1187 lines
34 KiB
C
1187 lines
34 KiB
C
/* Implementation of the MATMUL intrinsic
|
|
Copyright (C) 2002-2022 Free Software Foundation, Inc.
|
|
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>.
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
|
|
/* These are the specific versions of matmul with -mprefer-avx128. */
|
|
|
|
#if defined (HAVE_GFC_COMPLEX_16)
|
|
|
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
|
passed to us by the front-end, in which case we call it for large
|
|
matrices. */
|
|
|
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
|
const int *, const GFC_COMPLEX_16 *, const GFC_COMPLEX_16 *,
|
|
const int *, const GFC_COMPLEX_16 *, const int *,
|
|
const GFC_COMPLEX_16 *, GFC_COMPLEX_16 *, const int *,
|
|
int, int);
|
|
|
|
#if defined(HAVE_AVX) && defined(HAVE_FMA3) && defined(HAVE_AVX128)
|
|
void
|
|
matmul_c16_avx128_fma3 (gfc_array_c16 * const restrict retarray,
|
|
gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma")));
|
|
internal_proto(matmul_c16_avx128_fma3);
|
|
void
|
|
matmul_c16_avx128_fma3 (gfc_array_c16 * const restrict retarray,
|
|
gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm)
|
|
{
|
|
const GFC_COMPLEX_16 * restrict abase;
|
|
const GFC_COMPLEX_16 * restrict bbase;
|
|
GFC_COMPLEX_16 * restrict dest;
|
|
|
|
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
|
index_type x, y, n, count, xcount, ycount;
|
|
|
|
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
|
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
|
|
|
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
|
|
|
Either A or B (but not both) can be rank 1:
|
|
|
|
o One-dimensional argument A is implicitly treated as a row matrix
|
|
dimensioned [1,count], so xcount=1.
|
|
|
|
o One-dimensional argument B is implicitly treated as a column matrix
|
|
dimensioned [count, 1], so ycount=1.
|
|
*/
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
|
GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
|
|
}
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
|
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
|
|
}
|
|
else
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
|
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[1], 0,
|
|
GFC_DESCRIPTOR_EXTENT(b,1) - 1,
|
|
GFC_DESCRIPTOR_EXTENT(retarray,0));
|
|
}
|
|
|
|
retarray->base_addr
|
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16));
|
|
retarray->offset = 0;
|
|
}
|
|
else if (unlikely (compile_options.bounds_check))
|
|
{
|
|
index_type ret_extent, arg_extent;
|
|
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Array bound mismatch for dimension 1 of "
|
|
"array (%ld/%ld) ",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
}
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Array bound mismatch for dimension 1 of "
|
|
"array (%ld/%ld) ",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
}
|
|
else
|
|
{
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Array bound mismatch for dimension 1 of "
|
|
"array (%ld/%ld) ",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Array bound mismatch for dimension 2 of "
|
|
"array (%ld/%ld) ",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
}
|
|
}
|
|
|
|
|
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
|
{
|
|
/* One-dimensional result may be addressed in the code below
|
|
either as a row or a column matrix. We want both cases to
|
|
work. */
|
|
rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
}
|
|
else
|
|
{
|
|
rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
|
|
}
|
|
|
|
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
/* Treat it as a a row matrix A[1,count]. */
|
|
axstride = GFC_DESCRIPTOR_STRIDE(a,0);
|
|
aystride = 1;
|
|
|
|
xcount = 1;
|
|
count = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
}
|
|
else
|
|
{
|
|
axstride = GFC_DESCRIPTOR_STRIDE(a,0);
|
|
aystride = GFC_DESCRIPTOR_STRIDE(a,1);
|
|
|
|
count = GFC_DESCRIPTOR_EXTENT(a,1);
|
|
xcount = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
}
|
|
|
|
if (count != GFC_DESCRIPTOR_EXTENT(b,0))
|
|
{
|
|
if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
|
|
runtime_error ("Incorrect extent in argument B in MATMUL intrinsic "
|
|
"in dimension 1: is %ld, should be %ld",
|
|
(long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count);
|
|
}
|
|
|
|
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
/* Treat it as a column matrix B[count,1] */
|
|
bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
|
|
|
|
/* bystride should never be used for 1-dimensional b.
