gcc/gcc/ipa-pure-const.c
Richard Sandiford 23a5b65a92 Update copyright years in gcc/
From-SVN: r206289
2014-01-02 22:23:26 +00:00

1780 lines
50 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Callgraph based analysis of static variables.
Copyright (C) 2004-2014 Free Software Foundation, Inc.
Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file marks functions as being either const (TREE_READONLY) or
pure (DECL_PURE_P). It can also set a variant of these that
are allowed to loop indefinitely (DECL_LOOPING_CONST_PURE_P).
This must be run after inlining decisions have been made since
otherwise, the local sets will not contain information that is
consistent with post inlined state. The global sets are not prone
to this problem since they are by definition transitive. */
/* The code in this module is called by the ipa pass manager. It
should be one of the later passes since it's information is used by
the rest of the compilation. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "print-tree.h"
#include "calls.h"
#include "basic-block.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "tree-eh.h"
#include "gimple-expr.h"
#include "is-a.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-niter.h"
#include "tree-inline.h"
#include "tree-pass.h"
#include "langhooks.h"
#include "ipa-utils.h"
#include "flags.h"
#include "diagnostic.h"
#include "gimple-pretty-print.h"
#include "langhooks.h"
#include "target.h"
#include "lto-streamer.h"
#include "data-streamer.h"
#include "tree-streamer.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "intl.h"
#include "opts.h"
static struct pointer_set_t *visited_nodes;
/* Lattice values for const and pure functions. Everything starts out
being const, then may drop to pure and then neither depending on
what is found. */
enum pure_const_state_e
{
IPA_CONST,
IPA_PURE,
IPA_NEITHER
};
const char *pure_const_names[3] = {"const", "pure", "neither"};
/* Holder for the const_state. There is one of these per function
decl. */
struct funct_state_d
{
/* See above. */
enum pure_const_state_e pure_const_state;
/* What user set here; we can be always sure about this. */
enum pure_const_state_e state_previously_known;
bool looping_previously_known;
/* True if the function could possibly infinite loop. There are a
lot of ways that this could be determined. We are pretty
conservative here. While it is possible to cse pure and const
calls, it is not legal to have dce get rid of the call if there
is a possibility that the call could infinite loop since this is
a behavioral change. */
bool looping;
bool can_throw;
};
/* State used when we know nothing about function. */
static struct funct_state_d varying_state
= { IPA_NEITHER, IPA_NEITHER, true, true, true };
typedef struct funct_state_d * funct_state;
/* The storage of the funct_state is abstracted because there is the
possibility that it may be desirable to move this to the cgraph
local info. */
/* Array, indexed by cgraph node uid, of function states. */
static vec<funct_state> funct_state_vec;
/* Holders of ipa cgraph hooks: */
static struct cgraph_node_hook_list *function_insertion_hook_holder;
static struct cgraph_2node_hook_list *node_duplication_hook_holder;
static struct cgraph_node_hook_list *node_removal_hook_holder;
/* Try to guess if function body will always be visible to compiler
when compiling the call and whether compiler will be able
to propagate the information by itself. */
static bool
function_always_visible_to_compiler_p (tree decl)
{
return (!TREE_PUBLIC (decl) || DECL_DECLARED_INLINE_P (decl));
}
/* Emit suggestion about attribute ATTRIB_NAME for DECL. KNOWN_FINITE
is true if the function is known to be finite. The diagnostic is
controlled by OPTION. WARNED_ABOUT is a pointer_set unique for
OPTION, this function may initialize it and it is always returned
by the function. */
static struct pointer_set_t *
suggest_attribute (int option, tree decl, bool known_finite,
struct pointer_set_t *warned_about,
const char * attrib_name)
{
if (!option_enabled (option, &global_options))
return warned_about;
if (TREE_THIS_VOLATILE (decl)
|| (known_finite && function_always_visible_to_compiler_p (decl)))
return warned_about;
if (!warned_about)
warned_about = pointer_set_create ();
if (pointer_set_contains (warned_about, decl))
return warned_about;
pointer_set_insert (warned_about, decl);
warning_at (DECL_SOURCE_LOCATION (decl),
option,
known_finite
? _("function might be candidate for attribute %<%s%>")
: _("function might be candidate for attribute %<%s%>"
" if it is known to return normally"), attrib_name);
return warned_about;
}
/* Emit suggestion about __attribute_((pure)) for DECL. KNOWN_FINITE
is true if the function is known to be finite. */
static void
warn_function_pure (tree decl, bool known_finite)
{
static struct pointer_set_t *warned_about;
warned_about
= suggest_attribute (OPT_Wsuggest_attribute_pure, decl,
known_finite, warned_about, "pure");
}
/* Emit suggestion about __attribute_((const)) for DECL. KNOWN_FINITE
is true if the function is known to be finite. */
static void
warn_function_const (tree decl, bool known_finite)
{
static struct pointer_set_t *warned_about;
warned_about
= suggest_attribute (OPT_Wsuggest_attribute_const, decl,
