2fd401c8f1
From-SVN: r181964
494 lines
13 KiB
Go
494 lines
13 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package rsa implements RSA encryption as specified in PKCS#1.
|
|
package rsa
|
|
|
|
// TODO(agl): Add support for PSS padding.
|
|
|
|
import (
|
|
"big"
|
|
"crypto/rand"
|
|
"crypto/subtle"
|
|
"errors"
|
|
"hash"
|
|
"io"
|
|
)
|
|
|
|
var bigZero = big.NewInt(0)
|
|
var bigOne = big.NewInt(1)
|
|
|
|
// A PublicKey represents the public part of an RSA key.
|
|
type PublicKey struct {
|
|
N *big.Int // modulus
|
|
E int // public exponent
|
|
}
|
|
|
|
// A PrivateKey represents an RSA key
|
|
type PrivateKey struct {
|
|
PublicKey // public part.
|
|
D *big.Int // private exponent
|
|
Primes []*big.Int // prime factors of N, has >= 2 elements.
|
|
|
|
// Precomputed contains precomputed values that speed up private
|
|
// operations, if available.
|
|
Precomputed PrecomputedValues
|
|
}
|
|
|
|
type PrecomputedValues struct {
|
|
Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
|
|
Qinv *big.Int // Q^-1 mod Q
|
|
|
|
// CRTValues is used for the 3rd and subsequent primes. Due to a
|
|
// historical accident, the CRT for the first two primes is handled
|
|
// differently in PKCS#1 and interoperability is sufficiently
|
|
// important that we mirror this.
|
|
CRTValues []CRTValue
|
|
}
|
|
|
|
// CRTValue contains the precomputed chinese remainder theorem values.
|
|
type CRTValue struct {
|
|
Exp *big.Int // D mod (prime-1).
|
|
Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
|
|
R *big.Int // product of primes prior to this (inc p and q).
|
|
}
|
|
|
|
// Validate performs basic sanity checks on the key.
|
|
// It returns nil if the key is valid, or else an error describing a problem.
|
|
func (priv *PrivateKey) Validate() error {
|
|
// Check that the prime factors are actually prime. Note that this is
|
|
// just a sanity check. Since the random witnesses chosen by
|
|
// ProbablyPrime are deterministic, given the candidate number, it's
|
|
// easy for an attack to generate composites that pass this test.
|
|
for _, prime := range priv.Primes {
|
|
if !big.ProbablyPrime(prime, 20) {
|
|
return errors.New("prime factor is composite")
|
|
}
|
|
}
|
|
|
|
// Check that Πprimes == n.
|
|
modulus := new(big.Int).Set(bigOne)
|
|
for _, prime := range priv.Primes {
|
|
modulus.Mul(modulus, prime)
|
|
}
|
|
if modulus.Cmp(priv.N) != 0 {
|
|
return errors.New("invalid modulus")
|
|
}
|
|
// Check that e and totient(Πprimes) are coprime.
|
|
totient := new(big.Int).Set(bigOne)
|
|
for _, prime := range priv.Primes {
|
|
pminus1 := new(big.Int).Sub(prime, bigOne)
|
|
totient.Mul(totient, pminus1)
|
|
}
|
|
e := big.NewInt(int64(priv.E))
|
|
gcd := new(big.Int)
|
|
x := new(big.Int)
|
|
y := new(big.Int)
|
|
big.GcdInt(gcd, x, y, totient, e)
|
|
if gcd.Cmp(bigOne) != 0 {
|
|
return errors.New("invalid public exponent E")
|
|
}
|
|
// Check that de ≡ 1 (mod totient(Πprimes))
|
|
de := new(big.Int).Mul(priv.D, e)
|
|
de.Mod(de, totient)
|
|
if de.Cmp(bigOne) != 0 {
|
|
return errors.New("invalid private exponent D")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// GenerateKey generates an RSA keypair of the given bit size.
|
|
func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
|
|
return GenerateMultiPrimeKey(random, 2, bits)
|
|
}
|
|
|
|
// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
|
|
// size, as suggested in [1]. Although the public keys are compatible
|
|
// (actually, indistinguishable) from the 2-prime case, the private keys are
|
|
// not. Thus it may not be possible to export multi-prime private keys in
|
|
// certain formats or to subsequently import them into other code.
