3d7c150e3f
2003-07-04 Benjamin Kosnik <bkoz@redhat.com> Move from CPP to CXX. * include/bits/c++config: Move to GLIBCXX from GLIBCPP. * testsuite/Makefile.am: Same. * testsuite/Makefile.in: Regenerate. * po/Makefile.am: Same. * po/Makefile.in: Regenerate. * libsupc++/Makefile.am: Same. * libsupc++/Makefile.in: Regenerate. * libmath/Makefile.am: Same. * libmath/Makefile.in: Regenerate. * include/Makefile.am: Same. * include/Makefile.in: Regenerate. * src/Makefile.am: Same. * src/Makefile.in: Regenerate. * acconfig.h: Same. * configure.host: Same. * configure.in: Same. * configure: Regenerate. * acinclude.m4: Same. * aclocal.m4: Same. * src: Change all files in this directory. * testsuite: Same. * include: Same, standardize include guards. * config: Same. * libsupc++: Same. From-SVN: r68958
1112 lines
35 KiB
C++
1112 lines
35 KiB
C++
// List implementation -*- C++ -*-
|
|
|
|
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 1994
|
|
* Hewlett-Packard Company
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Hewlett-Packard Company makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*
|
|
*
|
|
* Copyright (c) 1996,1997
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
/** @file stl_list.h
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
#ifndef _LIST_H
|
|
#define _LIST_H 1
|
|
|
|
#include <bits/concept_check.h>
|
|
|
|
namespace std
|
|
{
|
|
// Supporting structures are split into common and templated types; the
|
|
// latter publicly inherits from the former in an effort to reduce code
|
|
// duplication. This results in some "needless" static_cast'ing later on,
|
|
// but it's all safe downcasting.
|
|
|
|
/// @if maint Common part of a node in the %list. @endif
|
|
struct _List_node_base
|
|
{
|
|
_List_node_base* _M_next; ///< Self-explanatory
|
|
_List_node_base* _M_prev; ///< Self-explanatory
|
|
};
|
|
|
|
/// @if maint An actual node in the %list. @endif
|
|
template<typename _Tp>
|
|
struct _List_node : public _List_node_base
|
|
{
|
|
_Tp _M_data; ///< User's data.
|
|
};
|
|
|
|
|
|
/**
|
|
* @if maint
|
|
* @brief Common part of a list::iterator.
|
|
*
|
|
* A simple type to walk a doubly-linked list. All operations here should
|
|
* be self-explanatory after taking any decent introductory data structures
|
|
* course.
|
|
* @endif
|
|
*/
|
|
struct _List_iterator_base
|
|
{
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef bidirectional_iterator_tag iterator_category;
|
|
|
|
/// The only member points to the %list element.
|
|
_List_node_base* _M_node;
|
|
|
|
_List_iterator_base(_List_node_base* __x)
|
|
: _M_node(__x)
|
|
{ }
|
|
|
|
_List_iterator_base()
|
|
{ }
|
|
|
|
/// Walk the %list forward.
|
|
void
|
|
_M_incr()
|
|
{ _M_node = _M_node->_M_next; }
|
|
|
|
/// Walk the %list backward.
|
|
void
|
|
_M_decr()
|
|
{ _M_node = _M_node->_M_prev; }
|
|
|
|
bool
|
|
operator==(const _List_iterator_base& __x) const
|
|
{ return _M_node == __x._M_node; }
|
|
|
|
bool
|
|
operator!=(const _List_iterator_base& __x) const
|
|
{ return _M_node != __x._M_node; }
|
|
};
|
|
|
|
/**
|
|
* @brief A list::iterator.
|
|
*
|
|
* In addition to being used externally, a list holds one of these
|
|
* internally, pointing to the sequence of data.
|
|
*
|
|
* @if maint
|
|
* All the functions are op overloads.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp, typename _Ref, typename _Ptr>
|
|
struct _List_iterator : public _List_iterator_base
|
|
{
|
|
typedef _List_iterator<_Tp,_Tp&,_Tp*> iterator;
|
|
typedef _List_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
|
|
typedef _List_iterator<_Tp,_Ref,_Ptr> _Self;
|
|
|
|
typedef _Tp value_type;
|
|
typedef _Ptr pointer;
|
|
typedef _Ref reference;
|
|
typedef _List_node<_Tp> _Node;
|
|
|
|
_List_iterator(_Node* __x)
|
|
: _List_iterator_base(__x)
|
|
{ }
|
|
|
|
_List_iterator()
|
|
{ }
|
|
|
|
_List_iterator(const iterator& __x)
|
|
: _List_iterator_base(__x._M_node)
|
|
{ }
|
|
|
|
reference
|
|
operator*() const
|
|
{ return static_cast<_Node*>(_M_node)->_M_data; }
|
|
// Must downcast from List_node_base to _List_node to get to _M_data.