known_finite, warned_about, "const");
}
static void
warn_function_noreturn (tree decl)
{
static struct pointer_set_t *warned_about;
if (!lang_hooks.missing_noreturn_ok_p (decl)
&& targetm.warn_func_return (decl))
warned_about
= suggest_attribute (OPT_Wsuggest_attribute_noreturn, decl,
true, warned_about, "noreturn");
}
/* Return true if we have a function state for NODE. */
static inline bool
has_function_state (struct cgraph_node *node)
{
if (!funct_state_vec.exists ()
|| funct_state_vec.length () <= (unsigned int)node->uid)
return false;
return funct_state_vec[node->uid] != NULL;
}
/* Return the function state from NODE. */
static inline funct_state
get_function_state (struct cgraph_node *node)
{
if (!funct_state_vec.exists ()
|| funct_state_vec.length () <= (unsigned int)node->uid
|| !funct_state_vec[node->uid])
/* We might want to put correct previously_known state into varying. */
return &varying_state;
return funct_state_vec[node->uid];
}
/* Set the function state S for NODE. */
static inline void
set_function_state (struct cgraph_node *node, funct_state s)
{
if (!funct_state_vec.exists ()
|| funct_state_vec.length () <= (unsigned int)node->uid)
funct_state_vec.safe_grow_cleared (node->uid + 1);
funct_state_vec[node->uid] = s;
}
/* Check to see if the use (or definition when CHECKING_WRITE is true)
variable T is legal in a function that is either pure or const. */
static inline void
check_decl (funct_state local,
tree t, bool checking_write, bool ipa)
{
/* Do not want to do anything with volatile except mark any
function that uses one to be not const or pure. */
if (TREE_THIS_VOLATILE (t))
{
local->pure_const_state = IPA_NEITHER;
if (dump_file)
fprintf (dump_file, " Volatile operand is not const/pure");
return;
}
/* Do not care about a local automatic that is not static. */
if (!TREE_STATIC (t) && !DECL_EXTERNAL (t))
return;
/* If the variable has the "used" attribute, treat it as if it had a
been touched by the devil. */
if (DECL_PRESERVE_P (t))
{
local->pure_const_state = IPA_NEITHER;
if (dump_file)
fprintf (dump_file, " Used static/global variable is not const/pure\n");
return;
}
/* In IPA mode we are not interested in checking actual loads and stores;
they will be processed at propagation time using ipa_ref. */
if (ipa)
return;
/* Since we have dealt with the locals and params cases above, if we
are CHECKING_WRITE, this cannot be a pure or constant
function. */
if (checking_write)
{
local->pure_const_state = IPA_NEITHER;
if (dump_file)
fprintf (dump_file, " static/global memory write is not const/pure\n");
return;
}
if (DECL_EXTERNAL (t) || TREE_PUBLIC (t))
{
/* Readonly reads are safe. */
if (TREE_READONLY (t) && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (t)))
return; /* Read of a constant, do not change the function state. */
else
{
if (dump_file)
fprintf (dump_file, " global memory read is not const\n");
/* Just a regular read. */
if (local->pure_const_state == IPA_CONST)
local->pure_const_state = IPA_PURE;
}
}
else
{
/* Compilation level statics can be read if they are readonly
variables. */
if (TREE_READONLY (t))
return;
if (dump_file)
fprintf (dump_file, " static memory read is not const\n");
/* Just a regular read. */
if (local->pure_const_state == IPA_CONST)
local->pure_const_state = IPA_PURE;
}
}
/* Check to see if the use (or definition when CHECKING_WRITE is true)
variable T is legal in a function that is either pure or const. */
static inline void
check_op (funct_state local, tree t, bool checking_write)
{
t = get_base_address (t);
if (t && TREE_THIS_VOLATILE (t))
{
local->pure_const_state = IPA_NEITHER;
if (dump_file)
fprintf (dump_file, " Volatile indirect ref is not const/pure\n");
return;
}
else if (t
&& (INDIRECT_REF_P (t) || TREE_CODE (t) == MEM_REF)
&& TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME
&& !ptr_deref_may_alias_global_p (TREE_OPERAND (t, 0)))
{
if (dump_file)
fprintf (dump_file, " Indirect ref to local memory is OK\n");
return;
}
else if (checking_write)
{
local->pure_const_state = IPA_NEITHER;
if (dump_file)
fprintf (dump_file, " Indirect ref write is not const/pure\n");
return;
}
else
{
if (dump_file)
fprintf (dump_file, " Indirect ref read is not const\n");
if (local->pure_const_state == IPA_CONST)
local->pure_const_state = IPA_PURE;
}
}
/* compute state based on ECF FLAGS and store to STATE and LOOPING. */
static void
state_from_flags (enum pure_const_state_e *state, bool *looping,
int flags, bool cannot_lead_to_return)
{
*looping = false;
if (flags & ECF_LOOPING_CONST_OR_PURE)
{
*looping = true;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " looping");
}
if (flags & ECF_CONST)
{
*state = IPA_CONST;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " const\n");
}
else if (flags & ECF_PURE)
{
*state = IPA_PURE;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " pure\n");
}
else if (cannot_lead_to_return)
{
*state = IPA_PURE;
*looping = true;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " ignoring side effects->pure looping\n");
}
else
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " neither\n");
*state = IPA_NEITHER;
*looping = true;
}
}
/* Merge STATE and STATE2 and LOOPING and LOOPING2 and store
into STATE and LOOPING better of the two variants.
