4dfba737a4
2018-01-11 Arnaud Charlet <charlet@adacore.com> gcc/ada/ Bump copyright notices to 2018. From-SVN: r256519
803 lines
23 KiB
Ada
803 lines
23 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- E V A L _ F A T --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Einfo; use Einfo;
|
|
with Errout; use Errout;
|
|
with Opt; use Opt;
|
|
with Sem_Util; use Sem_Util;
|
|
|
|
package body Eval_Fat is
|
|
|
|
Radix : constant Int := 2;
|
|
-- This code is currently only correct for the radix 2 case. We use the
|
|
-- symbolic value Radix where possible to help in the unlikely case of
|
|
-- anyone ever having to adjust this code for another value, and for
|
|
-- documentation purposes.
|
|
|
|
-- Another assumption is that the range of the floating-point type is
|
|
-- symmetric around zero.
|
|
|
|
type Radix_Power_Table is array (Int range 1 .. 4) of Int;
|
|
|
|
Radix_Powers : constant Radix_Power_Table :=
|
|
(Radix ** 1, Radix ** 2, Radix ** 3, Radix ** 4);
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
procedure Decompose
|
|
(RT : R;
|
|
X : T;
|
|
Fraction : out T;
|
|
Exponent : out UI;
|
|
Mode : Rounding_Mode := Round);
|
|
-- Decomposes a non-zero floating-point number into fraction and exponent
|
|
-- parts. The fraction is in the interval 1.0 / Radix .. T'Pred (1.0) and
|
|
-- uses Rbase = Radix. The result is rounded to a nearest machine number.
|
|
|
|
--------------
|
|
-- Adjacent --
|
|
--------------
|
|
|
|
function Adjacent (RT : R; X, Towards : T) return T is
|
|
begin
|
|
if Towards = X then
|
|
return X;
|
|
elsif Towards > X then
|
|
return Succ (RT, X);
|
|
else
|
|
return Pred (RT, X);
|
|
end if;
|
|
end Adjacent;
|
|
|
|
-------------
|
|
-- Ceiling --
|
|
-------------
|
|
|
|
function Ceiling (RT : R; X : T) return T is
|
|
XT : constant T := Truncation (RT, X);
|
|
begin
|
|
if UR_Is_Negative (X) then
|
|
return XT;
|
|
elsif X = XT then
|
|
return X;
|
|
else
|
|
return XT + Ureal_1;
|
|
end if;
|
|
end Ceiling;
|
|
|
|
-------------
|
|
-- Compose --
|
|
-------------
|
|
|
|
function Compose (RT : R; Fraction : T; Exponent : UI) return T is
|
|
Arg_Frac : T;
|
|
Arg_Exp : UI;
|
|
pragma Warnings (Off, Arg_Exp);
|
|
begin
|
|
Decompose (RT, Fraction, Arg_Frac, Arg_Exp);
|
|
return Scaling (RT, Arg_Frac, Exponent);
|
|
end Compose;
|
|
|
|
---------------
|
|
-- Copy_Sign --
|
|
---------------
|
|
|
|
function Copy_Sign (RT : R; Value, Sign : T) return T is
|
|
pragma Warnings (Off, RT);
|
|
Result : T;
|
|
|
|
begin
|
|
Result := abs Value;
|
|
|
|
if UR_Is_Negative (Sign) then
|
|
return -Result;
|
|
else
|
|
return Result;
|
|
end if;
|
|
end Copy_Sign;
|
|
|
|
---------------
|
|
-- Decompose --
|
|
---------------
|
|
|
|
procedure Decompose
|
|
(RT : R;
|
|
X : T;
|
|
Fraction : out T;
|
|
Exponent : out UI;
|
|
Mode : Rounding_Mode := Round)
|
|
is
|
|
Int_F : UI;
|
|
|
|
begin
|
|
Decompose_Int (RT, abs X, Int_F, Exponent, Mode);
|
|
|
|
Fraction := UR_From_Components
|
|
(Num => Int_F,
|
|
Den => Machine_Mantissa_Value (RT),
|
|
Rbase => Radix,
|
|
Negative => False);
|
|
|
|
if UR_Is_Negative (X) then
|
|
Fraction := -Fraction;
|
|
end if;
|
|
|
|
return;
|
|
end Decompose;
|
|
|
|
-------------------
|
|
-- Decompose_Int --
|
|
-------------------
|
|
|
|
-- This procedure should be modified with care, as there are many non-
|
|
-- obvious details that may cause problems that are hard to detect. For
|
|
-- zero arguments, Fraction and Exponent are set to zero. Note that sign
|
|
-- of zero cannot be preserved.