|
|
|
|
pointer
|
|
operator->() const
|
|
{ return &(operator*()); }
|
|
|
|
_Self&
|
|
operator++()
|
|
{
|
|
this->_M_incr();
|
|
return *this;
|
|
}
|
|
|
|
_Self
|
|
operator++(int)
|
|
{
|
|
_Self __tmp = *this;
|
|
this->_M_incr();
|
|
return __tmp;
|
|
}
|
|
|
|
_Self&
|
|
operator--()
|
|
{
|
|
this->_M_decr();
|
|
return *this;
|
|
}
|
|
|
|
_Self
|
|
operator--(int)
|
|
{
|
|
_Self __tmp = *this;
|
|
this->_M_decr();
|
|
return __tmp;
|
|
}
|
|
};
|
|
|
|
|
|
/// @if maint Primary default version. @endif
|
|
/**
|
|
* @if maint
|
|
* See bits/stl_deque.h's _Deque_alloc_base for an explanation.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp, typename _Allocator, bool _IsStatic>
|
|
class _List_alloc_base
|
|
{
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
|
|
allocator_type;
|
|
|
|
allocator_type
|
|
get_allocator() const { return _M_node_allocator; }
|
|
|
|
_List_alloc_base(const allocator_type& __a)
|
|
: _M_node_allocator(__a)
|
|
{ }
|
|
|
|
protected:
|
|
_List_node<_Tp>*
|
|
_M_get_node()
|
|
{ return _M_node_allocator.allocate(1); }
|
|
|
|
void
|
|
_M_put_node(_List_node<_Tp>* __p)
|
|
{ _M_node_allocator.deallocate(__p, 1); }
|
|
|
|
// NOTA BENE
|
|
// The stored instance is not actually of "allocator_type"'s type. Instead
|
|
// we rebind the type to Allocator<List_node<Tp>>, which according to
|
|
// [20.1.5]/4 should probably be the same. List_node<Tp> is not the same
|
|
// size as Tp (it's two pointers larger), and specializations on Tp may go
|
|
// unused because List_node<Tp> is being bound instead.
|
|
//
|
|
// We put this to the test in get_allocator above; if the two types are
|
|
// actually different, there had better be a conversion between them.
|
|
//
|
|
// None of the predefined allocators shipped with the library (as of 3.1)
|
|
// use this instantiation anyhow; they're all instanceless.
|
|
typename _Alloc_traits<_List_node<_Tp>, _Allocator>::allocator_type
|
|
_M_node_allocator;
|
|
|
|
_List_node<_Tp>* _M_node;
|
|
};
|
|
|
|
/// @if maint Specialization for instanceless allocators. @endif
|
|
template<typename _Tp, typename _Allocator>
|
|
class _List_alloc_base<_Tp, _Allocator, true>
|
|
{
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
|
|
allocator_type;
|
|
|
|
allocator_type
|
|
get_allocator() const { return allocator_type(); }
|
|
|
|
_List_alloc_base(const allocator_type&)
|
|
{ }
|
|
|
|
protected:
|
|
// See comment in primary template class about why this is safe for the
|
|
// standard predefined classes.
|
|
typedef typename _Alloc_traits<_List_node<_Tp>, _Allocator>::_Alloc_type
|
|
_Alloc_type;
|
|
|
|
_List_node<_Tp>*
|
|
_M_get_node()
|
|
{ return _Alloc_type::allocate(1); }
|
|
|
|
void
|
|
_M_put_node(_List_node<_Tp>* __p)
|
|
{ _Alloc_type::deallocate(__p, 1); }
|
|
|
|
_List_node<_Tp>* _M_node;
|
|
};
|
|
|
|
|
|
/**
|
|
* @if maint
|
|
* See bits/stl_deque.h's _Deque_base for an explanation.