Be sure to merge looping correctly. IPA_NEITHER functions
have looping 0 even if they don't have to return. */
static inline void
better_state (enum pure_const_state_e *state, bool *looping,
enum pure_const_state_e state2, bool looping2)
{
if (state2 < *state)
{
if (*state == IPA_NEITHER)
*looping = looping2;
else
*looping = MIN (*looping, looping2);
*state = state2;
}
else if (state2 != IPA_NEITHER)
*looping = MIN (*looping, looping2);
}
/* Merge STATE and STATE2 and LOOPING and LOOPING2 and store
into STATE and LOOPING worse of the two variants. */
static inline void
worse_state (enum pure_const_state_e *state, bool *looping,
enum pure_const_state_e state2, bool looping2)
{
*state = MAX (*state, state2);
*looping = MAX (*looping, looping2);
}
/* Recognize special cases of builtins that are by themselves not pure or const
but function using them is. */
static bool
special_builtin_state (enum pure_const_state_e *state, bool *looping,
tree callee)
{
if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
switch (DECL_FUNCTION_CODE (callee))
{
case BUILT_IN_RETURN:
case BUILT_IN_UNREACHABLE:
case BUILT_IN_ALLOCA:
case BUILT_IN_ALLOCA_WITH_ALIGN:
case BUILT_IN_STACK_SAVE:
case BUILT_IN_STACK_RESTORE:
case BUILT_IN_EH_POINTER:
case BUILT_IN_EH_FILTER:
case BUILT_IN_UNWIND_RESUME:
case BUILT_IN_CXA_END_CLEANUP:
case BUILT_IN_EH_COPY_VALUES:
case BUILT_IN_FRAME_ADDRESS:
case BUILT_IN_APPLY:
case BUILT_IN_APPLY_ARGS:
*looping = false;
*state = IPA_CONST;
return true;
case BUILT_IN_PREFETCH:
*looping = true;
*state = IPA_CONST;
return true;
}
return false;
}
/* Check the parameters of a function call to CALL_EXPR to see if
there are any references in the parameters that are not allowed for
pure or const functions. Also check to see if this is either an
indirect call, a call outside the compilation unit, or has special
attributes that may also effect the purity. The CALL_EXPR node for
the entire call expression. */
static void
check_call (funct_state local, gimple call, bool ipa)
{
int flags = gimple_call_flags (call);
tree callee_t = gimple_call_fndecl (call);
bool possibly_throws = stmt_could_throw_p (call);
bool possibly_throws_externally = (possibly_throws
&& stmt_can_throw_external (call));
if (possibly_throws)
{
unsigned int i;
for (i = 0; i < gimple_num_ops (call); i++)
if (gimple_op (call, i)
&& tree_could_throw_p (gimple_op (call, i)))
{
if (possibly_throws && cfun->can_throw_non_call_exceptions)
{
if (dump_file)
fprintf (dump_file, " operand can throw; looping\n");
local->looping = true;
}
if (possibly_throws_externally)
{
if (dump_file)
fprintf (dump_file, " operand can throw externally\n");
local->can_throw = true;
}
}
}
/* The const and pure flags are set by a variety of places in the
compiler (including here). If someone has already set the flags
for the callee, (such as for some of the builtins) we will use
them, otherwise we will compute our own information.
Const and pure functions have less clobber effects than other
functions so we process these first. Otherwise if it is a call
outside the compilation unit or an indirect call we punt. This
leaves local calls which will be processed by following the call
graph. */
if (callee_t)
{
enum pure_const_state_e call_state;
bool call_looping;
if (special_builtin_state (&call_state, &call_looping, callee_t))
{
worse_state (&local->pure_const_state, &local->looping,
call_state, call_looping);
return;
}
/* When bad things happen to bad functions, they cannot be const
or pure. */
if (setjmp_call_p (callee_t))
{
if (dump_file)
fprintf (dump_file, " setjmp is not const/pure\n");
local->looping = true;
local->pure_const_state = IPA_NEITHER;
}
if (DECL_BUILT_IN_CLASS (callee_t) == BUILT_IN_NORMAL)
switch (DECL_FUNCTION_CODE (callee_t))
{
case BUILT_IN_LONGJMP:
case BUILT_IN_NONLOCAL_GOTO:
if (dump_file)
fprintf (dump_file, " longjmp and nonlocal goto is not const/pure\n");
local->pure_const_state = IPA_NEITHER;
local->looping = true;
break;
default:
break;
}
}
/* When not in IPA mode, we can still handle self recursion. */
if (!ipa && callee_t
&& recursive_call_p (current_function_decl, callee_t))
{
if (dump_file)
fprintf (dump_file, " Recursive call can loop.\n");
local->looping = true;
}
/* Either callee is unknown or we are doing local analysis.
Look to see if there are any bits available for the callee (such as by
declaration or because it is builtin) and process solely on the basis of
those bits. */
else if (!ipa)
{
enum pure_const_state_e call_state;
bool call_looping;
if (possibly_throws && cfun->can_throw_non_call_exceptions)
{
if (dump_file)
fprintf (dump_file, " can throw; looping\n");
local->looping = true;
}
if (possibly_throws_externally)
{
if (dump_file)
{
fprintf (dump_file, " can throw externally to lp %i\n",
lookup_stmt_eh_lp (call));
if (callee_t)
fprintf (dump_file, " callee:%s\n",
IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (callee_t)));
}
local->can_throw = true;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " checking flags for call:");
state_from_flags (&call_state, &call_looping, flags,
((flags & (ECF_NORETURN | ECF_NOTHROW))
== (ECF_NORETURN | ECF_NOTHROW))
|| (!flag_exceptions && (flags & ECF_NORETURN)));
worse_state (&local->pure_const_state, &local->looping,
call_state, call_looping);
}
/* Direct functions calls are handled by IPA propagation. */
}
/* Wrapper around check_decl for loads in local more. */
static bool
check_load (gimple, tree op, tree, void *data)
{
if (DECL_P (op))
check_decl ((funct_state)data, op, false, false);
else
check_op ((funct_state)data, op, false);
return false;
}
/* Wrapper around check_decl for stores in local more. */
static bool
check_store (gimple, tree op, tree, void *data)
{
if (DECL_P (op))
check_decl ((funct_state)data, op, true, false);
else
check_op ((funct_state)data, op, true);
return false;
}
/* Wrapper around check_decl for loads in ipa mode. */
static bool
check_ipa_load (gimple, tree op, tree, void *data)
{
if (DECL_P (op))
check_decl ((funct_state)data, op, false, true);
else
check_op ((funct_state)data, op, false);
return false;
}
/* Wrapper around check_decl for stores in ipa mode. */
static bool
check_ipa_store (gimple, tree op, tree, void *data)
{
if (DECL_P (op))
check_decl ((funct_state)data, op, true, true);
else
check_op ((funct_state)data, op, true);
return false;
}
/* Look into pointer pointed to by GSIP and figure out what interesting side
effects it has. */
static void
check_stmt (gimple_stmt_iterator *gsip, funct_state local, bool ipa)