|
|
//
|
|
// Table 1 in [2] suggests maximum numbers of primes for a given size.
|
|
//
|
|
// [1] US patent 4405829 (1972, expired)
|
|
// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
|
|
func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
|
|
priv = new(PrivateKey)
|
|
priv.E = 65537
|
|
|
|
if nprimes < 2 {
|
|
return nil, errors.New("rsa.GenerateMultiPrimeKey: nprimes must be >= 2")
|
|
}
|
|
|
|
primes := make([]*big.Int, nprimes)
|
|
|
|
NextSetOfPrimes:
|
|
for {
|
|
todo := bits
|
|
for i := 0; i < nprimes; i++ {
|
|
primes[i], err = rand.Prime(random, todo/(nprimes-i))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
todo -= primes[i].BitLen()
|
|
}
|
|
|
|
// Make sure that primes is pairwise unequal.
|
|
for i, prime := range primes {
|
|
for j := 0; j < i; j++ {
|
|
if prime.Cmp(primes[j]) == 0 {
|
|
continue NextSetOfPrimes
|
|
}
|
|
}
|
|
}
|
|
|
|
n := new(big.Int).Set(bigOne)
|
|
totient := new(big.Int).Set(bigOne)
|
|
pminus1 := new(big.Int)
|
|
for _, prime := range primes {
|
|
n.Mul(n, prime)
|
|
pminus1.Sub(prime, bigOne)
|
|
totient.Mul(totient, pminus1)
|
|
}
|
|
|
|
g := new(big.Int)
|
|
priv.D = new(big.Int)
|
|
y := new(big.Int)
|
|
e := big.NewInt(int64(priv.E))
|
|
big.GcdInt(g, priv.D, y, e, totient)
|
|
|
|
if g.Cmp(bigOne) == 0 {
|
|
priv.D.Add(priv.D, totient)
|
|
priv.Primes = primes
|
|
priv.N = n
|
|
|
|
break
|
|
}
|
|
}
|
|
|
|
priv.Precompute()
|
|
return
|
|
}
|
|
|
|
// incCounter increments a four byte, big-endian counter.
|
|
func incCounter(c *[4]byte) {
|
|
if c[3]++; c[3] != 0 {
|
|
return
|
|
}
|
|
if c[2]++; c[2] != 0 {
|
|
return
|
|
}
|
|
if c[1]++; c[1] != 0 {
|
|
return
|
|
}
|
|
c[0]++
|
|
}
|
|
|
|
// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
|
|
// specified in PKCS#1 v2.1.
|
|
func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
|
|
var counter [4]byte
|
|
|
|
done := 0
|
|
for done < len(out) {
|
|
hash.Write(seed)
|
|
hash.Write(counter[0:4])
|
|
digest := hash.Sum()
|
|
hash.Reset()
|
|
|
|
for i := 0; i < len(digest) && done < len(out); i++ {
|
|
out[done] ^= digest[i]
|
|
done++
|
|
}
|
|
incCounter(&counter)
|
|
}
|
|
}
|
|
|
|
// MessageTooLongError is returned when attempting to encrypt a message which
|
|
// is too large for the size of the public key.
|
|
type MessageTooLongError struct{}
|
|
|
|
func (MessageTooLongError) Error() string {
|
|
return "message too long for RSA public key size"
|
|
}
|
|
|
|
func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
|
|
e := big.NewInt(int64(pub.E))
|
|
c.Exp(m, e, pub.N)
|
|
return c
|
|
}
|
|
|
|
// EncryptOAEP encrypts the given message with RSA-OAEP.
|
|
// The message must be no longer than the length of the public modulus less
|
|
// twice the hash length plus 2.