|
|
* @endif
|
|
*/
|
|
template <typename _Tp, typename _Alloc>
|
|
class _List_base
|
|
: public _List_alloc_base<_Tp, _Alloc,
|
|
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
|
|
{
|
|
public:
|
|
typedef _List_alloc_base<_Tp, _Alloc,
|
|
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
|
|
_Base;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
|
|
_List_base(const allocator_type& __a)
|
|
: _Base(__a)
|
|
{
|
|
this->_M_node = _M_get_node();
|
|
this->_M_node->_M_next = this->_M_node;
|
|
this->_M_node->_M_prev = this->_M_node;
|
|
}
|
|
|
|
// This is what actually destroys the list.
|
|
~_List_base()
|
|
{
|
|
__clear();
|
|
_M_put_node(this->_M_node);
|
|
}
|
|
|
|
void
|
|
__clear();
|
|
};
|
|
|
|
|
|
/**
|
|
* @brief A standard container with linear time access to elements, and
|
|
* fixed time insertion/deletion at any point in the sequence.
|
|
*
|
|
* @ingroup Containers
|
|
* @ingroup Sequences
|
|
*
|
|
* Meets the requirements of a <a href="tables.html#65">container</a>, a
|
|
* <a href="tables.html#66">reversible container</a>, and a
|
|
* <a href="tables.html#67">sequence</a>, including the
|
|
* <a href="tables.html#68">optional sequence requirements</a> with the
|
|
* %exception of @c at and @c operator[].
|
|
*
|
|
* This is a @e doubly @e linked %list. Traversal up and down the %list
|
|
* requires linear time, but adding and removing elements (or @e nodes) is
|
|
* done in constant time, regardless of where the change takes place.
|
|
* Unlike std::vector and std::deque, random-access iterators are not
|
|
* provided, so subscripting ( @c [] ) access is not allowed. For algorithms
|
|
* which only need sequential access, this lack makes no difference.
|
|
*
|
|
* Also unlike the other standard containers, std::list provides specialized
|
|
* algorithms %unique to linked lists, such as splicing, sorting, and
|
|
* in-place reversal.
|
|
*
|
|
* @if maint
|
|
* A couple points on memory allocation for list<Tp>:
|
|
*
|
|
* First, we never actually allocate a Tp, we allocate List_node<Tp>'s
|
|
* and trust [20.1.5]/4 to DTRT. This is to ensure that after elements from
|
|
* %list<X,Alloc1> are spliced into %list<X,Alloc2>, destroying the memory of
|
|
* the second %list is a valid operation, i.e., Alloc1 giveth and Alloc2
|
|
* taketh away.
|
|
*
|
|
* Second, a %list conceptually represented as
|
|
* @code
|
|
* A <---> B <---> C <---> D
|
|
* @endcode
|
|
* is actually circular; a link exists between A and D. The %list class
|
|
* holds (as its only data member) a private list::iterator pointing to
|
|
* @e D, not to @e A! To get to the head of the %list, we start at the tail
|
|
* and move forward by one. When this member iterator's next/previous
|
|
* pointers refer to itself, the %list is %empty.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp, typename _Alloc = allocator<_Tp> >
|
|
class list : protected _List_base<_Tp, _Alloc>
|
|
{
|
|
// concept requirements
|
|
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
|
|
|
|
typedef _List_base<_Tp, _Alloc> _Base;
|
|
|
|
public:
|
|
typedef _Tp value_type;
|
|
typedef value_type* pointer;
|
|
typedef const value_type* const_pointer;
|
|
typedef _List_iterator<_Tp,_Tp&,_Tp*> iterator;
|
|
typedef _List_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
|
|
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
|
typedef std::reverse_iterator<iterator> reverse_iterator;
|
|
typedef value_type& reference;
|
|
typedef const value_type& const_reference;
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
|
|
protected:
|
|
// Note that pointers-to-_Node's can be ctor-converted to iterator types.
|
|
typedef _List_node<_Tp> _Node;
|
|
|
|
/** @if maint
|
|
* One data member plus two memory-handling functions. If the _Alloc
|
|
* type requires separate instances, then one of those will also be
|
|
* included, accumulated from the topmost parent.