{
gimple stmt = gsi_stmt (*gsip);
if (is_gimple_debug (stmt))
return;
if (dump_file)
{
fprintf (dump_file, " scanning: ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
if (gimple_has_volatile_ops (stmt)
&& !gimple_clobber_p (stmt))
{
local->pure_const_state = IPA_NEITHER;
if (dump_file)
fprintf (dump_file, " Volatile stmt is not const/pure\n");
}
/* Look for loads and stores. */
walk_stmt_load_store_ops (stmt, local,
ipa ? check_ipa_load : check_load,
ipa ? check_ipa_store : check_store);
if (gimple_code (stmt) != GIMPLE_CALL
&& stmt_could_throw_p (stmt))
{
if (cfun->can_throw_non_call_exceptions)
{
if (dump_file)
fprintf (dump_file, " can throw; looping\n");
local->looping = true;
}
if (stmt_can_throw_external (stmt))
{
if (dump_file)
fprintf (dump_file, " can throw externally\n");
local->can_throw = true;
}
else
if (dump_file)
fprintf (dump_file, " can throw\n");
}
switch (gimple_code (stmt))
{
case GIMPLE_CALL:
check_call (local, stmt, ipa);
break;
case GIMPLE_LABEL:
if (DECL_NONLOCAL (gimple_label_label (stmt)))
/* Target of long jump. */
{
if (dump_file)
fprintf (dump_file, " nonlocal label is not const/pure\n");
local->pure_const_state = IPA_NEITHER;
}
break;
case GIMPLE_ASM:
if (gimple_asm_clobbers_memory_p (stmt))
{
if (dump_file)
fprintf (dump_file, " memory asm clobber is not const/pure\n");
/* Abandon all hope, ye who enter here. */
local->pure_const_state = IPA_NEITHER;
}
if (gimple_asm_volatile_p (stmt))
{
if (dump_file)
fprintf (dump_file, " volatile is not const/pure\n");
/* Abandon all hope, ye who enter here. */
local->pure_const_state = IPA_NEITHER;
local->looping = true;
}
return;
default:
break;
}
}
/* This is the main routine for finding the reference patterns for
global variables within a function FN. */
static funct_state
analyze_function (struct cgraph_node *fn, bool ipa)
{
tree decl = fn->decl;
funct_state l;
basic_block this_block;
l = XCNEW (struct funct_state_d);
l->pure_const_state = IPA_CONST;
l->state_previously_known = IPA_NEITHER;
l->looping_previously_known = true;
l->looping = false;
l->can_throw = false;
state_from_flags (&l->state_previously_known, &l->looping_previously_known,
flags_from_decl_or_type (fn->decl),
cgraph_node_cannot_return (fn));
if (fn->thunk.thunk_p || fn->alias)
{
/* Thunk gets propagated through, so nothing interesting happens. */
gcc_assert (ipa);
return l;
}
if (dump_file)
{
fprintf (dump_file, "\n\n local analysis of %s\n ",
fn->name ());
}
push_cfun (DECL_STRUCT_FUNCTION (decl));
FOR_EACH_BB_FN (this_block, cfun)
{
gimple_stmt_iterator gsi;
struct walk_stmt_info wi;
memset (&wi, 0, sizeof (wi));
for (gsi = gsi_start_bb (this_block);
!gsi_end_p (gsi);
gsi_next (&gsi))
{
check_stmt (&gsi, l, ipa);
if (l->pure_const_state == IPA_NEITHER && l->looping && l->can_throw)
goto end;
}
}
end:
if (l->pure_const_state != IPA_NEITHER)
{
/* Const functions cannot have back edges (an
indication of possible infinite loop side
effect. */
if (mark_dfs_back_edges ())
{
/* Preheaders are needed for SCEV to work.
Simple latches and recorded exits improve chances that loop will
proved to be finite in testcases such as in loop-15.c
and loop-24.c */
loop_optimizer_init (LOOPS_HAVE_PREHEADERS
| LOOPS_HAVE_SIMPLE_LATCHES
| LOOPS_HAVE_RECORDED_EXITS);
if (dump_file && (dump_flags & TDF_DETAILS))
flow_loops_dump (dump_file, NULL, 0);
if (mark_irreducible_loops ())
{
if (dump_file)
fprintf (dump_file, " has irreducible loops\n");
l->looping = true;
}
else
{
struct loop *loop;
scev_initialize ();
FOR_EACH_LOOP (loop, 0)
if (!finite_loop_p (loop))
{
if (dump_file)
fprintf (dump_file, " can not prove finiteness of "
"loop %i\n", loop->num);
l->looping =true;
break;
}
scev_finalize ();
}
loop_optimizer_finalize ();
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " checking previously known:");
better_state (&l->pure_const_state, &l->looping,
l->state_previously_known,
l->looping_previously_known);
if (TREE_NOTHROW (decl))
l->can_throw = false;
pop_cfun ();
if (dump_file)
{
if (l->looping)
fprintf (dump_file, "Function is locally looping.\n");
if (l->can_throw)
fprintf (dump_file, "Function is locally throwing.\n");
if (l->pure_const_state == IPA_CONST)
fprintf (dump_file, "Function is locally const.\n");
if (l->pure_const_state == IPA_PURE)
fprintf (dump_file, "Function is locally pure.\n");
}
return l;
}
/* Called when new function is inserted to callgraph late. */
static void
add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
{
if (cgraph_function_body_availability (node) < AVAIL_OVERWRITABLE)
return;
/* There are some shared nodes, in particular the initializers on
static declarations. We do not need to scan them more than once
since all we would be interested in are the addressof
operations. */
visited_nodes = pointer_set_create ();
if (cgraph_function_body_availability (node) > AVAIL_OVERWRITABLE)
set_function_state (node, analyze_function (node, true));
pointer_set_destroy (visited_nodes);
visited_nodes = NULL;
}
/* Called when new clone is inserted to callgraph late. */
static void
duplicate_node_data (struct cgraph_node *src, struct cgraph_node *dst,
void *data ATTRIBUTE_UNUSED)
{
if (has_function_state (src))
{
funct_state l = XNEW (struct funct_state_d);
gcc_assert (!has_function_state (dst));
memcpy (l, get_function_state (src), sizeof (*l));
set_function_state (dst, l);
}
}
/* Called when new clone is inserted to callgraph late. */
static void
remove_node_data (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
{
if (has_function_state (node))
{
funct_state l = get_function_state (node);
if (l != &varying_state)
free (l);
set_function_state (node, NULL);
}
}
static void
register_hooks (void)
{
static bool init_p = false;
if (init_p)
return;
init_p = true;
node_removal_hook_holder =
cgraph_add_node_removal_hook (&remove_node_data, NULL);
node_duplication_hook_holder =
cgraph_add_node_duplication_hook (&duplicate_node_data, NULL);
function_insertion_hook_holder =
cgraph_add_function_insertion_hook (&add_new_function, NULL);
}
/* Analyze each function in the cgraph to see if it is locally PURE or
CONST. */
static void
pure_const_generate_summary (void)
{
struct cgraph_node *node;
register_hooks ();
/* There are some shared nodes, in particular the initializers on
static declarations. We do not need to scan them more than once
since all we would be interested in are the addressof
operations. */
visited_nodes = pointer_set_create ();
/* Process all of the functions.