|
|
The value is only used for calculation of the
|
|
memory by the buffer. */
|
|
bystride = 256;
|
|
ycount = 1;
|
|
}
|
|
else
|
|
{
|
|
bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
|
|
bystride = GFC_DESCRIPTOR_STRIDE(b,1);
|
|
ycount = GFC_DESCRIPTOR_EXTENT(b,1);
|
|
}
|
|
|
|
abase = a->base_addr;
|
|
bbase = b->base_addr;
|
|
dest = retarray->base_addr;
|
|
|
|
/* Now that everything is set up, we perform the multiplication
|
|
itself. */
|
|
|
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
|
|
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
|
&& (bxstride == 1 || bystride == 1)
|
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
|
> POW3(blas_limit)))
|
|
{
|
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
|
const GFC_COMPLEX_16 one = 1, zero = 0;
|
|
const int lda = (axstride == 1) ? aystride : axstride,
|
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
|
|
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
|
{
|
|
assert (gemm != NULL);
|
|
const char *transa, *transb;
|
|
if (try_blas & 2)
|
|
transa = "C";
|
|
else
|
|
transa = axstride == 1 ? "N" : "T";
|
|
|
|
if (try_blas & 4)
|
|
transb = "C";
|
|
else
|
|
transb = bxstride == 1 ? "N" : "T";
|
|
|
|
gemm (transa, transb , &m,
|
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
|
&ldc, 1, 1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (rxstride == 1 && axstride == 1 && bxstride == 1
|
|
&& GFC_DESCRIPTOR_RANK (b) != 1)
|
|
{
|
|
/* This block of code implements a tuned matmul, derived from
|
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
|
|
|
Bo Kagstrom and Per Ling
|
|
Department of Computing Science
|
|
Umea University
|
|
S-901 87 Umea, Sweden
|
|
|
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
|
|
|
const GFC_COMPLEX_16 *a, *b;
|
|
GFC_COMPLEX_16 *c;
|
|
const index_type m = xcount, n = ycount, k = count;
|
|
|
|
/* System generated locals */
|
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
|
i1, i2, i3, i4, i5, i6;
|
|
|
|
/* Local variables */
|
|
GFC_COMPLEX_16 f11, f12, f21, f22, f31, f32, f41, f42,
|
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
|
index_type i, j, l, ii, jj, ll;
|
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
|
GFC_COMPLEX_16 *t1;
|
|
|
|
a = abase;
|
|
b = bbase;
|
|
c = retarray->base_addr;
|
|
|
|
/* Parameter adjustments */
|
|
c_dim1 = rystride;
|
|
c_offset = 1 + c_dim1;
|
|
c -= c_offset;
|
|
a_dim1 = aystride;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
b_dim1 = bystride;
|
|
b_offset = 1 + b_dim1;
|
|
b -= b_offset;
|
|
|
|
/* Empty c first. */
|
|
for (j=1; j<=n; j++)
|
|
for (i=1; i<=m; i++)
|
|
c[i + j * c_dim1] = (GFC_COMPLEX_16)0;
|
|
|
|
/* Early exit if possible */
|
|
if (m == 0 || n == 0 || k == 0)
|
|
return;
|
|
|
|
/* Adjust size of t1 to what is needed. */
|
|
index_type t1_dim, a_sz;
|
|
if (aystride == 1)
|
|
a_sz = rystride;
|
|
else
|
|
a_sz = a_dim1;
|
|
|
|
t1_dim = a_sz * 256 + b_dim1;
|
|
if (t1_dim > 65536)
|
|
t1_dim = 65536;
|
|
|
|
t1 = malloc (t1_dim * sizeof(GFC_COMPLEX_16));
|
|
|
|
/* Start turning the crank. */
|
|
i1 = n;
|
|
for (jj = 1; jj <= i1; jj += 512)
|
|
{
|
|
/* Computing MIN */
|
|
i2 = 512;
|
|
i3 = n - jj + 1;
|
|
jsec = min(i2,i3);
|
|
ujsec = jsec - jsec % 4;
|
|
i2 = k;
|
|
for (ll = 1; ll <= i2; ll += 256)
|
|
{
|
|
/* Computing MIN */
|
|
i3 = 256;
|
|
i4 = k - ll + 1;
|
|
lsec = min(i3,i4);
|
|
ulsec = lsec - lsec % 2;
|
|
|
|
i3 = m;
|
|
for (ii = 1; ii <= i3; ii += 256)
|
|
{
|
|
/* Computing MIN */
|
|
i4 = 256;
|
|
i5 = m - ii + 1;
|
|
isec = min(i4,i5);
|
|
uisec = isec - isec % 2;
|
|
i4 = ll + ulsec - 1;
|
|
for (l = ll; l <= i4; l += 2)
|
|
{
|
|
i5 = ii + uisec - 1;
|
|
for (i = ii; i <= i5; i += 2)
|
|
{
|
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
|
a[i + l * a_dim1];
|
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
|