|
|
* @endif
|
|
*/
|
|
using _Base::_M_node;
|
|
using _Base::_M_put_node;
|
|
using _Base::_M_get_node;
|
|
|
|
/**
|
|
* @if maint
|
|
* @param x An instance of user data.
|
|
*
|
|
* Allocates space for a new node and constructs a copy of @a x in it.
|
|
* @endif
|
|
*/
|
|
_Node*
|
|
_M_create_node(const value_type& __x)
|
|
{
|
|
_Node* __p = _M_get_node();
|
|
try {
|
|
std::_Construct(&__p->_M_data, __x);
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_put_node(__p);
|
|
__throw_exception_again;
|
|
}
|
|
return __p;
|
|
}
|
|
|
|
/**
|
|
* @if maint
|
|
* Allocates space for a new node and default-constructs a new instance
|
|
* of @c value_type in it.
|
|
* @endif
|
|
*/
|
|
_Node*
|
|
_M_create_node()
|
|
{
|
|
_Node* __p = _M_get_node();
|
|
try {
|
|
std::_Construct(&__p->_M_data);
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_put_node(__p);
|
|
__throw_exception_again;
|
|
}
|
|
return __p;
|
|
}
|
|
|
|
public:
|
|
// [23.2.2.1] construct/copy/destroy
|
|
// (assign() and get_allocator() are also listed in this section)
|
|
/**
|
|
* @brief Default constructor creates no elements.
|
|
*/
|
|
explicit
|
|
list(const allocator_type& __a = allocator_type())
|
|
: _Base(__a) { }
|
|
|
|
/**
|
|
* @brief Create a %list with copies of an exemplar element.
|
|
* @param n The number of elements to initially create.
|
|
* @param value An element to copy.
|
|
*
|
|
* This constructor fills the %list with @a n copies of @a value.
|
|
*/
|
|
list(size_type __n, const value_type& __value,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__a)
|
|
{ this->insert(begin(), __n, __value); }
|
|
|
|
/**
|
|
* @brief Create a %list with default elements.
|
|
* @param n The number of elements to initially create.
|
|
*
|
|
* This constructor fills the %list with @a n copies of a
|
|
* default-constructed element.
|
|
*/
|
|
explicit
|
|
list(size_type __n)
|
|
: _Base(allocator_type())
|
|
{ this->insert(begin(), __n, value_type()); }
|
|
|
|
/**
|
|
* @brief %List copy constructor.
|
|
* @param x A %list of identical element and allocator types.
|
|
*
|
|
* The newly-created %list uses a copy of the allocation object used
|
|
* by @a x.
|
|
*/
|
|
list(const list& __x)
|
|
: _Base(__x.get_allocator())
|
|
{ this->insert(begin(), __x.begin(), __x.end()); }
|
|
|
|
/**
|
|
* @brief Builds a %list from a range.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* Create a %list consisting of copies of the elements from [first,last).
|
|
* This is linear in N (where N is distance(first,last)).
|
|
*
|
|
* @if maint
|
|
* We don't need any dispatching tricks here, because insert does all of
|
|
* that anyway.
|
|
* @endif
|
|
*/
|
|
template<typename _InputIterator>
|
|
list(_InputIterator __first, _InputIterator __last,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__a)
|
|
{ this->insert(begin(), __first, __last); }
|
|
|
|
/**
|
|
* The dtor only erases the elements, and note that if the elements
|
|
* themselves are pointers, the pointed-to memory is not touched in any
|
|
* way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
~list() { }
|
|
|
|
/**
|
|
* @brief %List assignment operator.
|
|
* @param x A %list of identical element and allocator types.
|
|
*
|
|
* All the elements of @a x are copied, but unlike the copy constructor,
|
|
* the allocator object is not copied.
|
|
*/
|
|
list&
|
|
operator=(const list& __x);
|
|
|
|
/**
|
|
* @brief Assigns a given value to a %list.
|
|
* @param n Number of elements to be assigned.
|
|
* @param val Value to be assigned.
|
|
*
|
|
* This function fills a %list with @a n copies of the given value.
|
|
* Note that the assignment completely changes the %list and that the
|
|
* resulting %list's size is the same as the number of elements assigned.
|
|
* Old data may be lost.
|
|
*/
|
|
void
|
|
assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); }
|
|
|
|
/**
|
|
* @brief Assigns a range to a %list.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* This function fills a %list with copies of the elements in the
|
|
* range [first,last).