We process AVAIL_OVERWRITABLE functions. We can not use the results
by default, but the info can be used at LTO with -fwhole-program or
when function got cloned and the clone is AVAILABLE. */
FOR_EACH_DEFINED_FUNCTION (node)
if (cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
set_function_state (node, analyze_function (node, true));
pointer_set_destroy (visited_nodes);
visited_nodes = NULL;
}
/* Serialize the ipa info for lto. */
static void
pure_const_write_summary (void)
{
struct cgraph_node *node;
struct lto_simple_output_block *ob
= lto_create_simple_output_block (LTO_section_ipa_pure_const);
unsigned int count = 0;
lto_symtab_encoder_iterator lsei;
lto_symtab_encoder_t encoder;
encoder = lto_get_out_decl_state ()->symtab_node_encoder;
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
lsei_next_function_in_partition (&lsei))
{
node = lsei_cgraph_node (lsei);
if (node->definition && has_function_state (node))
count++;
}
streamer_write_uhwi_stream (ob->main_stream, count);
/* Process all of the functions. */
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
lsei_next_function_in_partition (&lsei))
{
node = lsei_cgraph_node (lsei);
if (node->definition && has_function_state (node))
{
struct bitpack_d bp;
funct_state fs;
int node_ref;
lto_symtab_encoder_t encoder;
fs = get_function_state (node);
encoder = ob->decl_state->symtab_node_encoder;
node_ref = lto_symtab_encoder_encode (encoder, node);
streamer_write_uhwi_stream (ob->main_stream, node_ref);
/* Note that flags will need to be read in the opposite
order as we are pushing the bitflags into FLAGS. */
bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, fs->pure_const_state, 2);
bp_pack_value (&bp, fs->state_previously_known, 2);
bp_pack_value (&bp, fs->looping_previously_known, 1);
bp_pack_value (&bp, fs->looping, 1);
bp_pack_value (&bp, fs->can_throw, 1);
streamer_write_bitpack (&bp);
}
}
lto_destroy_simple_output_block (ob);
}
/* Deserialize the ipa info for lto. */
static void
pure_const_read_summary (void)
{
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
struct lto_file_decl_data *file_data;
unsigned int j = 0;
register_hooks ();
while ((file_data = file_data_vec[j++]))
{
const char *data;
size_t len;
struct lto_input_block *ib
= lto_create_simple_input_block (file_data,
LTO_section_ipa_pure_const,
&data, &len);
if (ib)
{
unsigned int i;
unsigned int count = streamer_read_uhwi (ib);
for (i = 0; i < count; i++)
{
unsigned int index;
struct cgraph_node *node;
struct bitpack_d bp;
funct_state fs;
lto_symtab_encoder_t encoder;
fs = XCNEW (struct funct_state_d);
index = streamer_read_uhwi (ib);
encoder = file_data->symtab_node_encoder;
node = cgraph (lto_symtab_encoder_deref (encoder, index));
set_function_state (node, fs);
/* Note that the flags must be read in the opposite
order in which they were written (the bitflags were
pushed into FLAGS). */
bp = streamer_read_bitpack (ib);
fs->pure_const_state
= (enum pure_const_state_e) bp_unpack_value (&bp, 2);
fs->state_previously_known
= (enum pure_const_state_e) bp_unpack_value (&bp, 2);
fs->looping_previously_known = bp_unpack_value (&bp, 1);
fs->looping = bp_unpack_value (&bp, 1);
fs->can_throw = bp_unpack_value (&bp, 1);
if (dump_file)
{
int flags = flags_from_decl_or_type (node->decl);
fprintf (dump_file, "Read info for %s/%i ",
node->name (),
node->order);
if (flags & ECF_CONST)
fprintf (dump_file, " const");
if (flags & ECF_PURE)
fprintf (dump_file, " pure");
if (flags & ECF_NOTHROW)
fprintf (dump_file, " nothrow");
fprintf (dump_file, "\n pure const state: %s\n",
pure_const_names[fs->pure_const_state]);
fprintf (dump_file, " previously known state: %s\n",
pure_const_names[fs->looping_previously_known]);
if (fs->looping)
fprintf (dump_file," function is locally looping\n");
if (fs->looping_previously_known)
fprintf (dump_file," function is previously known looping\n");
if (fs->can_throw)
fprintf (dump_file," function is locally throwing\n");
}
}
lto_destroy_simple_input_block (file_data,
LTO_section_ipa_pure_const,
ib, data, len);
}
}
}
static bool
ignore_edge (struct cgraph_edge *e)
{
return (!e->can_throw_external);
}
/* Return true if NODE is self recursive function.
