Mode then
Error_Msg_N
("floating-point value underflows to 0.0??", Enode);
end if;
return Ureal_0;
end if;
elsif Has_Denormals (RT) then
-- Emin - Mant <= X_Exp < Emin, so result is denormal. Handle
-- gradual underflow by first computing the number of
-- significant bits still available for the mantissa and
-- then truncating the fraction to this number of bits.
-- If this value is different from the original fraction,
-- precision is lost due to gradual underflow.
-- We probably should round here and prevent double rounding as
-- a result of first rounding to a model number and then to a
-- machine number. However, this is an extremely rare case that
-- is not worth the extra complexity. In any case, a warning is
-- issued in cases where gradual underflow occurs.
declare
Denorm_Sig_Bits : constant UI := X_Exp - Emin_Den + 1;
X_Frac_Denorm : constant T := UR_From_Components
(UR_Trunc (Scaling (RT, abs X_Frac, Denorm_Sig_Bits)),
Denorm_Sig_Bits,
Radix,
UR_Is_Negative (X));
begin
-- Do not issue warnings about loss of precision in
-- GNATprove mode, as calling Machine as part of interval
-- checking may lead to spurious warnings.
if X_Frac_Denorm /= X_Frac then
if not GNATprove_Mode then
Error_Msg_N
("gradual underflow causes loss of precision??",
Enode);
end if;
X_Frac := X_Frac_Denorm;
end if;
end;
end if;
end;
end if;
return Scaling (RT, X_Frac, X_Exp);
end Machine;
-----------
-- Model --
-----------
function Model (RT : R; X : T) return T is
X_Frac : T;
X_Exp : UI;
begin
Decompose (RT, X, X_Frac, X_Exp);
return Compose (RT, X_Frac, X_Exp);
end Model;
----------
-- Pred --
----------
function Pred (RT : R; X : T) return T is
begin
return -Succ (RT, -X);
end Pred;
---------------
-- Remainder --
---------------
function Remainder (RT : R; X, Y : T) return T is
A : T;
B : T;
Arg : T;
P : T;
Arg_Frac : T;
P_Frac : T;
Sign_X : T;
IEEE_Rem : T;
Arg_Exp : UI;
P_Exp : UI;
K : UI;
P_Even : Boolean;
pragma Warnings (Off, Arg_Frac);
begin
if UR_Is_Positive (X) then
Sign_X := Ureal_1;
else
Sign_X := -Ureal_1;
end if;
Arg := abs X;
P := abs Y;
if Arg < P then
P_Even := True;
IEEE_Rem := Arg;
P_Exp := Exponent (RT, P);
else
-- ??? what about zero cases?
Decompose (RT, Arg, Arg_Frac, Arg_Exp);
Decompose (RT, P, P_Frac, P_Exp);
P := Compose (RT, P_Frac, Arg_Exp);
K := Arg_Exp - P_Exp;
P_Even := True;
IEEE_Rem := Arg;
for Cnt in reverse 0 .. UI_To_Int (K) loop
if IEEE_Rem >= P then
P_Even := False;
IEEE_Rem := IEEE_Rem - P;
else
P_Even := True;
end if;
P := P * Ureal_Half;
end loop;
end if;
-- That completes the calculation of modulus remainder. The final step
-- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2.
if P_Exp >= 0 then
A := IEEE_Rem;
B := abs Y * Ureal_Half;
else
A := IEEE_Rem * Ureal_2;
B := abs Y;
end if;
if A > B or else (A = B and then not P_Even) then
IEEE_Rem := IEEE_Rem - abs Y;
end if;
return Sign_X * IEEE_Rem;
end Remainder;
--------------
-- Rounding --
--------------
function Rounding (RT : R; X : T) return T is
Result : T;
Tail : T;
begin
Result := Truncation (RT, abs X);
Tail := abs X - Result;
if Tail >= Ureal_Half then
Result := Result + Ureal_1;
end if;
if UR_Is_Negative (X) then
return -Result;
else
return Result;
end if;
end Rounding;
-------------
-- Scaling --
-------------
function Scaling (RT : R; X : T; Adjustment : UI) return T is
pragma Warnings (Off, RT);
begin
if Rbase (X) = Radix then
return UR_From_Components
(Num => Numerator (X),
Den => Denominator (X) - Adjustment,
Rbase => Radix,
Negative => UR_Is_Negative (X));
elsif Adjustment >= 0 then
return X * Radix ** Adjustment;
else
return X / Radix ** (-Adjustment);
end if;
end Scaling;
----------
-- Succ --
----------
function Succ (RT : R; X : T) return T is
Emin : constant UI := Machine_Emin_Value (RT);
Mantissa : constant UI := Machine_Mantissa_Value (RT);
Exp : UI := UI_Max (Emin, Exponent (RT, X));
Frac : T;
New_Frac : T;
begin
if UR_Is_Zero (X) then
Exp := Emin;
end if;
-- Set exponent such that the radix point will be directly following the
-- mantissa after scaling.
if Has_Denormals (RT) or Exp /= Emin then
Exp := Exp - Mantissa;
else
Exp := Exp - 1;
end if;
Frac := Scaling (RT, X, -Exp);
New_Frac := Ceiling (RT, Frac);
if New_Frac = Frac then
if New_Frac = Scaling (RT, -Ureal_1, Mantissa - 1) then
New_Frac := New_Frac + Scaling (RT, Ureal_1, Uint_Minus_1);
else
New_Frac := New_Frac + Ureal_1;
end if;
end if;
return Scaling (RT, New_Frac, Exp);
end Succ;
----------------
-- Truncation --
----------------
function Truncation (RT : R; X : T) return T is
pragma Warnings (Off, RT);
begin
return UR_From_Uint (UR_Trunc (X));
end Truncation;
-----------------------
-- Unbiased_Rounding --
-----------------------
function Unbiased_Rounding (RT : R; X : T) return T is
Abs_X : constant T := abs X;
Result : T;
Tail : T;
begin
Result := Truncation (RT, Abs_X);
Tail := Abs_X - Result;
if Tail > Ureal_Half then
Result := Result + Ureal_1;
elsif Tail = Ureal_Half then
Result := Ureal_2 *
Truncation (RT, (Result / Ureal_2) + Ureal_Half);
end if;
if UR_Is_Negative (X) then
return -Result;
elsif UR_Is_Positive (X) then
return Result;
-- For zero case, make sure sign of zero is preserved
else
return X;
end if;
end Unbiased_Rounding;
end Eval_Fat;