|
|
*
|
|
* Note that the assignment completely changes the %list and that the
|
|
* resulting %list's size is the same as the number of elements assigned.
|
|
* Old data may be lost.
|
|
*/
|
|
template<typename _InputIterator>
|
|
void
|
|
assign(_InputIterator __first, _InputIterator __last)
|
|
{
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_assign_dispatch(__first, __last, _Integral());
|
|
}
|
|
|
|
/// Get a copy of the memory allocation object.
|
|
allocator_type
|
|
get_allocator() const { return _Base::get_allocator(); }
|
|
|
|
// iterators
|
|
/**
|
|
* Returns a read/write iterator that points to the first element in the
|
|
* %list. Iteration is done in ordinary element order.
|
|
*/
|
|
iterator
|
|
begin() { return static_cast<_Node*>(this->_M_node->_M_next); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points to the first element
|
|
* in the %list. Iteration is done in ordinary element order.
|
|
*/
|
|
const_iterator
|
|
begin() const { return static_cast<_Node*>(this->_M_node->_M_next); }
|
|
|
|
/**
|
|
* Returns a read/write iterator that points one past the last element in
|
|
* the %list. Iteration is done in ordinary element order.
|
|
*/
|
|
iterator
|
|
end() { return this->_M_node; }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points one past the last
|
|
* element in the %list. Iteration is done in ordinary element order.
|
|
*/
|
|
const_iterator
|
|
end() const { return this->_M_node; }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to the last element in
|
|
* the %list. Iteration is done in reverse element order.
|
|
*/
|
|
reverse_iterator
|
|
rbegin() { return reverse_iterator(end()); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to the last
|
|
* element in the %list. Iteration is done in reverse element order.
|
|
*/
|
|
const_reverse_iterator
|
|
rbegin() const { return const_reverse_iterator(end()); }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to one before the
|
|
* first element in the %list. Iteration is done in reverse element
|
|
* order.
|
|
*/
|
|
reverse_iterator
|
|
rend() { return reverse_iterator(begin()); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to one
|
|
* before the first element in the %list. Iteration is done in reverse
|
|
* element order.
|
|
*/
|
|
const_reverse_iterator
|
|
rend() const
|
|
{ return const_reverse_iterator(begin()); }
|
|
|
|
// [23.2.2.2] capacity
|
|
/**
|
|
* Returns true if the %list is empty. (Thus begin() would equal end().)
|
|
*/
|
|
bool
|
|
empty() const { return this->_M_node->_M_next == this->_M_node; }
|
|
|
|
/** Returns the number of elements in the %list. */
|
|
size_type
|
|
size() const { return std::distance(begin(), end()); }
|
|
|
|
/** Returns the size() of the largest possible %list. */
|
|
size_type
|
|
max_size() const { return size_type(-1); }
|
|
|
|
/**
|
|
* @brief Resizes the %list to the specified number of elements.
|
|
* @param new_size Number of elements the %list should contain.
|
|
* @param x Data with which new elements should be populated.
|
|
*
|
|
* This function will %resize the %list to the specified number of
|
|
* elements. If the number is smaller than the %list's current size the
|
|
* %list is truncated, otherwise the %list is extended and new elements
|
|
* are populated with given data.
|
|
*/
|
|
void
|
|
resize(size_type __new_size, const value_type& __x);
|
|
|
|
/**
|
|
* @brief Resizes the %list to the specified number of elements.
|
|
* @param new_size Number of elements the %list should contain.
|
|
*
|
|
* This function will resize the %list to the specified number of
|
|
* elements. If the number is smaller than the %list's current size the
|
|
* %list is truncated, otherwise the %list is extended and new elements
|
|
* are default-constructed.
|
|
*/
|
|
void
|
|
resize(size_type __new_size) { this->resize(__new_size, value_type()); }
|
|
|
|
// element access
|
|
/**
|
|
* Returns a read/write reference to the data at the first element of the
|
|
* %list.
|
|
*/
|
|
reference
|
|
front() { return *begin(); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reference to the data at the first
|
|
* element of the %list.
|
|
*/
|
|
const_reference
|
|
front() const { return *begin(); }
|
|
|
|
/**
|
|
* Returns a read/write reference to the data at the last element of the
|
|
* %list.
|
|
*/
|
|
reference
|
|
back() { return *(--end()); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reference to the data at the last
|
|
* element of the %list.