Indirectly recursive functions appears as non-trivial strongly
connected components, so we need to care about self recursion
only. */
static bool
self_recursive_p (struct cgraph_node *node)
{
struct cgraph_edge *e;
for (e = node->callees; e; e = e->next_callee)
if (cgraph_function_node (e->callee, NULL) == node)
return true;
return false;
}
/* Produce transitive closure over the callgraph and compute pure/const
attributes. */
static void
propagate_pure_const (void)
{
struct cgraph_node *node;
struct cgraph_node *w;
struct cgraph_node **order =
XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
int order_pos;
int i;
struct ipa_dfs_info * w_info;
order_pos = ipa_reduced_postorder (order, true, false, NULL);
if (dump_file)
{
dump_cgraph (dump_file);
ipa_print_order (dump_file, "reduced", order, order_pos);
}
/* Propagate the local information through the call graph to produce
the global information. All the nodes within a cycle will have
the same info so we collapse cycles first. Then we can do the
propagation in one pass from the leaves to the roots. */
for (i = 0; i < order_pos; i++ )
{
enum pure_const_state_e pure_const_state = IPA_CONST;
bool looping = false;
int count = 0;
node = order[i];
if (node->alias)
continue;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Starting cycle\n");
/* Find the worst state for any node in the cycle. */
w = node;
while (w && pure_const_state != IPA_NEITHER)
{
struct cgraph_edge *e;
struct cgraph_edge *ie;
int i;
struct ipa_ref *ref;
funct_state w_l = get_function_state (w);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Visiting %s/%i state:%s looping %i\n",
w->name (),
w->order,
pure_const_names[w_l->pure_const_state],
w_l->looping);
/* First merge in function body properties. */
worse_state (&pure_const_state, &looping,
w_l->pure_const_state, w_l->looping);
if (pure_const_state == IPA_NEITHER)
break;
/* For overwritable nodes we can not assume anything. */
if (cgraph_function_body_availability (w) == AVAIL_OVERWRITABLE)
{
worse_state (&pure_const_state, &looping,
w_l->state_previously_known,
w_l->looping_previously_known);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
" Overwritable. state %s looping %i\n",
pure_const_names[w_l->state_previously_known],
w_l->looping_previously_known);
}
break;
}
count++;
/* We consider recursive cycles as possibly infinite.
This might be relaxed since infinite recursion leads to stack
overflow. */
if (count > 1)
looping = true;
/* Now walk the edges and merge in callee properties. */
for (e = w->callees; e; e = e->next_callee)
{
enum availability avail;
struct cgraph_node *y = cgraph_function_node (e->callee, &avail);
enum pure_const_state_e edge_state = IPA_CONST;
bool edge_looping = false;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
" Call to %s/%i",
e->callee->name (),
e->callee->order);
}
if (avail > AVAIL_OVERWRITABLE)
{
funct_state y_l = get_function_state (y);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
" state:%s looping:%i\n",
pure_const_names[y_l->pure_const_state],
y_l->looping);
}
if (y_l->pure_const_state > IPA_PURE
&& cgraph_edge_cannot_lead_to_return (e))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Ignoring side effects"
" -> pure, looping\n");
edge_state = IPA_PURE;
edge_looping = true;
}
else
{
edge_state = y_l->pure_const_state;
edge_looping = y_l->looping;
}
}
else if (special_builtin_state (&edge_state, &edge_looping,
y->decl))
;
else
state_from_flags (&edge_state, &edge_looping,
flags_from_decl_or_type (y->decl),
cgraph_edge_cannot_lead_to_return (e));
/* Merge the results with what we already know. */
better_state (&edge_state, &edge_looping,
w_l->state_previously_known,
w_l->looping_previously_known);
worse_state (&pure_const_state, &looping,
edge_state, edge_looping);
if (pure_const_state == IPA_NEITHER)
break;
}
if (pure_const_state == IPA_NEITHER)
break;
/* Now process the indirect call. */
for (ie = w->indirect_calls; ie; ie = ie->next_callee)
{
enum pure_const_state_e edge_state = IPA_CONST;
bool edge_looping = false;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Indirect call");
state_from_flags (&edge_state, &edge_looping,
ie->indirect_info->ecf_flags,
cgraph_edge_cannot_lead_to_return (ie));
/* Merge the results with what we already know. */
better_state (&edge_state, &edge_looping,
w_l->state_previously_known,
w_l->looping_previously_known);
worse_state (&pure_const_state, &looping,
edge_state, edge_looping);
if (pure_const_state == IPA_NEITHER)
break;
}
if (pure_const_state == IPA_NEITHER)
break;
/* And finally all loads and stores. */
for (i = 0; ipa_ref_list_reference_iterate (&w->ref_list, i, ref); i++)
{
enum pure_const_state_e ref_state = IPA_CONST;
bool ref_looping = false;
switch (ref->use)
{
case IPA_REF_LOAD:
/* readonly reads are safe. */
if (TREE_READONLY (ipa_ref_varpool_node (ref)->decl))
break;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " nonreadonly global var read\n");
ref_state = IPA_PURE;
break;
case IPA_REF_STORE:
if (ipa_ref_cannot_lead_to_return (ref))
break;
ref_state = IPA_NEITHER;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " global var write\n");
break;
case IPA_REF_ADDR:
break;
}
better_state (&ref_state, &ref_looping,
w_l->state_previously_known,
w_l->looping_previously_known);
worse_state (&pure_const_state, &looping,
ref_state, ref_looping);
