5a0aad3165
PR fortran/26025 * lang.opt: Add -fexternal-blas and -fblas-matmul-limit options. * options.c (gfc_init_options): Initialize new flags. (gfc_handle_option): Handle new flags. * gfortran.h (gfc_option): Add flag_external_blas and blas_matmul_limit flags. * trans-expr.c (gfc_conv_function_call): Use new argument append_args, appending it at the end of the argument list built for a function call. * trans-stmt.c (gfc_trans_call): Use NULL_TREE for the new append_args argument to gfc_trans_call. * trans.h (gfc_conv_function_call): Update prototype. * trans-decl.c (gfc_build_intrinsic_function_decls): Add prototypes for BLAS ?gemm routines. * trans-intrinsic.c (gfc_conv_intrinsic_funcall): Generate the extra arguments given to the library matmul function, and give them to gfc_conv_function_call. * invoke.texi: Add documentation for -fexternal-blas and -fblas-matmul-limit. * m4/matmul.m4: Add possible call to gemm routine. * generated/matmul_r8.c: Regenerate. * generated/matmul_r16.c: Regenerate. * generated/matmul_c8.c: Regenerate. * generated/matmul_i8.c: Regenerate. * generated/matmul_c16.c: Regenerate. * generated/matmul_r10.c: Regenerate. * generated/matmul_r4.c: Regenerate. * generated/matmul_c10.c: Regenerate. * generated/matmul_c4.c: Regenerate. * generated/matmul_i4.c: Regenerate. * generated/matmul_i16.c: Regenerate. From-SVN: r117948
340 lines
9.8 KiB
C
340 lines
9.8 KiB
C
/* Implementation of the MATMUL intrinsic
|
|
Copyright 2002, 2005, 2006 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file into combinations with other programs,
|
|
and to distribute those combinations without any restriction coming
|
|
from the use of this file. (The General Public License restrictions
|
|
do apply in other respects; for example, they cover modification of
|
|
the file, and distribution when not linked into a combine
|
|
executable.)
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public
|
|
License along with libgfortran; see the file COPYING. If not,
|
|
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
#include "config.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include "libgfortran.h"
|
|
|
|
#if defined (HAVE_GFC_COMPLEX_4)
|
|
|
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
|
passed to us by the front-end, in which case we'll call it for large
|
|
matrices. */
|
|
|
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
|
const int *, const GFC_COMPLEX_4 *, const GFC_COMPLEX_4 *,
|
|
const int *, const GFC_COMPLEX_4 *, const int *,
|
|
const GFC_COMPLEX_4 *, GFC_COMPLEX_4 *, const int *,
|
|
int, int);
|
|
|
|
/* The order of loops is different in the case of plain matrix
|
|
multiplication C=MATMUL(A,B), and in the frequent special case where
|
|
the argument A is the temporary result of a TRANSPOSE intrinsic:
|
|
C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by
|
|
looking at their strides.
|
|
|
|
The equivalent Fortran pseudo-code is:
|
|
|
|
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
|
|
IF (.NOT.IS_TRANSPOSED(A)) THEN
|
|
C = 0
|
|
DO J=1,N
|
|
DO K=1,COUNT
|
|
DO I=1,M
|
|
C(I,J) = C(I,J)+A(I,K)*B(K,J)
|
|
ELSE
|
|
DO J=1,N
|
|
DO I=1,M
|
|
S = 0
|
|
DO K=1,COUNT
|
|
S = S+A(I,K)*B(K,J)
|
|
C(I,J) = S
|
|
ENDIF
|
|
*/
|
|
|
|
/* If try_blas is set to a nonzero value, then the matmul function will
|
|
see if there is a way to perform the matrix multiplication by a call
|
|
to the BLAS gemm function. */
|
|
|
|
extern void matmul_c4 (gfc_array_c4 * const restrict retarray,
|
|
gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm);
|
|
export_proto(matmul_c4);
|
|
|
|
void
|
|
matmul_c4 (gfc_array_c4 * const restrict retarray,
|
|
gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm)
|
|
{
|
|
const GFC_COMPLEX_4 * restrict abase;
|
|
const GFC_COMPLEX_4 * restrict bbase;
|
|
GFC_COMPLEX_4 * restrict dest;
|
|
|
|
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
|
index_type x, y, n, count, xcount, ycount;
|
|
|
|
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
|
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
|
|
|
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
|
|
|
Either A or B (but not both) can be rank 1:
|
|
|
|
o One-dimensional argument A is implicitly treated as a row matrix
|
|
dimensioned [1,count], so xcount=1.
|
|
|
|
o One-dimensional argument B is implicitly treated as a column matrix
|
|
dimensioned [count, 1], so ycount=1.