a[i + (l + 1) * a_dim1];
|
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
|
a[i + 1 + l * a_dim1];
|
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
|
a[i + 1 + (l + 1) * a_dim1];
|
|
}
|
|
if (uisec < isec)
|
|
{
|
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
|
a[ii + isec - 1 + l * a_dim1];
|
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
|
}
|
|
}
|
|
if (ulsec < lsec)
|
|
{
|
|
i4 = ii + isec - 1;
|
|
for (i = ii; i<= i4; ++i)
|
|
{
|
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
|
a[i + (ll + lsec - 1) * a_dim1];
|
|
}
|
|
}
|
|
|
|
uisec = isec - isec % 4;
|
|
i4 = jj + ujsec - 1;
|
|
for (j = jj; j <= i4; j += 4)
|
|
{
|
|
i5 = ii + uisec - 1;
|
|
for (i = ii; i <= i5; i += 4)
|
|
{
|
|
f11 = c[i + j * c_dim1];
|
|
f21 = c[i + 1 + j * c_dim1];
|
|
f12 = c[i + (j + 1) * c_dim1];
|
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
|
f13 = c[i + (j + 2) * c_dim1];
|
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
|
f14 = c[i + (j + 3) * c_dim1];
|
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
|
f31 = c[i + 2 + j * c_dim1];
|
|
f41 = c[i + 3 + j * c_dim1];
|
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
|
i6 = ll + lsec - 1;
|
|
for (l = ll; l <= i6; ++l)
|
|
{
|
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
|
* b[l + j * b_dim1];
|
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
|
* b[l + j * b_dim1];
|
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
|
* b[l + (j + 1) * b_dim1];
|
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
|
* b[l + (j + 1) * b_dim1];
|
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
|
* b[l + (j + 2) * b_dim1];
|
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
|
* b[l + (j + 2) * b_dim1];
|
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
|
* b[l + (j + 3) * b_dim1];
|
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
|
* b[l + (j + 3) * b_dim1];
|
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
|
* b[l + j * b_dim1];
|
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
|
* b[l + j * b_dim1];
|
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
|
* b[l + (j + 1) * b_dim1];
|
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
|
* b[l + (j + 1) * b_dim1];
|
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
|
* b[l + (j + 2) * b_dim1];
|
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
|
* b[l + (j + 2) * b_dim1];
|
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
|
* b[l + (j + 3) * b_dim1];
|
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
|
* b[l + (j + 3) * b_dim1];
|
|
}
|
|
c[i + j * c_dim1] = f11;
|
|
c[i + 1 + j * c_dim1] = f21;
|
|
c[i + (j + 1) * c_dim1] = f12;
|
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
|
c[i + (j + 2) * c_dim1] = f13;
|
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
|
c[i + (j + 3) * c_dim1] = f14;
|
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
|
c[i + 2 + j * c_dim1] = f31;
|
|
c[i + 3 + j * c_dim1] = f41;
|
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
|
}
|
|
if (uisec < isec)
|
|
{
|
|
i5 = ii + isec - 1;
|
|
for (i = ii + uisec; i <= i5; ++i)
|
|
{
|
|
f11 = c[i + j * c_dim1];
|
|
f12 = c[i + (j + 1) * c_dim1];
|
|
f13 = c[i + (j + 2) * c_dim1];
|
|
f14 = c[i + (j + 3) * c_dim1];
|
|
i6 = ll + lsec - 1;
|
|
for (l = ll; l <= i6; ++l)
|
|
{
|
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + (j + 1) * b_dim1];
|
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + (j + 2) * b_dim1];
|
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + (j + 3) * b_dim1];
|
|
}
|
|
c[i + j * c_dim1] = f11;
|
|
c[i + (j + 1) * c_dim1] = f12;
|
|
c[i + (j + 2) * c_dim1] = f13;
|
|
c[i + (j + 3) * c_dim1] = f14;
|
|
}
|
|
}
|
|
}
|
|
if (ujsec < jsec)
|
|
{
|
|
i4 = jj + jsec - 1;
|
|
for (j = jj + ujsec; j <= i4; ++j)
|
|
{
|
|
i5 = ii + uisec - 1;
|
|
for (i = ii; i <= i5; i += 4)