|
|
|
|
procedure Decompose_Int
|
|
(RT : R;
|
|
X : T;
|
|
Fraction : out UI;
|
|
Exponent : out UI;
|
|
Mode : Rounding_Mode)
|
|
is
|
|
Base : Int := Rbase (X);
|
|
N : UI := abs Numerator (X);
|
|
D : UI := Denominator (X);
|
|
|
|
N_Times_Radix : UI;
|
|
|
|
Even : Boolean;
|
|
-- True iff Fraction is even
|
|
|
|
Most_Significant_Digit : constant UI :=
|
|
Radix ** (Machine_Mantissa_Value (RT) - 1);
|
|
|
|
Uintp_Mark : Uintp.Save_Mark;
|
|
-- The code is divided into blocks that systematically release
|
|
-- intermediate values (this routine generates lots of junk).
|
|
|
|
begin
|
|
if N = Uint_0 then
|
|
Fraction := Uint_0;
|
|
Exponent := Uint_0;
|
|
return;
|
|
end if;
|
|
|
|
Calculate_D_And_Exponent_1 : begin
|
|
Uintp_Mark := Mark;
|
|
Exponent := Uint_0;
|
|
|
|
-- In cases where Base > 1, the actual denominator is Base**D. For
|
|
-- cases where Base is a power of Radix, use the value 1 for the
|
|
-- Denominator and adjust the exponent.
|
|
|
|
-- Note: Exponent has different sign from D, because D is a divisor
|
|
|
|
for Power in 1 .. Radix_Powers'Last loop
|
|
if Base = Radix_Powers (Power) then
|
|
Exponent := -D * Power;
|
|
Base := 0;
|
|
D := Uint_1;
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
|
|
Release_And_Save (Uintp_Mark, D, Exponent);
|
|
end Calculate_D_And_Exponent_1;
|
|
|
|
if Base > 0 then
|
|
Calculate_Exponent : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
-- For bases that are a multiple of the Radix, divide the base by
|
|
-- Radix and adjust the Exponent. This will help because D will be
|
|
-- much smaller and faster to process.
|
|
|
|
-- This occurs for decimal bases on machines with binary floating-
|
|
-- point for example. When calculating 1E40, with Radix = 2, N
|
|
-- will be 93 bits instead of 133.
|
|
|
|
-- N E
|
|
-- ------ * Radix
|
|
-- D
|
|
-- Base
|
|
|
|
-- N E
|
|
-- = -------------------------- * Radix
|
|
-- D D
|
|
-- (Base/Radix) * Radix
|
|
|
|
-- N E-D
|
|
-- = --------------- * Radix
|
|
-- D
|
|
-- (Base/Radix)
|
|
|
|
-- This code is commented out, because it causes numerous
|
|
-- failures in the regression suite. To be studied ???
|
|
|
|
while False and then Base > 0 and then Base mod Radix = 0 loop
|
|
Base := Base / Radix;
|
|
Exponent := Exponent + D;
|
|
end loop;
|
|
|
|
Release_And_Save (Uintp_Mark, Exponent);
|
|
end Calculate_Exponent;
|
|
|
|
-- For remaining bases we must actually compute the exponentiation
|
|
|
|
-- Because the exponentiation can be negative, and D must be integer,
|
|
-- the numerator is corrected instead.
|
|
|
|
Calculate_N_And_D : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
if D < 0 then
|
|
N := N * Base ** (-D);
|
|
D := Uint_1;
|
|
else
|
|
D := Base ** D;
|
|
end if;
|
|
|
|
Release_And_Save (Uintp_Mark, N, D);
|
|
end Calculate_N_And_D;
|
|
|
|
Base := 0;
|
|
end if;
|
|
|
|
-- Now scale N and D so that N / D is a value in the interval [1.0 /
|
|
-- Radix, 1.0) and adjust Exponent accordingly, so the value N / D *
|
|
-- Radix ** Exponent remains unchanged.
|
|
|
|
-- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0
|
|
|
|
-- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D.
|
|
-- As this scaling is not possible for N is Uint_0, zero is handled
|
|
-- explicitly at the start of this subprogram.