if (pure_const_state == IPA_NEITHER)
break;
}
w_info = (struct ipa_dfs_info *) w->aux;
w = w_info->next_cycle;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Result %s looping %i\n",
pure_const_names [pure_const_state],
looping);
/* Copy back the region's pure_const_state which is shared by
all nodes in the region. */
w = node;
while (w)
{
funct_state w_l = get_function_state (w);
enum pure_const_state_e this_state = pure_const_state;
bool this_looping = looping;
if (w_l->state_previously_known != IPA_NEITHER
&& this_state > w_l->state_previously_known)
{
this_state = w_l->state_previously_known;
this_looping |= w_l->looping_previously_known;
}
if (!this_looping && self_recursive_p (w))
this_looping = true;
if (!w_l->looping_previously_known)
this_looping = false;
/* All nodes within a cycle share the same info. */
w_l->pure_const_state = this_state;
w_l->looping = this_looping;
switch (this_state)
{
case IPA_CONST:
if (!TREE_READONLY (w->decl))
{
warn_function_const (w->decl, !this_looping);
if (dump_file)
fprintf (dump_file, "Function found to be %sconst: %s\n",
this_looping ? "looping " : "",
w->name ());
}
cgraph_set_const_flag (w, true, this_looping);
break;
case IPA_PURE:
if (!DECL_PURE_P (w->decl))
{
warn_function_pure (w->decl, !this_looping);
if (dump_file)
fprintf (dump_file, "Function found to be %spure: %s\n",
this_looping ? "looping " : "",
w->name ());
}
cgraph_set_pure_flag (w, true, this_looping);
break;
default:
break;
}
w_info = (struct ipa_dfs_info *) w->aux;
w = w_info->next_cycle;
}
}
ipa_free_postorder_info ();
free (order);
}
/* Produce transitive closure over the callgraph and compute nothrow
attributes. */
static void
propagate_nothrow (void)
{
struct cgraph_node *node;
struct cgraph_node *w;
struct cgraph_node **order =
XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
int order_pos;
int i;
struct ipa_dfs_info * w_info;
order_pos = ipa_reduced_postorder (order, true, false, ignore_edge);
if (dump_file)
{
dump_cgraph (dump_file);
ipa_print_order (dump_file, "reduced for nothrow", order, order_pos);
}
/* Propagate the local information through the call graph to produce
the global information. All the nodes within a cycle will have
the same info so we collapse cycles first. Then we can do the
propagation in one pass from the leaves to the roots. */
for (i = 0; i < order_pos; i++ )
{
bool can_throw = false;
node = order[i];
if (node->alias)
continue;
/* Find the worst state for any node in the cycle. */
w = node;
while (w)
{
struct cgraph_edge *e, *ie;
funct_state w_l = get_function_state (w);
if (w_l->can_throw
|| cgraph_function_body_availability (w) == AVAIL_OVERWRITABLE)
can_throw = true;
if (can_throw)
break;
for (e = w->callees; e; e = e->next_callee)
{
enum availability avail;
struct cgraph_node *y = cgraph_function_node (e->callee, &avail);
if (avail > AVAIL_OVERWRITABLE)
{
funct_state y_l = get_function_state (y);
if (can_throw)
break;
if (y_l->can_throw && !TREE_NOTHROW (w->decl)
&& e->can_throw_external)
can_throw = true;
}
else if (e->can_throw_external && !TREE_NOTHROW (y->decl))
can_throw = true;
}
for (ie = node->indirect_calls; ie; ie = ie->next_callee)
if (ie->can_throw_external)
{
can_throw = true;
break;
}
w_info = (struct ipa_dfs_info *) w->aux;
w = w_info->next_cycle;
}
/* Copy back the region's pure_const_state which is shared by
all nodes in the region. */
w = node;
while (w)
{
funct_state w_l = get_function_state (w);
if (!can_throw && !TREE_NOTHROW (w->decl))
{
cgraph_set_nothrow_flag (w, true);
if (dump_file)
fprintf (dump_file, "Function found to be nothrow: %s\n",
w->name ());
}
else if (can_throw && !TREE_NOTHROW (w->decl))
w_l->can_throw = true;
w_info = (struct ipa_dfs_info *) w->aux;
w = w_info->next_cycle;
}
}
ipa_free_postorder_info ();
free (order);
}
/* Produce the global information by preforming a transitive closure
on the local information that was produced by generate_summary. */
static unsigned int
propagate (void)
{
struct cgraph_node *node;
cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
cgraph_remove_node_removal_hook (node_removal_hook_holder);
/* Nothrow makes more function to not lead to return and improve
later analysis. */
propagate_nothrow ();
propagate_pure_const ();
/* Cleanup. */
FOR_EACH_FUNCTION (node)
if (has_function_state (node))
free (get_function_state (node));
funct_state_vec.release ();
return 0;
}
static bool
gate_pure_const (void)
{
return (flag_ipa_pure_const
/* Don't bother doing anything if the program has errors. */
&& !seen_error ());
}
namespace {
const pass_data pass_data_ipa_pure_const =
{
IPA_PASS, /* type */
"pure-const", /* name */
OPTGROUP_NONE, /* optinfo_flags */
true, /* has_gate */
true, /* has_execute */
TV_IPA_PURE_CONST, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_ipa_pure_const : public ipa_opt_pass_d
{
public:
pass_ipa_pure_const (gcc::context *ctxt)
: ipa_opt_pass_d (pass_data_ipa_pure_const, ctxt,
pure_const_generate_summary, /* generate_summary */
pure_const_write_summary, /* write_summary */
pure_const_read_summary, /* read_summary */
NULL, /* write_optimization_summary */
NULL, /* read_optimization_summary */
NULL, /* stmt_fixup */
0, /* function_transform_todo_flags_start */
NULL, /* function_transform */
NULL) /* variable_transform */
{}
/* opt_pass methods: */
bool gate () { return gate_pure_const (); }