|
|
func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
|
|
hash.Reset()
|
|
k := (pub.N.BitLen() + 7) / 8
|
|
if len(msg) > k-2*hash.Size()-2 {
|
|
err = MessageTooLongError{}
|
|
return
|
|
}
|
|
|
|
hash.Write(label)
|
|
lHash := hash.Sum()
|
|
hash.Reset()
|
|
|
|
em := make([]byte, k)
|
|
seed := em[1 : 1+hash.Size()]
|
|
db := em[1+hash.Size():]
|
|
|
|
copy(db[0:hash.Size()], lHash)
|
|
db[len(db)-len(msg)-1] = 1
|
|
copy(db[len(db)-len(msg):], msg)
|
|
|
|
_, err = io.ReadFull(random, seed)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
mgf1XOR(db, hash, seed)
|
|
mgf1XOR(seed, hash, db)
|
|
|
|
m := new(big.Int)
|
|
m.SetBytes(em)
|
|
c := encrypt(new(big.Int), pub, m)
|
|
out = c.Bytes()
|
|
|
|
if len(out) < k {
|
|
// If the output is too small, we need to left-pad with zeros.
|
|
t := make([]byte, k)
|
|
copy(t[k-len(out):], out)
|
|
out = t
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// A DecryptionError represents a failure to decrypt a message.
|
|
// It is deliberately vague to avoid adaptive attacks.
|
|
type DecryptionError struct{}
|
|
|
|
func (DecryptionError) Error() string { return "RSA decryption error" }
|
|
|
|
// A VerificationError represents a failure to verify a signature.
|
|
// It is deliberately vague to avoid adaptive attacks.
|
|
type VerificationError struct{}
|
|
|
|
func (VerificationError) Error() string { return "RSA verification error" }
|
|
|
|
// modInverse returns ia, the inverse of a in the multiplicative group of prime
|
|
// order n. It requires that a be a member of the group (i.e. less than n).
|
|
func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
|
|
g := new(big.Int)
|
|
x := new(big.Int)
|
|
y := new(big.Int)
|
|
big.GcdInt(g, x, y, a, n)
|
|
if g.Cmp(bigOne) != 0 {
|
|
// In this case, a and n aren't coprime and we cannot calculate
|
|
// the inverse. This happens because the values of n are nearly
|
|
// prime (being the product of two primes) rather than truly
|
|
// prime.
|
|
return
|
|
}
|
|
|
|
if x.Cmp(bigOne) < 0 {
|
|
// 0 is not the multiplicative inverse of any element so, if x
|
|
// < 1, then x is negative.
|
|
x.Add(x, n)
|
|
}
|
|
|
|
return x, true
|
|
}
|
|
|
|
// Precompute performs some calculations that speed up private key operations
|
|
// in the future.
|
|
func (priv *PrivateKey) Precompute() {
|
|
if priv.Precomputed.Dp != nil {
|
|
return
|
|
}
|
|
|
|
priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
|
|
priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
|
|
|
|
priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
|
|
priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
|
|
|
|
priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
|
|
|
|
r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
|
|
priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
|
|
for i := 2; i < len(priv.Primes); i++ {
|
|
prime := priv.Primes[i]
|
|
values := &priv.Precomputed.CRTValues[i-2]
|
|
|
|
values.Exp = new(big.Int).Sub(prime, bigOne)
|
|
values.Exp.Mod(priv.D, values.Exp)
|
|
|
|
values.R = new(big.Int).Set(r)
|
|
values.Coeff = new(big.Int).ModInverse(r, prime)
|
|
|
|
r.Mul(r, prime)
|
|
}
|
|
}
|
|
|
|
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
|
|
// random source is given, RSA blinding is used.
|
|
func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
|
|
// TODO(agl): can we get away with reusing blinds?
|
|
if c.Cmp(priv.N) > 0 {
|
|
err = DecryptionError{}
|
|
return
|
|
}
|
|
|
|
var ir *big.Int
|
|
if random != nil {
|
|
// Blinding enabled. Blinding involves multiplying c by r^e.
|
|
// Then the decryption operation performs (m^e * r^e)^d mod n
|
|
// which equals mr mod n. The factor of r can then be removed
|
|
// by multiplying by the multiplicative inverse of r.
|
|
|
|
var r *big.Int
|
|
|
|
for {
|
|
r, err = rand.Int(random, priv.N)
|
|
if err != nil {
|
|
return
|
|
}
|
|
if r.Cmp(bigZero) == 0 {
|
|
r = bigOne
|
|
}
|
|
var ok bool
|
|
ir, ok = modInverse(r, priv.N)
|
|
if ok {
|
|
break
|
|
}
|
|
}
|
|
bigE := big.NewInt(int64(priv.E))
|
|
rpowe := new(big.Int).Exp(r, bigE, priv.N)
|
|
cCopy := new(big.Int).Set(c)
|
|
cCopy.Mul(cCopy, rpowe)
|
|
cCopy.Mod(cCopy, priv.N)
|
|
c = cCopy
|
|
}
|
|
|
|
if priv.Precomputed.Dp == nil {
|
|
m = new(big.Int).Exp(c, priv.D, priv.N)
|
|
} else {
|
|
// We have the precalculated values needed for the CRT.