|
|
|
|
Calculate_N_And_Exponent : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
N_Times_Radix := N * Radix;
|
|
while not (N_Times_Radix >= D) loop
|
|
N := N_Times_Radix;
|
|
Exponent := Exponent - 1;
|
|
N_Times_Radix := N * Radix;
|
|
end loop;
|
|
|
|
Release_And_Save (Uintp_Mark, N, Exponent);
|
|
end Calculate_N_And_Exponent;
|
|
|
|
-- Step 2 - Adjust D so N / D < 1
|
|
|
|
-- Scale up D so N / D < 1, so N < D
|
|
|
|
Calculate_D_And_Exponent_2 : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
while not (N < D) loop
|
|
|
|
-- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix, so
|
|
-- the result of Step 1 stays valid
|
|
|
|
D := D * Radix;
|
|
Exponent := Exponent + 1;
|
|
end loop;
|
|
|
|
Release_And_Save (Uintp_Mark, D, Exponent);
|
|
end Calculate_D_And_Exponent_2;
|
|
|
|
-- Here the value N / D is in the range [1.0 / Radix .. 1.0)
|
|
|
|
-- Now find the fraction by doing a very simple-minded division until
|
|
-- enough digits have been computed.
|
|
|
|
-- This division works for all radices, but is only efficient for a
|
|
-- binary radix. It is just like a manual division algorithm, but
|
|
-- instead of moving the denominator one digit right, we move the
|
|
-- numerator one digit left so the numerator and denominator remain
|
|
-- integral.
|
|
|
|
Fraction := Uint_0;
|
|
Even := True;
|
|
|
|
Calculate_Fraction_And_N : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
loop
|
|
while N >= D loop
|
|
N := N - D;
|
|
Fraction := Fraction + 1;
|
|
Even := not Even;
|
|
end loop;
|
|
|
|
-- Stop when the result is in [1.0 / Radix, 1.0)
|
|
|
|
exit when Fraction >= Most_Significant_Digit;
|
|
|
|
N := N * Radix;
|
|
Fraction := Fraction * Radix;
|
|
Even := True;
|
|
end loop;
|
|
|
|
Release_And_Save (Uintp_Mark, Fraction, N);
|
|
end Calculate_Fraction_And_N;
|
|
|
|
Calculate_Fraction_And_Exponent : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
-- Determine correct rounding based on the remainder which is in
|
|
-- N and the divisor D. The rounding is performed on the absolute
|
|
-- value of X, so Ceiling and Floor need to check for the sign of
|
|
-- X explicitly.
|
|
|
|
case Mode is
|
|
when Round_Even =>
|
|
|
|
-- This rounding mode corresponds to the unbiased rounding
|
|
-- method that is used at run time. When the real value is
|
|
-- exactly between two machine numbers, choose the machine
|
|
-- number with its least significant bit equal to zero.
|
|
|
|
-- The recommendation advice in RM 4.9(38) is that static
|
|
-- expressions are rounded to machine numbers in the same
|
|
-- way as the target machine does.
|
|
|
|
if (Even and then N * 2 > D)
|
|
or else
|
|
(not Even and then N * 2 >= D)
|
|
then
|
|
Fraction := Fraction + 1;
|
|
end if;
|
|
|
|
when Round =>
|
|
|
|
-- Do not round to even as is done with IEEE arithmetic, but
|
|
-- instead round away from zero when the result is exactly
|
|
-- between two machine numbers. This biased rounding method
|
|
-- should not be used to convert static expressions to
|
|
-- machine numbers, see AI95-268.
|
|
|
|
if N * 2 >= D then
|
|
Fraction := Fraction + 1;
|
|
end if;
|
|
|
|
when Ceiling =>
|
|
if N > Uint_0 and then not UR_Is_Negative (X) then
|
|
Fraction := Fraction + 1;
|
|
end if;
|
|
|
|
when Floor =>
|
|
if N > Uint_0 and then UR_Is_Negative (X) then
|
|
Fraction := Fraction + 1;
|
|
end if;
|
|
end case;
|
|
|
|
-- The result must be normalized to [1.0/Radix, 1.0), so adjust if
|
|
-- the result is 1.0 because of rounding.