unsigned int execute () { return propagate (); }
}; // class pass_ipa_pure_const
} // anon namespace
ipa_opt_pass_d *
make_pass_ipa_pure_const (gcc::context *ctxt)
{
return new pass_ipa_pure_const (ctxt);
}
/* Return true if function should be skipped for local pure const analysis. */
static bool
skip_function_for_local_pure_const (struct cgraph_node *node)
{
/* Because we do not schedule pass_fixup_cfg over whole program after early optimizations
we must not promote functions that are called by already processed functions. */
if (function_called_by_processed_nodes_p ())
{
if (dump_file)
fprintf (dump_file, "Function called in recursive cycle; ignoring\n");
return true;
}
if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
{
if (dump_file)
fprintf (dump_file, "Function is not available or overwritable; not analyzing.\n");
return true;
}
return false;
}
/* Simple local pass for pure const discovery reusing the analysis from
ipa_pure_const. This pass is effective when executed together with
other optimization passes in early optimization pass queue. */
static unsigned int
local_pure_const (void)
{
bool changed = false;
funct_state l;
bool skip;
struct cgraph_node *node;
node = cgraph_get_node (current_function_decl);
skip = skip_function_for_local_pure_const (node);
if (!warn_suggest_attribute_const
&& !warn_suggest_attribute_pure
&& skip)
return 0;
l = analyze_function (node, false);
/* Do NORETURN discovery. */
if (!skip && !TREE_THIS_VOLATILE (current_function_decl)
&& EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 0)
{
warn_function_noreturn (cfun->decl);
if (dump_file)
fprintf (dump_file, "Function found to be noreturn: %s\n",
current_function_name ());
/* Update declaration and reduce profile to executed once. */
TREE_THIS_VOLATILE (current_function_decl) = 1;
if (node->frequency > NODE_FREQUENCY_EXECUTED_ONCE)
node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
changed = true;
}
switch (l->pure_const_state)
{
case IPA_CONST:
if (!TREE_READONLY (current_function_decl))
{
warn_function_const (current_function_decl, !l->looping);
if (!skip)
{
cgraph_set_const_flag (node, true, l->looping);
changed = true;
}
if (dump_file)
fprintf (dump_file, "Function found to be %sconst: %s\n",
l->looping ? "looping " : "",
current_function_name ());
}
else if (DECL_LOOPING_CONST_OR_PURE_P (current_function_decl)
&& !l->looping)
{
if (!skip)
{
cgraph_set_const_flag (node, true, false);
changed = true;
}
if (dump_file)
fprintf (dump_file, "Function found to be non-looping: %s\n",
current_function_name ());
}
break;
case IPA_PURE:
if (!DECL_PURE_P (current_function_decl))
{
if (!skip)
{
cgraph_set_pure_flag (node, true, l->looping);
changed = true;
}
warn_function_pure (current_function_decl, !l->looping);
if (dump_file)
fprintf (dump_file, "Function found to be %spure: %s\n",
l->looping ? "looping " : "",
current_function_name ());
}
else if (DECL_LOOPING_CONST_OR_PURE_P (current_function_decl)
&& !l->looping)
{
if (!skip)
{
cgraph_set_pure_flag (node, true, false);
changed = true;
}
if (dump_file)
fprintf (dump_file, "Function found to be non-looping: %s\n",
current_function_name ());
}
break;
default:
break;
}
if (!l->can_throw && !TREE_NOTHROW (current_function_decl))
{
cgraph_set_nothrow_flag (node, true);
changed = true;
if (dump_file)
fprintf (dump_file, "Function found to be nothrow: %s\n",
current_function_name ());
}
free (l);
if (changed)
return execute_fixup_cfg ();
else
return 0;
}
namespace {
const pass_data pass_data_local_pure_const =
{
GIMPLE_PASS, /* type */
"local-pure-const", /* name */
OPTGROUP_NONE, /* optinfo_flags */
true, /* has_gate */
true, /* has_execute */
TV_IPA_PURE_CONST, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_local_pure_const : public gimple_opt_pass
{
public:
pass_local_pure_const (gcc::context *ctxt)
: gimple_opt_pass (pass_data_local_pure_const, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_local_pure_const (m_ctxt); }
bool gate () { return gate_pure_const (); }
unsigned int execute () { return local_pure_const (); }
}; // class pass_local_pure_const
} // anon namespace
gimple_opt_pass *
make_pass_local_pure_const (gcc::context *ctxt)
{
return new pass_local_pure_const (ctxt);
}
/* Emit noreturn warnings. */
static unsigned int
execute_warn_function_noreturn (void)
{
if (!TREE_THIS_VOLATILE (current_function_decl)
&& EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 0)
warn_function_noreturn (current_function_decl);
return 0;
}
static bool
gate_warn_function_noreturn (void)
{
return warn_suggest_attribute_noreturn;
}
namespace {
const pass_data pass_data_warn_function_noreturn =
{
GIMPLE_PASS, /* type */
"*warn_function_noreturn", /* name */
OPTGROUP_NONE, /* optinfo_flags */
true, /* has_gate */
true, /* has_execute */
TV_NONE, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_warn_function_noreturn : public gimple_opt_pass
{
public:
pass_warn_function_noreturn (gcc::context *ctxt)
: gimple_opt_pass (pass_data_warn_function_noreturn, ctxt)
{}
/* opt_pass methods: */
bool gate () { return gate_warn_function_noreturn (); }
unsigned int execute () { return execute_warn_function_noreturn (); }
}; // class pass_warn_function_noreturn
} // anon namespace
gimple_opt_pass *
make_pass_warn_function_noreturn (gcc::context *ctxt)
{
return new pass_warn_function_noreturn (ctxt);
}