|
|
*/
|
|
const_reference
|
|
back() const { return *(--end()); }
|
|
|
|
// [23.2.2.3] modifiers
|
|
/**
|
|
* @brief Add data to the front of the %list.
|
|
* @param x Data to be added.
|
|
*
|
|
* This is a typical stack operation. The function creates an element at
|
|
* the front of the %list and assigns the given data to it. Due to the
|
|
* nature of a %list this operation can be done in constant time, and
|
|
* does not invalidate iterators and references.
|
|
*/
|
|
void
|
|
push_front(const value_type& __x) { this->insert(begin(), __x); }
|
|
|
|
/**
|
|
* @brief Removes first element.
|
|
*
|
|
* This is a typical stack operation. It shrinks the %list by one.
|
|
* Due to the nature of a %list this operation can be done in constant
|
|
* time, and only invalidates iterators/references to the element being
|
|
* removed.
|
|
*
|
|
* Note that no data is returned, and if the first element's data is
|
|
* needed, it should be retrieved before pop_front() is called.
|
|
*/
|
|
void
|
|
pop_front() { this->erase(begin()); }
|
|
|
|
/**
|
|
* @brief Add data to the end of the %list.
|
|
* @param x Data to be added.
|
|
*
|
|
* This is a typical stack operation. The function creates an element at
|
|
* the end of the %list and assigns the given data to it. Due to the
|
|
* nature of a %list this operation can be done in constant time, and
|
|
* does not invalidate iterators and references.
|
|
*/
|
|
void
|
|
push_back(const value_type& __x) { this->insert(end(), __x); }
|
|
|
|
/**
|
|
* @brief Removes last element.
|
|
*
|
|
* This is a typical stack operation. It shrinks the %list by one.
|
|
* Due to the nature of a %list this operation can be done in constant
|
|
* time, and only invalidates iterators/references to the element being
|
|
* removed.
|
|
*
|
|
* Note that no data is returned, and if the last element's data is
|
|
* needed, it should be retrieved before pop_back() is called.
|
|
*/
|
|
void
|
|
pop_back()
|
|
{
|
|
iterator __tmp = end();
|
|
this->erase(--__tmp);
|
|
}
|
|
|
|
/**
|
|
* @brief Inserts given value into %list before specified iterator.
|
|
* @param position An iterator into the %list.
|
|
* @param x Data to be inserted.
|
|
* @return An iterator that points to the inserted data.
|
|
*
|
|
* This function will insert a copy of the given value before the specified
|
|
* location.
|
|
* Due to the nature of a %list this operation can be done in constant
|
|
* time, and does not invalidate iterators and references.
|
|
*/
|
|
iterator
|
|
insert(iterator __position, const value_type& __x);
|
|
|
|
/**
|
|
* @brief Inserts a number of copies of given data into the %list.
|
|
* @param position An iterator into the %list.
|
|
* @param n Number of elements to be inserted.
|
|
* @param x Data to be inserted.
|
|
*
|
|
* This function will insert a specified number of copies of the given data
|
|
* before the location specified by @a position.
|
|
*
|
|
* Due to the nature of a %list this operation can be done in constant
|
|
* time, and does not invalidate iterators and references.
|
|
*/
|
|
void
|
|
insert(iterator __position, size_type __n, const value_type& __x)
|
|
{ _M_fill_insert(__position, __n, __x); }
|
|
|
|
/**
|
|
* @brief Inserts a range into the %list.
|
|
* @param position An iterator into the %list.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* This function will insert copies of the data in the range [first,last)
|
|
* into the %list before the location specified by @a pos.
|
|
*
|
|
* Due to the nature of a %list this operation can be done in constant
|
|
* time, and does not invalidate iterators and references.
|
|
*/
|
|
template<typename _InputIterator>
|
|
void
|
|
insert(iterator __position, _InputIterator __first, _InputIterator __last)
|
|
{
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_insert_dispatch(__position, __first, __last, _Integral());
|
|
}
|
|
|
|
/**
|
|
* @brief Remove element at given position.
|
|
* @param position Iterator pointing to element to be erased.
|
|
* @return An iterator pointing to the next element (or end()).
|
|
*
|
|
* This function will erase the element at the given position and thus
|
|
* shorten the %list by one.