|
|
{
|
|
f11 = c[i + j * c_dim1];
|
|
f21 = c[i + 1 + j * c_dim1];
|
|
f31 = c[i + 2 + j * c_dim1];
|
|
f41 = c[i + 3 + j * c_dim1];
|
|
i6 = ll + lsec - 1;
|
|
for (l = ll; l <= i6; ++l)
|
|
{
|
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
}
|
|
c[i + j * c_dim1] = f11;
|
|
c[i + 1 + j * c_dim1] = f21;
|
|
c[i + 2 + j * c_dim1] = f31;
|
|
c[i + 3 + j * c_dim1] = f41;
|
|
}
|
|
i5 = ii + isec - 1;
|
|
for (i = ii + uisec; i <= i5; ++i)
|
|
{
|
|
f11 = c[i + j * c_dim1];
|
|
i6 = ll + lsec - 1;
|
|
for (l = ll; l <= i6; ++l)
|
|
{
|
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
}
|
|
c[i + j * c_dim1] = f11;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
free(t1);
|
|
return;
|
|
}
|
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
|
{
|
|
if (GFC_DESCRIPTOR_RANK (a) != 1)
|
|
{
|
|
const GFC_COMPLEX_16 *restrict abase_x;
|
|
const GFC_COMPLEX_16 *restrict bbase_y;
|
|
GFC_COMPLEX_16 *restrict dest_y;
|
|
GFC_COMPLEX_16 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
dest_y = &dest[y*rystride];
|
|
for (x = 0; x < xcount; x++)
|
|
{
|
|
abase_x = &abase[x*axstride];
|
|
s = (GFC_COMPLEX_16) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase_x[n] * bbase_y[n];
|
|
dest_y[x] = s;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const GFC_COMPLEX_16 *restrict bbase_y;
|
|
GFC_COMPLEX_16 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
s = (GFC_COMPLEX_16) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase[n*axstride] * bbase_y[n];
|
|
dest[y*rystride] = s;
|
|
}
|
|
}
|
|
}
|
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
const GFC_COMPLEX_16 *restrict bbase_y;
|
|
GFC_COMPLEX_16 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
s = (GFC_COMPLEX_16) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase[n*axstride] * bbase_y[n*bxstride];
|
|
dest[y*rxstride] = s;
|
|
}
|
|
}
|
|
else if (axstride < aystride)
|
|
{
|
|
for (y = 0; y < ycount; y++)
|
|
for (x = 0; x < xcount; x++)
|
|
dest[x*rxstride + y*rystride] = (GFC_COMPLEX_16)0;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
for (n = 0; n < count; n++)
|
|
for (x = 0; x < xcount; x++)
|
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
|
dest[x*rxstride + y*rystride] +=
|
|
abase[x*axstride + n*aystride] *
|
|
bbase[n*bxstride + y*bystride];
|
|
}
|
|
else
|
|
{
|
|
const GFC_COMPLEX_16 *restrict abase_x;
|
|
const GFC_COMPLEX_16 *restrict bbase_y;
|
|
GFC_COMPLEX_16 *restrict dest_y;
|
|
GFC_COMPLEX_16 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
dest_y = &dest[y*rystride];
|
|
for (x = 0; x < xcount; x++)
|
|
{
|
|
abase_x = &abase[x*axstride];
|
|
s = (GFC_COMPLEX_16) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase_x[n*aystride] * bbase_y[n*bxstride];
|
|
dest_y[x*rxstride] = s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#undef POW3
|
|
#undef min
|
|
#undef max
|
|
|
|
#endif
|
|
|
|
#if defined(HAVE_AVX) && defined(HAVE_FMA4) && defined(HAVE_AVX128)
|
|
void
|
|
matmul_c16_avx128_fma4 (gfc_array_c16 * const restrict retarray,
|
|
gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma4")));
|
|
internal_proto(matmul_c16_avx128_fma4);
|
|
void
|
|
matmul_c16_avx128_fma4 (gfc_array_c16 * const restrict retarray,
|
|
gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm)
|
|
{
|
|
const GFC_COMPLEX_16 * restrict abase;
|
|
const GFC_COMPLEX_16 * restrict bbase;
|
|
GFC_COMPLEX_16 * restrict dest;
|
|
|
|
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
|
index_type x, y, n, count, xcount, ycount;
|
|
|
|
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
|
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
|
|
|
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
|
|
|
Either A or B (but not both) can be rank 1:
|
|
|
|
o One-dimensional argument A is implicitly treated as a row matrix
|
|
dimensioned [1,count], so xcount=1.