|
|
|
|
if Fraction = Most_Significant_Digit * Radix then
|
|
Fraction := Most_Significant_Digit;
|
|
Exponent := Exponent + 1;
|
|
end if;
|
|
|
|
-- Put back sign after applying the rounding
|
|
|
|
if UR_Is_Negative (X) then
|
|
Fraction := -Fraction;
|
|
end if;
|
|
|
|
Release_And_Save (Uintp_Mark, Fraction, Exponent);
|
|
end Calculate_Fraction_And_Exponent;
|
|
end Decompose_Int;
|
|
|
|
--------------
|
|
-- Exponent --
|
|
--------------
|
|
|
|
function Exponent (RT : R; X : T) return UI is
|
|
X_Frac : UI;
|
|
X_Exp : UI;
|
|
pragma Warnings (Off, X_Frac);
|
|
begin
|
|
Decompose_Int (RT, X, X_Frac, X_Exp, Round_Even);
|
|
return X_Exp;
|
|
end Exponent;
|
|
|
|
-----------
|
|
-- Floor --
|
|
-----------
|
|
|
|
function Floor (RT : R; X : T) return T is
|
|
XT : constant T := Truncation (RT, X);
|
|
|
|
begin
|
|
if UR_Is_Positive (X) then
|
|
return XT;
|
|
|
|
elsif XT = X then
|
|
return X;
|
|
|
|
else
|
|
return XT - Ureal_1;
|
|
end if;
|
|
end Floor;
|
|
|
|
--------------
|
|
-- Fraction --
|
|
--------------
|
|
|
|
function Fraction (RT : R; X : T) return T is
|
|
X_Frac : T;
|
|
X_Exp : UI;
|
|
pragma Warnings (Off, X_Exp);
|
|
begin
|
|
Decompose (RT, X, X_Frac, X_Exp);
|
|
return X_Frac;
|
|
end Fraction;
|
|
|
|
------------------
|
|
-- Leading_Part --
|
|
------------------
|
|
|
|
function Leading_Part (RT : R; X : T; Radix_Digits : UI) return T is
|
|
RD : constant UI := UI_Min (Radix_Digits, Machine_Mantissa_Value (RT));
|
|
L : UI;
|
|
Y : T;
|
|
begin
|
|
L := Exponent (RT, X) - RD;
|
|
Y := UR_From_Uint (UR_Trunc (Scaling (RT, X, -L)));
|
|
return Scaling (RT, Y, L);
|
|
end Leading_Part;
|
|
|
|
-------------
|
|
-- Machine --
|
|
-------------
|
|
|
|
function Machine
|
|
(RT : R;
|
|
X : T;
|
|
Mode : Rounding_Mode;
|
|
Enode : Node_Id) return T
|
|
is
|
|
X_Frac : T;
|
|
X_Exp : UI;
|
|
Emin : constant UI := Machine_Emin_Value (RT);
|
|
|
|
begin
|
|
Decompose (RT, X, X_Frac, X_Exp, Mode);
|
|
|
|
-- Case of denormalized number or (gradual) underflow
|
|
|
|
-- A denormalized number is one with the minimum exponent Emin, but that
|
|
-- breaks the assumption that the first digit of the mantissa is a one.
|
|
-- This allows the first non-zero digit to be in any of the remaining
|
|
-- Mant - 1 spots. The gap between subsequent denormalized numbers is
|
|
-- the same as for the smallest normalized numbers. However, the number
|
|
-- of significant digits left decreases as a result of the mantissa now
|
|
-- having leading seros.
|
|
|
|
if X_Exp < Emin then
|
|
declare
|
|
Emin_Den : constant UI := Machine_Emin_Value (RT) -
|
|
Machine_Mantissa_Value (RT) + Uint_1;
|
|
|
|
begin
|
|
-- Do not issue warnings about underflows in GNATprove mode,
|
|
-- as calling Machine as part of interval checking may lead
|
|
-- to spurious warnings.
|
|
|
|
if X_Exp < Emin_Den or not Has_Denormals (RT) then
|
|
if Has_Signed_Zeros (RT) and then UR_Is_Negative (X) then
|
|
if not GNATprove_Mode then
|
|
Error_Msg_N
|
|
("floating-point value underflows to -0.0??", Enode);
|
|
end if;
|
|
|
|
return Ureal_M_0;
|
|
|
|
else
|
|
if not GNATprove_Mode then
|
|
Error_Msg_N
|
|
("floating-point value underflows to 0.0??", Enode);
|
|
end if;
|
|
|
|
return Ureal_0;
|
|
end if;
|
|
|
|
elsif Has_Denormals (RT) then
|
|
|
|
-- Emin - Mant <= X_Exp < Emin, so result is denormal. Handle
|
|
-- gradual underflow by first computing the number of
|
|
-- significant bits still available for the mantissa and
|
|
-- then truncating the fraction to this number of bits.