|
|
*
|
|
* Due to the nature of a %list this operation can be done in constant
|
|
* time, and only invalidates iterators/references to the element being
|
|
* removed.
|
|
* The user is also cautioned that
|
|
* this function only erases the element, and that if the element is itself
|
|
* a pointer, the pointed-to memory is not touched in any way. Managing
|
|
* the pointer is the user's responsibilty.
|
|
*/
|
|
iterator
|
|
erase(iterator __position);
|
|
|
|
/**
|
|
* @brief Remove a range of elements.
|
|
* @param first Iterator pointing to the first element to be erased.
|
|
* @param last Iterator pointing to one past the last element to be
|
|
* erased.
|
|
* @return An iterator pointing to the element pointed to by @a last
|
|
* prior to erasing (or end()).
|
|
*
|
|
* This function will erase the elements in the range [first,last) and
|
|
* shorten the %list accordingly.
|
|
*
|
|
* Due to the nature of a %list this operation can be done in constant
|
|
* time, and only invalidates iterators/references to the element being
|
|
* removed.
|
|
* The user is also cautioned that
|
|
* this function only erases the elements, and that if the elements
|
|
* themselves are pointers, the pointed-to memory is not touched in any
|
|
* way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
iterator
|
|
erase(iterator __first, iterator __last)
|
|
{
|
|
while (__first != __last)
|
|
erase(__first++);
|
|
return __last;
|
|
}
|
|
|
|
/**
|
|
* @brief Swaps data with another %list.
|
|
* @param x A %list of the same element and allocator types.
|
|
*
|
|
* This exchanges the elements between two lists in constant time.
|
|
* (It is only swapping a single pointer, so it should be quite fast.)
|
|
* Note that the global std::swap() function is specialized such that
|
|
* std::swap(l1,l2) will feed to this function.
|
|
*/
|
|
void
|
|
swap(list& __x) { std::swap(this->_M_node, __x._M_node); }
|
|
|
|
/**
|
|
* Erases all the elements. Note that this function only erases the
|
|
* elements, and that if the elements themselves are pointers, the
|
|
* pointed-to memory is not touched in any way. Managing the pointer is
|
|
* the user's responsibilty.
|
|
*/
|
|
void
|
|
clear() { _Base::__clear(); }
|
|
|
|
// [23.2.2.4] list operations
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
void
|
|
splice(iterator __position, list& __x)
|
|
{
|
|
if (!__x.empty())
|
|
this->_M_transfer(__position, __x.begin(), __x.end());
|
|
}
|
|
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
void
|
|
splice(iterator __position, list&, iterator __i)
|
|
{
|
|
iterator __j = __i;
|
|
++__j;
|
|
if (__position == __i || __position == __j) return;
|
|
this->_M_transfer(__position, __i, __j);
|
|
}
|
|
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
void
|
|
splice(iterator __position, list&, iterator __first, iterator __last)
|
|
{
|
|
if (__first != __last)
|
|
this->_M_transfer(__position, __first, __last);
|
|
}
|
|
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
void
|
|
remove(const _Tp& __value);
|
|
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
template<typename _Predicate>
|
|
void
|
|
remove_if(_Predicate);
|
|
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
void
|
|
unique();
|
|
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
template<typename _BinaryPredicate>
|
|
void
|
|
unique(_BinaryPredicate);
|
|
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
void
|
|
merge(list& __x);
|
|
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
template<typename _StrictWeakOrdering>
|
|
void
|
|
merge(list&, _StrictWeakOrdering);
|
|
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
void
|
|
reverse() { __List_base_reverse(this->_M_node); }
|
|
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
void
|
|
sort();
|
|
|
|
/**
|
|
* @doctodo
|
|
*/
|
|
template<typename _StrictWeakOrdering>
|
|
void
|
|
sort(_StrictWeakOrdering);
|
|
|
|
protected:
|
|
// Internal assign functions follow.
|
|
|
|
// called by the range assign to implement [23.1.1]/9
|
|
template<typename _Integer>
|
|
void
|
|
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
|
|
{
|
|
_M_fill_assign(static_cast<size_type>(__n),
|
|
static_cast<value_type>(__val));
|
|
}
|
|
|
|
// called by the range assign to implement [23.1.1]/9
|
|
template<typename _InputIterator>
|
|
void
|
|
_M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type);
|
|
|
|
// Called by assign(n,t), and the range assign when it turns out to be the
|
|
// same thing.