|
|
|
|
o One-dimensional argument B is implicitly treated as a column matrix
|
|
dimensioned [count, 1], so ycount=1.
|
|
*/
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
|
GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
|
|
}
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
|
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
|
|
}
|
|
else
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
|
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[1], 0,
|
|
GFC_DESCRIPTOR_EXTENT(b,1) - 1,
|
|
GFC_DESCRIPTOR_EXTENT(retarray,0));
|
|
}
|
|
|
|
retarray->base_addr
|
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16));
|
|
retarray->offset = 0;
|
|
}
|
|
else if (unlikely (compile_options.bounds_check))
|
|
{
|
|
index_type ret_extent, arg_extent;
|
|
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Array bound mismatch for dimension 1 of "
|
|
"array (%ld/%ld) ",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
}
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Array bound mismatch for dimension 1 of "
|
|
"array (%ld/%ld) ",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
}
|
|
else
|
|
{
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Array bound mismatch for dimension 1 of "
|
|
"array (%ld/%ld) ",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Array bound mismatch for dimension 2 of "
|
|
"array (%ld/%ld) ",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
}
|
|
}
|
|
|
|
|
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
|
{
|
|
/* One-dimensional result may be addressed in the code below
|
|
either as a row or a column matrix. We want both cases to
|
|
work. */
|
|
rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
}
|
|
else
|
|
{
|
|
rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
|
|
}
|
|
|
|
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
/* Treat it as a a row matrix A[1,count]. */
|
|
axstride = GFC_DESCRIPTOR_STRIDE(a,0);
|
|
aystride = 1;
|
|
|
|
xcount = 1;
|
|
count = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
}
|
|
else
|
|
{
|
|
axstride = GFC_DESCRIPTOR_STRIDE(a,0);
|
|
aystride = GFC_DESCRIPTOR_STRIDE(a,1);
|
|
|
|
count = GFC_DESCRIPTOR_EXTENT(a,1);
|
|
xcount = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
}
|
|
|
|
if (count != GFC_DESCRIPTOR_EXTENT(b,0))
|
|
{
|
|
if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
|
|
runtime_error ("Incorrect extent in argument B in MATMUL intrinsic "
|
|
"in dimension 1: is %ld, should be %ld",
|
|
(long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count);
|
|
}
|
|
|
|
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
/* Treat it as a column matrix B[count,1] */
|
|
bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
|
|
|
|
/* bystride should never be used for 1-dimensional b.
|
|
The value is only used for calculation of the
|
|
memory by the buffer. */
|
|
bystride = 256;
|
|
ycount = 1;
|
|
}
|
|
else
|
|
{
|
|
bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
|
|
bystride = GFC_DESCRIPTOR_STRIDE(b,1);
|
|
ycount = GFC_DESCRIPTOR_EXTENT(b,1);
|
|
}
|
|
|
|
abase = a->base_addr;
|
|
bbase = b->base_addr;
|
|
dest = retarray->base_addr;
|
|
|
|
/* Now that everything is set up, we perform the multiplication
|
|
itself. */
|
|
|
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
|
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
|
|
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
|
&& (bxstride == 1 || bystride == 1)
|