|
|
*/
|
|
|
|
if (retarray->data == NULL)
|
|
{
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
retarray->dim[0].lbound = 0;
|
|
retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
|
|
retarray->dim[0].stride = 1;
|
|
}
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
retarray->dim[0].lbound = 0;
|
|
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
|
|
retarray->dim[0].stride = 1;
|
|
}
|
|
else
|
|
{
|
|
retarray->dim[0].lbound = 0;
|
|
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
|
|
retarray->dim[0].stride = 1;
|
|
|
|
retarray->dim[1].lbound = 0;
|
|
retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
|
|
retarray->dim[1].stride = retarray->dim[0].ubound+1;
|
|
}
|
|
|
|
retarray->data
|
|
= internal_malloc_size (sizeof (GFC_COMPLEX_4) * size0 ((array_t *) retarray));
|
|
retarray->offset = 0;
|
|
}
|
|
|
|
|
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
|
{
|
|
/* One-dimensional result may be addressed in the code below
|
|
either as a row or a column matrix. We want both cases to
|
|
work. */
|
|
rxstride = rystride = retarray->dim[0].stride;
|
|
}
|
|
else
|
|
{
|
|
rxstride = retarray->dim[0].stride;
|
|
rystride = retarray->dim[1].stride;
|
|
}
|
|
|
|
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
/* Treat it as a a row matrix A[1,count]. */
|
|
axstride = a->dim[0].stride;
|
|
aystride = 1;
|
|
|
|
xcount = 1;
|
|
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
|
}
|
|
else
|
|
{
|
|
axstride = a->dim[0].stride;
|
|
aystride = a->dim[1].stride;
|
|
|
|
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
|
|
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
|
}
|
|
|
|
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
|
|
|
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
/* Treat it as a column matrix B[count,1] */
|
|
bxstride = b->dim[0].stride;
|
|
|
|
/* bystride should never be used for 1-dimensional b.
|
|
in case it is we want it to cause a segfault, rather than
|
|
an incorrect result. */
|
|
bystride = 0xDEADBEEF;
|
|
ycount = 1;
|
|
}
|
|
else
|
|
{
|
|
bxstride = b->dim[0].stride;
|
|
bystride = b->dim[1].stride;
|
|
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
|
|
}
|
|
|
|
abase = a->data;
|
|
bbase = b->data;
|
|
dest = retarray->data;
|
|
|
|
|
|
/* Now that everything is set up, we're performing the multiplication
|
|
itself. */
|
|
|
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
|
|
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
|
&& (bxstride == 1 || bystride == 1)
|
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
|
> POW3(blas_limit)))
|
|
{
|
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
|
const GFC_COMPLEX_4 one = 1, zero = 0;
|
|
const int lda = (axstride == 1) ? aystride : axstride,
|
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
|
|
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
|
{
|
|
assert (gemm != NULL);
|
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
|
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
|
{
|
|
const GFC_COMPLEX_4 * restrict bbase_y;
|
|
GFC_COMPLEX_4 * restrict dest_y;
|
|
const GFC_COMPLEX_4 * restrict abase_n;
|
|
GFC_COMPLEX_4 bbase_yn;
|
|
|
|
if (rystride == xcount)
|
|
memset (dest, 0, (sizeof (GFC_COMPLEX_4) * xcount * ycount));
|
|
else
|
|
{
|
|
for (y = 0; y < ycount; y++)
|
|
for (x = 0; x < xcount; x++)
|
|
dest[x + y*rystride] = (GFC_COMPLEX_4)0;
|
|
}
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = bbase + y*bystride;
|
|
dest_y = dest + y*rystride;
|
|
for (n = 0; n < count; n++)
|
|
{
|
|
abase_n = abase + n*aystride;
|
|
bbase_yn = bbase_y[n];
|
|
for (x = 0; x < xcount; x++)
|
|
{
|
|
dest_y[x] += abase_n[x] * bbase_yn;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
|
{
|
|
if (GFC_DESCRIPTOR_RANK (a) != 1)
|
|
{
|
|
const GFC_COMPLEX_4 *restrict abase_x;
|
|
const GFC_COMPLEX_4 *restrict bbase_y;
|
|
GFC_COMPLEX_4 *restrict dest_y;
|
|
GFC_COMPLEX_4 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
dest_y = &dest[y*rystride];
|
|
for (x = 0; x < xcount; x++)
|
|
{
|
|
abase_x = &abase[x*axstride];
|
|
s = (GFC_COMPLEX_4) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase_x[n] * bbase_y[n];
|
|
dest_y[x] = s;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const GFC_COMPLEX_4 *restrict bbase_y;
|
|
GFC_COMPLEX_4 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
s = (GFC_COMPLEX_4) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase[n*axstride] * bbase_y[n];
|
|
dest[y*rystride] = s;
|
|
}
|
|
}
|
|
}
|
|
else if (axstride < aystride)
|
|
{
|
|
for (y = 0; y < ycount; y++)
|
|
for (x = 0; x < xcount; x++)
|
|
dest[x*rxstride + y*rystride] = (GFC_COMPLEX_4)0;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
for (n = 0; n < count; n++)
|
|
for (x = 0; x < xcount; x++)
|
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
|
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
|
}
|
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
const GFC_COMPLEX_4 *restrict bbase_y;
|
|
GFC_COMPLEX_4 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
s = (GFC_COMPLEX_4) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase[n*axstride] * bbase_y[n*bxstride];
|
|
dest[y*rxstride] = s;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const GFC_COMPLEX_4 *restrict abase_x;
|
|
const GFC_COMPLEX_4 *restrict bbase_y;
|
|
GFC_COMPLEX_4 *restrict dest_y;
|
|
GFC_COMPLEX_4 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
dest_y = &dest[y*rystride];
|
|
for (x = 0; x < xcount; x++)
|
|
{
|
|
abase_x = &abase[x*axstride];
|
|
s = (GFC_COMPLEX_4) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase_x[n*aystride] * bbase_y[n*bxstride];
|
|
dest_y[x*rxstride] = s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|