|
|
void
|
|
_M_fill_assign(size_type __n, const value_type& __val);
|
|
|
|
|
|
// Internal insert functions follow.
|
|
|
|
// called by the range insert to implement [23.1.1]/9
|
|
template<typename _Integer>
|
|
void
|
|
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
|
|
__true_type)
|
|
{
|
|
_M_fill_insert(__pos, static_cast<size_type>(__n),
|
|
static_cast<value_type>(__x));
|
|
}
|
|
|
|
// called by the range insert to implement [23.1.1]/9
|
|
template<typename _InputIterator>
|
|
void
|
|
_M_insert_dispatch(iterator __pos,
|
|
_InputIterator __first, _InputIterator __last,
|
|
__false_type)
|
|
{
|
|
for ( ; __first != __last; ++__first)
|
|
insert(__pos, *__first);
|
|
}
|
|
|
|
// Called by insert(p,n,x), and the range insert when it turns out to be
|
|
// the same thing.
|
|
void
|
|
_M_fill_insert(iterator __pos, size_type __n, const value_type& __x)
|
|
{
|
|
for ( ; __n > 0; --__n)
|
|
insert(__pos, __x);
|
|
}
|
|
|
|
|
|
// Moves the elements from [first,last) before position.
|
|
void
|
|
_M_transfer(iterator __position, iterator __first, iterator __last)
|
|
{
|
|
if (__position != __last) {
|
|
// Remove [first, last) from its old position.
|
|
__last._M_node->_M_prev->_M_next = __position._M_node;
|
|
__first._M_node->_M_prev->_M_next = __last._M_node;
|
|
__position._M_node->_M_prev->_M_next = __first._M_node;
|
|
|
|
// Splice [first, last) into its new position.
|
|
_List_node_base* __tmp = __position._M_node->_M_prev;
|
|
__position._M_node->_M_prev = __last._M_node->_M_prev;
|
|
__last._M_node->_M_prev = __first._M_node->_M_prev;
|
|
__first._M_node->_M_prev = __tmp;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* @brief List equality comparison.
|
|
* @param x A %list.
|
|
* @param y A %list of the same type as @a x.
|
|
* @return True iff the size and elements of the lists are equal.
|
|
*
|
|
* This is an equivalence relation. It is linear in the size of the
|
|
* lists. Lists are considered equivalent if their sizes are equal,
|
|
* and if corresponding elements compare equal.
|
|
*/
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator==(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
|
|
{
|
|
typedef typename list<_Tp,_Alloc>::const_iterator const_iterator;
|
|
const_iterator __end1 = __x.end();
|
|
const_iterator __end2 = __y.end();
|
|
|
|
const_iterator __i1 = __x.begin();
|
|
const_iterator __i2 = __y.begin();
|
|
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
|
|
++__i1;
|
|
++__i2;
|
|
}
|
|
return __i1 == __end1 && __i2 == __end2;
|
|
}
|
|
|
|
/**
|
|
* @brief List ordering relation.
|
|
* @param x A %list.
|
|
* @param y A %list of the same type as @a x.
|
|
* @return True iff @a x is lexicographically less than @a y.
|
|
*
|
|
* This is a total ordering relation. It is linear in the size of the
|
|
* lists. The elements must be comparable with @c <.
|
|
*
|
|
* See std::lexicographical_compare() for how the determination is made.
|
|
*/
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator<(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
|
|
{
|
|
return std::lexicographical_compare(__x.begin(), __x.end(),
|
|
__y.begin(), __y.end());
|
|
}
|
|
|
|
/// Based on operator==
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator!=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
|
|
{ return !(__x == __y); }
|
|
|
|
/// Based on operator<
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator>(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
|
|
{ return __y < __x; }
|
|
|
|
/// Based on operator<
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator<=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
|
|
{ return !(__y < __x); }
|
|
|
|
/// Based on operator<
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator>=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
|
|
{ return !(__x < __y); }
|
|
|
|
/// See std::list::swap().
|
|
template<typename _Tp, typename _Alloc>
|
|
inline void
|
|
swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
|
|
{ __x.swap(__y); }
|
|
} // namespace std
|
|
|
|
#endif /* _LIST_H */
|