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
|
> POW3(blas_limit)))
|
|
{
|
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
|
const GFC_COMPLEX_16 one = 1, zero = 0;
|
|
const int lda = (axstride == 1) ? aystride : axstride,
|
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
|
|
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
|
{
|
|
assert (gemm != NULL);
|
|
const char *transa, *transb;
|
|
if (try_blas & 2)
|
|
transa = "C";
|
|
else
|
|
transa = axstride == 1 ? "N" : "T";
|
|
|
|
if (try_blas & 4)
|
|
transb = "C";
|
|
else
|
|
transb = bxstride == 1 ? "N" : "T";
|
|
|
|
gemm (transa, transb , &m,
|
|
&n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
|
|
&ldc, 1, 1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (rxstride == 1 && axstride == 1 && bxstride == 1
|
|
&& GFC_DESCRIPTOR_RANK (b) != 1)
|
|
{
|
|
/* This block of code implements a tuned matmul, derived from
|
|
Superscalar GEMM-based level 3 BLAS, Beta version 0.1
|
|
|
|
Bo Kagstrom and Per Ling
|
|
Department of Computing Science
|
|
Umea University
|
|
S-901 87 Umea, Sweden
|
|
|
|
from netlib.org, translated to C, and modified for matmul.m4. */
|
|
|
|
const GFC_COMPLEX_16 *a, *b;
|
|
GFC_COMPLEX_16 *c;
|
|
const index_type m = xcount, n = ycount, k = count;
|
|
|
|
/* System generated locals */
|
|
index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
|
|
i1, i2, i3, i4, i5, i6;
|
|
|
|
/* Local variables */
|
|
GFC_COMPLEX_16 f11, f12, f21, f22, f31, f32, f41, f42,
|
|
f13, f14, f23, f24, f33, f34, f43, f44;
|
|
index_type i, j, l, ii, jj, ll;
|
|
index_type isec, jsec, lsec, uisec, ujsec, ulsec;
|
|
GFC_COMPLEX_16 *t1;
|
|
|
|
a = abase;
|
|
b = bbase;
|
|
c = retarray->base_addr;
|
|
|
|
/* Parameter adjustments */
|
|
c_dim1 = rystride;
|
|
c_offset = 1 + c_dim1;
|
|
c -= c_offset;
|
|
a_dim1 = aystride;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
b_dim1 = bystride;
|
|
b_offset = 1 + b_dim1;
|
|
b -= b_offset;
|
|
|
|
/* Empty c first. */
|
|
for (j=1; j<=n; j++)
|
|
for (i=1; i<=m; i++)
|
|
c[i + j * c_dim1] = (GFC_COMPLEX_16)0;
|
|
|
|
/* Early exit if possible */
|
|
if (m == 0 || n == 0 || k == 0)
|
|
return;
|
|
|
|
/* Adjust size of t1 to what is needed. */
|
|
index_type t1_dim, a_sz;
|
|
if (aystride == 1)
|
|
a_sz = rystride;
|
|
else
|
|
a_sz = a_dim1;
|
|
|
|
t1_dim = a_sz * 256 + b_dim1;
|
|
if (t1_dim > 65536)
|
|
t1_dim = 65536;
|
|
|
|
t1 = malloc (t1_dim * sizeof(GFC_COMPLEX_16));
|
|
|
|
/* Start turning the crank. */
|
|
i1 = n;
|
|
for (jj = 1; jj <= i1; jj += 512)
|
|
{
|
|
/* Computing MIN */
|
|
i2 = 512;
|
|
i3 = n - jj + 1;
|
|
jsec = min(i2,i3);
|
|
ujsec = jsec - jsec % 4;
|
|
i2 = k;
|
|
for (ll = 1; ll <= i2; ll += 256)
|
|
{
|
|
/* Computing MIN */
|
|
i3 = 256;
|
|
i4 = k - ll + 1;
|
|
lsec = min(i3,i4);
|
|
ulsec = lsec - lsec % 2;
|
|
|
|
i3 = m;
|
|
for (ii = 1; ii <= i3; ii += 256)
|
|
{
|
|
/* Computing MIN */
|
|
i4 = 256;
|
|
i5 = m - ii + 1;
|
|
isec = min(i4,i5);
|
|
uisec = isec - isec % 2;
|
|
i4 = ll + ulsec - 1;
|
|
for (l = ll; l <= i4; l += 2)
|
|
{
|
|
i5 = ii + uisec - 1;
|
|
for (i = ii; i <= i5; i += 2)
|
|
{
|
|
t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
|
|
a[i + l * a_dim1];
|
|
t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
|
|
a[i + (l + 1) * a_dim1];
|
|
t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
|
|
a[i + 1 + l * a_dim1];
|
|
t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
|
|
a[i + 1 + (l + 1) * a_dim1];
|
|
}