|
|
m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
|
|
m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
|
|
m.Sub(m, m2)
|
|
if m.Sign() < 0 {
|
|
m.Add(m, priv.Primes[0])
|
|
}
|
|
m.Mul(m, priv.Precomputed.Qinv)
|
|
m.Mod(m, priv.Primes[0])
|
|
m.Mul(m, priv.Primes[1])
|
|
m.Add(m, m2)
|
|
|
|
for i, values := range priv.Precomputed.CRTValues {
|
|
prime := priv.Primes[2+i]
|
|
m2.Exp(c, values.Exp, prime)
|
|
m2.Sub(m2, m)
|
|
m2.Mul(m2, values.Coeff)
|
|
m2.Mod(m2, prime)
|
|
if m2.Sign() < 0 {
|
|
m2.Add(m2, prime)
|
|
}
|
|
m2.Mul(m2, values.R)
|
|
m.Add(m, m2)
|
|
}
|
|
}
|
|
|
|
if ir != nil {
|
|
// Unblind.
|
|
m.Mul(m, ir)
|
|
m.Mod(m, priv.N)
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// DecryptOAEP decrypts ciphertext using RSA-OAEP.
|
|
// If rand != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
|
|
func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
|
|
k := (priv.N.BitLen() + 7) / 8
|
|
if len(ciphertext) > k ||
|
|
k < hash.Size()*2+2 {
|
|
err = DecryptionError{}
|
|
return
|
|
}
|
|
|
|
c := new(big.Int).SetBytes(ciphertext)
|
|
|
|
m, err := decrypt(random, priv, c)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
hash.Write(label)
|
|
lHash := hash.Sum()
|
|
hash.Reset()
|
|
|
|
// Converting the plaintext number to bytes will strip any
|
|
// leading zeros so we may have to left pad. We do this unconditionally
|
|
// to avoid leaking timing information. (Although we still probably
|
|
// leak the number of leading zeros. It's not clear that we can do
|
|
// anything about this.)
|
|
em := leftPad(m.Bytes(), k)
|
|
|
|
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
|
|
|
|
seed := em[1 : hash.Size()+1]
|
|
db := em[hash.Size()+1:]
|
|
|
|
mgf1XOR(seed, hash, db)
|
|
mgf1XOR(db, hash, seed)
|
|
|
|
lHash2 := db[0:hash.Size()]
|
|
|
|
// We have to validate the plaintext in constant time in order to avoid
|
|
// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
|
|
// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
|
|
// v2.0. In J. Kilian, editor, Advances in Cryptology.
|
|
lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
|
|
|
|
// The remainder of the plaintext must be zero or more 0x00, followed
|
|
// by 0x01, followed by the message.
|
|
// lookingForIndex: 1 iff we are still looking for the 0x01
|
|
// index: the offset of the first 0x01 byte
|
|
// invalid: 1 iff we saw a non-zero byte before the 0x01.
|
|
var lookingForIndex, index, invalid int
|
|
lookingForIndex = 1
|
|
rest := db[hash.Size():]
|
|
|
|
for i := 0; i < len(rest); i++ {
|
|
equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
|
|
equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
|
|
index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
|
|
lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
|
|
invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
|
|
}
|
|
|
|
if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
|
|
err = DecryptionError{}
|
|
return
|
|
}
|
|
|
|
msg = rest[index+1:]
|
|
return
|
|
}
|
|
|
|
// leftPad returns a new slice of length size. The contents of input are right
|
|
// aligned in the new slice.
|
|
func leftPad(input []byte, size int) (out []byte) {
|
|
n := len(input)
|
|
if n > size {
|
|
n = size
|
|
}
|
|
out = make([]byte, size)
|
|
copy(out[len(out)-n:], input)
|
|
return
|
|
}
|