|
|
|
|
-- If this value is different from the original fraction,
|
|
-- precision is lost due to gradual underflow.
|
|
|
|
-- We probably should round here and prevent double rounding as
|
|
-- a result of first rounding to a model number and then to a
|
|
-- machine number. However, this is an extremely rare case that
|
|
-- is not worth the extra complexity. In any case, a warning is
|
|
-- issued in cases where gradual underflow occurs.
|
|
|
|
declare
|
|
Denorm_Sig_Bits : constant UI := X_Exp - Emin_Den + 1;
|
|
|
|
X_Frac_Denorm : constant T := UR_From_Components
|
|
(UR_Trunc (Scaling (RT, abs X_Frac, Denorm_Sig_Bits)),
|
|
Denorm_Sig_Bits,
|
|
Radix,
|
|
UR_Is_Negative (X));
|
|
|
|
begin
|
|
-- Do not issue warnings about loss of precision in
|
|
-- GNATprove mode, as calling Machine as part of interval
|
|
-- checking may lead to spurious warnings.
|
|
|
|
if X_Frac_Denorm /= X_Frac then
|
|
if not GNATprove_Mode then
|
|
Error_Msg_N
|
|
("gradual underflow causes loss of precision??",
|
|
Enode);
|
|
end if;
|
|
X_Frac := X_Frac_Denorm;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
return Scaling (RT, X_Frac, X_Exp);
|
|
end Machine;
|
|
|
|
-----------
|
|
-- Model --
|
|
-----------
|
|
|
|
function Model (RT : R; X : T) return T is
|
|
X_Frac : T;
|
|
X_Exp : UI;
|
|
begin
|
|
Decompose (RT, X, X_Frac, X_Exp);
|
|
return Compose (RT, X_Frac, X_Exp);
|
|
end Model;
|
|
|
|
----------
|
|
-- Pred --
|
|
----------
|
|
|
|
function Pred (RT : R; X : T) return T is
|
|
begin
|
|
return -Succ (RT, -X);
|
|
end Pred;
|
|
|
|
---------------
|
|
-- Remainder --
|
|
---------------
|
|
|
|
function Remainder (RT : R; X, Y : T) return T is
|
|
A : T;
|
|
B : T;
|
|
Arg : T;
|
|
P : T;
|
|
Arg_Frac : T;
|
|
P_Frac : T;
|
|
Sign_X : T;
|
|
IEEE_Rem : T;
|
|
Arg_Exp : UI;
|
|
P_Exp : UI;
|
|
K : UI;
|
|
P_Even : Boolean;
|
|
|
|
pragma Warnings (Off, Arg_Frac);
|
|
|
|
begin
|
|
if UR_Is_Positive (X) then
|
|
Sign_X := Ureal_1;
|
|
else
|
|
Sign_X := -Ureal_1;
|
|
end if;
|
|
|
|
Arg := abs X;
|
|
P := abs Y;
|
|
|
|
if Arg < P then
|
|
P_Even := True;
|
|
IEEE_Rem := Arg;
|
|
P_Exp := Exponent (RT, P);
|
|
|
|
else
|
|
-- ??? what about zero cases?
|
|
Decompose (RT, Arg, Arg_Frac, Arg_Exp);
|
|
Decompose (RT, P, P_Frac, P_Exp);
|
|
|
|
P := Compose (RT, P_Frac, Arg_Exp);
|
|
K := Arg_Exp - P_Exp;
|
|
P_Even := True;
|
|
IEEE_Rem := Arg;
|
|
|
|
for Cnt in reverse 0 .. UI_To_Int (K) loop
|
|
if IEEE_Rem >= P then
|
|
P_Even := False;
|
|
IEEE_Rem := IEEE_Rem - P;
|
|
else
|
|
P_Even := True;
|
|
end if;
|
|
|
|
P := P * Ureal_Half;
|
|
end loop;
|
|
end if;
|
|
|
|
-- That completes the calculation of modulus remainder. The final step
|
|
-- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2.