|
|
if (uisec < isec)
|
|
{
|
|
t1[l - ll + 1 + (isec << 8) - 257] =
|
|
a[ii + isec - 1 + l * a_dim1];
|
|
t1[l - ll + 2 + (isec << 8) - 257] =
|
|
a[ii + isec - 1 + (l + 1) * a_dim1];
|
|
}
|
|
}
|
|
if (ulsec < lsec)
|
|
{
|
|
i4 = ii + isec - 1;
|
|
for (i = ii; i<= i4; ++i)
|
|
{
|
|
t1[lsec + ((i - ii + 1) << 8) - 257] =
|
|
a[i + (ll + lsec - 1) * a_dim1];
|
|
}
|
|
}
|
|
|
|
uisec = isec - isec % 4;
|
|
i4 = jj + ujsec - 1;
|
|
for (j = jj; j <= i4; j += 4)
|
|
{
|
|
i5 = ii + uisec - 1;
|
|
for (i = ii; i <= i5; i += 4)
|
|
{
|
|
f11 = c[i + j * c_dim1];
|
|
f21 = c[i + 1 + j * c_dim1];
|
|
f12 = c[i + (j + 1) * c_dim1];
|
|
f22 = c[i + 1 + (j + 1) * c_dim1];
|
|
f13 = c[i + (j + 2) * c_dim1];
|
|
f23 = c[i + 1 + (j + 2) * c_dim1];
|
|
f14 = c[i + (j + 3) * c_dim1];
|
|
f24 = c[i + 1 + (j + 3) * c_dim1];
|
|
f31 = c[i + 2 + j * c_dim1];
|
|
f41 = c[i + 3 + j * c_dim1];
|
|
f32 = c[i + 2 + (j + 1) * c_dim1];
|
|
f42 = c[i + 3 + (j + 1) * c_dim1];
|
|
f33 = c[i + 2 + (j + 2) * c_dim1];
|
|
f43 = c[i + 3 + (j + 2) * c_dim1];
|
|
f34 = c[i + 2 + (j + 3) * c_dim1];
|
|
f44 = c[i + 3 + (j + 3) * c_dim1];
|
|
i6 = ll + lsec - 1;
|
|
for (l = ll; l <= i6; ++l)
|
|
{
|
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
|
* b[l + j * b_dim1];
|
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
|
* b[l + j * b_dim1];
|
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
|
* b[l + (j + 1) * b_dim1];
|
|
f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
|
* b[l + (j + 1) * b_dim1];
|
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
|
* b[l + (j + 2) * b_dim1];
|
|
f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
|
* b[l + (j + 2) * b_dim1];
|
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
|
|
* b[l + (j + 3) * b_dim1];
|
|
f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
|
|
* b[l + (j + 3) * b_dim1];
|
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
|
* b[l + j * b_dim1];
|
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
|
* b[l + j * b_dim1];
|
|
f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
|
* b[l + (j + 1) * b_dim1];
|
|
f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
|
* b[l + (j + 1) * b_dim1];
|
|
f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
|
* b[l + (j + 2) * b_dim1];
|
|
f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
|
* b[l + (j + 2) * b_dim1];
|
|
f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
|
|
* b[l + (j + 3) * b_dim1];
|
|
f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
|
|
* b[l + (j + 3) * b_dim1];
|
|
}
|
|
c[i + j * c_dim1] = f11;
|
|
c[i + 1 + j * c_dim1] = f21;
|
|
c[i + (j + 1) * c_dim1] = f12;
|
|
c[i + 1 + (j + 1) * c_dim1] = f22;
|
|
c[i + (j + 2) * c_dim1] = f13;
|
|
c[i + 1 + (j + 2) * c_dim1] = f23;
|
|
c[i + (j + 3) * c_dim1] = f14;
|
|
c[i + 1 + (j + 3) * c_dim1] = f24;
|
|
c[i + 2 + j * c_dim1] = f31;
|
|
c[i + 3 + j * c_dim1] = f41;
|
|
c[i + 2 + (j + 1) * c_dim1] = f32;
|
|
c[i + 3 + (j + 1) * c_dim1] = f42;
|
|
c[i + 2 + (j + 2) * c_dim1] = f33;
|
|
c[i + 3 + (j + 2) * c_dim1] = f43;
|
|
c[i + 2 + (j + 3) * c_dim1] = f34;
|
|
c[i + 3 + (j + 3) * c_dim1] = f44;
|
|
}
|
|
if (uisec < isec)
|
|
{
|
|
i5 = ii + isec - 1;
|
|
for (i = ii + uisec; i <= i5; ++i)
|
|
{
|
|
f11 = c[i + j * c_dim1];
|
|
f12 = c[i + (j + 1) * c_dim1];
|
|
f13 = c[i + (j + 2) * c_dim1];
|
|
f14 = c[i + (j + 3) * c_dim1];
|
|
i6 = ll + lsec - 1;
|
|
for (l = ll; l <= i6; ++l)
|
|
{
|
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + (j + 1) * b_dim1];
|
|
f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + (j + 2) * b_dim1];
|
|
f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + (j + 3) * b_dim1];
|
|
}
|
|
c[i + j * c_dim1] = f11;
|
|
c[i + (j + 1) * c_dim1] = f12;
|
|
c[i + (j + 2) * c_dim1] = f13;
|
|
c[i + (j + 3) * c_dim1] = f14;
|
|
}
|
|
}
|
|
}
|
|
if (ujsec < jsec)
|
|
{
|
|
i4 = jj + jsec - 1;
|
|
for (j = jj + ujsec; j <= i4; ++j)
|
|
{
|
|
i5 = ii + uisec - 1;
|
|
for (i = ii; i <= i5; i += 4)
|
|
{
|
|
f11 = c[i + j * c_dim1];
|
|
f21 = c[i + 1 + j * c_dim1];
|
|
f31 = c[i + 2 + j * c_dim1];
|
|
f41 = c[i + 3 + j * c_dim1];
|
|
i6 = ll + lsec - 1;
|
|
for (l = ll; l <= i6; ++l)
|
|
{
|
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
}
|
|
c[i + j * c_dim1] = f11;
|
|
c[i + 1 + j * c_dim1] = f21;
|
|
c[i + 2 + j * c_dim1] = f31;
|
|
c[i + 3 + j * c_dim1] = f41;
|
|
}
|
|
i5 = ii + isec - 1;
|
|
for (i = ii + uisec; i <= i5; ++i)
|
|
{
|
|
f11 = c[i + j * c_dim1];
|
|
i6 = ll + lsec - 1;
|
|
for (l = ll; l <= i6; ++l)
|
|
{
|
|
f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
|
|
257] * b[l + j * b_dim1];
|
|
}
|
|
c[i + j * c_dim1] = f11;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
free(t1);
|
|
return;
|
|
}
|
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
|
{
|
|
if (GFC_DESCRIPTOR_RANK (a) != 1)
|
|
{
|
|
const GFC_COMPLEX_16 *restrict abase_x;
|
|
const GFC_COMPLEX_16 *restrict bbase_y;
|
|
GFC_COMPLEX_16 *restrict dest_y;
|
|
GFC_COMPLEX_16 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
dest_y = &dest[y*rystride];
|
|
for (x = 0; x < xcount; x++)
|
|
{
|
|
abase_x = &abase[x*axstride];
|
|
s = (GFC_COMPLEX_16) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase_x[n] * bbase_y[n];
|
|
dest_y[x] = s;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const GFC_COMPLEX_16 *restrict bbase_y;
|
|
GFC_COMPLEX_16 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
s = (GFC_COMPLEX_16) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase[n*axstride] * bbase_y[n];
|
|
dest[y*rystride] = s;
|
|
}
|
|
}
|
|
}
|
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
const GFC_COMPLEX_16 *restrict bbase_y;
|
|
GFC_COMPLEX_16 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
s = (GFC_COMPLEX_16) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase[n*axstride] * bbase_y[n*bxstride];
|
|
dest[y*rxstride] = s;
|
|
}
|
|
}
|
|
else if (axstride < aystride)
|
|
{
|
|
for (y = 0; y < ycount; y++)
|
|
for (x = 0; x < xcount; x++)
|
|
dest[x*rxstride + y*rystride] = (GFC_COMPLEX_16)0;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
for (n = 0; n < count; n++)
|
|
for (x = 0; x < xcount; x++)
|
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
|
dest[x*rxstride + y*rystride] +=
|
|
abase[x*axstride + n*aystride] *
|
|
bbase[n*bxstride + y*bystride];
|
|
}
|
|
else
|
|
{
|
|
const GFC_COMPLEX_16 *restrict abase_x;
|
|
const GFC_COMPLEX_16 *restrict bbase_y;
|
|
GFC_COMPLEX_16 *restrict dest_y;
|
|
GFC_COMPLEX_16 s;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = &bbase[y*bystride];
|
|
dest_y = &dest[y*rystride];
|
|
for (x = 0; x < xcount; x++)
|
|
{
|
|
abase_x = &abase[x*axstride];
|
|
s = (GFC_COMPLEX_16) 0;
|
|
for (n = 0; n < count; n++)
|
|
s += abase_x[n*aystride] * bbase_y[n*bxstride];
|
|
dest_y[x*rxstride] = s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#undef POW3
|
|
#undef min
|
|
#undef max
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|