|
|
|
|
if P_Exp >= 0 then
|
|
A := IEEE_Rem;
|
|
B := abs Y * Ureal_Half;
|
|
|
|
else
|
|
A := IEEE_Rem * Ureal_2;
|
|
B := abs Y;
|
|
end if;
|
|
|
|
if A > B or else (A = B and then not P_Even) then
|
|
IEEE_Rem := IEEE_Rem - abs Y;
|
|
end if;
|
|
|
|
return Sign_X * IEEE_Rem;
|
|
end Remainder;
|
|
|
|
--------------
|
|
-- Rounding --
|
|
--------------
|
|
|
|
function Rounding (RT : R; X : T) return T is
|
|
Result : T;
|
|
Tail : T;
|
|
|
|
begin
|
|
Result := Truncation (RT, abs X);
|
|
Tail := abs X - Result;
|
|
|
|
if Tail >= Ureal_Half then
|
|
Result := Result + Ureal_1;
|
|
end if;
|
|
|
|
if UR_Is_Negative (X) then
|
|
return -Result;
|
|
else
|
|
return Result;
|
|
end if;
|
|
end Rounding;
|
|
|
|
-------------
|
|
-- Scaling --
|
|
-------------
|
|
|
|
function Scaling (RT : R; X : T; Adjustment : UI) return T is
|
|
pragma Warnings (Off, RT);
|
|
|
|
begin
|
|
if Rbase (X) = Radix then
|
|
return UR_From_Components
|
|
(Num => Numerator (X),
|
|
Den => Denominator (X) - Adjustment,
|
|
Rbase => Radix,
|
|
Negative => UR_Is_Negative (X));
|
|
|
|
elsif Adjustment >= 0 then
|
|
return X * Radix ** Adjustment;
|
|
else
|
|
return X / Radix ** (-Adjustment);
|
|
end if;
|
|
end Scaling;
|
|
|
|
----------
|
|
-- Succ --
|
|
----------
|
|
|
|
function Succ (RT : R; X : T) return T is
|
|
Emin : constant UI := Machine_Emin_Value (RT);
|
|
Mantissa : constant UI := Machine_Mantissa_Value (RT);
|
|
Exp : UI := UI_Max (Emin, Exponent (RT, X));
|
|
Frac : T;
|
|
New_Frac : T;
|
|
|
|
begin
|
|
if UR_Is_Zero (X) then
|
|
Exp := Emin;
|
|
end if;
|
|
|
|
-- Set exponent such that the radix point will be directly following the
|
|
-- mantissa after scaling.
|
|
|
|
if Has_Denormals (RT) or Exp /= Emin then
|
|
Exp := Exp - Mantissa;
|
|
else
|
|
Exp := Exp - 1;
|
|
end if;
|
|
|
|
Frac := Scaling (RT, X, -Exp);
|
|
New_Frac := Ceiling (RT, Frac);
|
|
|
|
if New_Frac = Frac then
|
|
if New_Frac = Scaling (RT, -Ureal_1, Mantissa - 1) then
|
|
New_Frac := New_Frac + Scaling (RT, Ureal_1, Uint_Minus_1);
|
|
else
|
|
New_Frac := New_Frac + Ureal_1;
|
|
end if;
|
|
end if;
|
|
|
|
return Scaling (RT, New_Frac, Exp);
|
|
end Succ;
|
|
|
|
----------------
|
|
-- Truncation --
|
|
----------------
|
|
|
|
function Truncation (RT : R; X : T) return T is
|
|
pragma Warnings (Off, RT);
|
|
begin
|
|
return UR_From_Uint (UR_Trunc (X));
|
|
end Truncation;
|
|
|
|
-----------------------
|
|
-- Unbiased_Rounding --
|
|
-----------------------
|
|
|
|
function Unbiased_Rounding (RT : R; X : T) return T is
|
|
Abs_X : constant T := abs X;
|
|
Result : T;
|
|
Tail : T;
|
|
|
|
begin
|
|
Result := Truncation (RT, Abs_X);
|
|
Tail := Abs_X - Result;
|
|
|
|
if Tail > Ureal_Half then
|
|
Result := Result + Ureal_1;
|
|
|
|
elsif Tail = Ureal_Half then
|
|
Result := Ureal_2 *
|
|
Truncation (RT, (Result / Ureal_2) + Ureal_Half);
|
|
end if;
|
|
|
|
if UR_Is_Negative (X) then
|
|
return -Result;
|
|
elsif UR_Is_Positive (X) then
|
|
return Result;
|
|
|
|
-- For zero case, make sure sign of zero is preserved
|
|
|
|
else
|
|
return X;
|
|
end if;
|
|
end Unbiased_Rounding;
|
|
|
|
end Eval_Fat;
|