gcc/libgo/go/math/big/int.go
2012-11-21 07:03:38 +00:00

979 lines
23 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements signed multi-precision integers.
package big
import (
"errors"
"fmt"
"io"
"math/rand"
"strings"
)
// An Int represents a signed multi-precision integer.
// The zero value for an Int represents the value 0.
type Int struct {
neg bool // sign
abs nat // absolute value of the integer
}
var intOne = &Int{false, natOne}
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0
// +1 if x > 0
//
func (x *Int) Sign() int {
if len(x.abs) == 0 {
return 0
}
if x.neg {
return -1
}
return 1
}
// SetInt64 sets z to x and returns z.
func (z *Int) SetInt64(x int64) *Int {
neg := false
if x < 0 {
neg = true
x = -x
}
z.abs = z.abs.setUint64(uint64(x))
z.neg = neg
return z
}
// NewInt allocates and returns a new Int set to x.
func NewInt(x int64) *Int {
return new(Int).SetInt64(x)
}
// Set sets z to x and returns z.
func (z *Int) Set(x *Int) *Int {
if z != x {
z.abs = z.abs.set(x.abs)
z.neg = x.neg
}
return z
}
// Bits provides raw (unchecked but fast) access to x by returning its
// absolute value as a little-endian Word slice. The result and x share
// the same underlying array.
// Bits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func (x *Int) Bits() []Word {
return x.abs
}
// SetBits provides raw (unchecked but fast) access to z by setting its
// value to abs, interpreted as a little-endian Word slice, and returning
// z. The result and abs share the same underlying array.
// SetBits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func (z *Int) SetBits(abs []Word) *Int {
z.abs = nat(abs).norm()
z.neg = false
return z
}
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Int) Abs(x *Int) *Int {
z.Set(x)
z.neg = false
return z
}
// Neg sets z to -x and returns z.
func (z *Int) Neg(x *Int) *Int {
z.Set(x)
z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
return z
}
// Add sets z to the sum x+y and returns z.
func (z *Int) Add(x, y *Int) *Int {
neg := x.neg
if x.neg == y.neg {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z.abs = z.abs.add(x.abs, y.abs)
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if x.abs.cmp(y.abs) >= 0 {
z.abs = z.abs.sub(x.abs, y.abs)
} else {
neg = !neg
z.abs = z.abs.sub(y.abs, x.abs)
}
}
z.neg = len(z.abs) > 0 && neg // 0 has no sign
return z
}
// Sub sets z to the difference x-y and returns z.
func (z *Int) Sub(x, y *Int) *Int {
neg := x.neg
if x.neg != y.neg {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z.abs = z.abs.add(x.abs, y.abs)
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if x.abs.cmp(y.abs) >= 0 {
z.abs = z.abs.sub(x.abs, y.abs)
} else {
neg = !neg
z.abs = z.abs.sub(y.abs, x.abs)
}
}
z.neg = len(z.abs) > 0 && neg // 0 has no sign
return z
}
// Mul sets z to the product x*y and returns z.
func (z *Int) Mul(x, y *Int) *Int {
// x * y == x * y
// x * (-y) == -(x * y)
// (-x) * y == -(x * y)
// (-x) * (-y) == x * y
z.abs = z.abs.mul(x.abs, y.abs)
z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
return z
}
// MulRange sets z to the product of all integers
// in the range [a, b] inclusively and returns z.
// If a > b (empty range), the result is 1.
func (z *Int) MulRange(a, b int64) *Int {
switch {
case a > b:
return z.SetInt64(1) // empty range
case a <= 0 && b >= 0:
return z.SetInt64(0) // range includes 0
}
// a <= b && (b < 0 || a > 0)
neg := false
if a < 0 {
neg = (b-a)&1 == 0
a, b = -b, -a
}
z.abs = z.abs.mulRange(uint64(a), uint64(b))
z.neg = neg
return z
}
// Binomial sets z to the binomial coefficient of (n, k) and returns z.
func (z *Int) Binomial(n, k int64) *Int {
var a, b Int
a.MulRange(n-k+1, n)
b.MulRange(1, k)
return z.Quo(&a, &b)
}
// Quo sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Quo implements truncated division (like Go); see QuoRem for more details.
func (z *Int) Quo(x, y *Int) *Int {
z.abs, _ = z.abs.div(nil, x.abs, y.abs)
z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
return z
}
// Rem sets z to the remainder x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Rem implements truncated modulus (like Go); see QuoRem for more details.
func (z *Int) Rem(x, y *Int) *Int {
_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
return z
}
// QuoRem sets z to the quotient x/y and r to the remainder x%y
// and returns the pair (z, r) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// QuoRem implements T-division and modulus (like Go):
//
// q = x/y with the result truncated to zero
// r = x - y*q
//
// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
// See DivMod for Euclidean division and modulus (unlike Go).
//
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
return z, r
}
// Div sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Div implements Euclidean division (unlike Go); see DivMod for more details.
func (z *Int) Div(x, y *Int) *Int {
y_neg := y.neg // z may be an alias for y
var r Int
z.QuoRem(x, y, &r)
if r.neg {
if y_neg {
z.Add(z, intOne)
} else {
z.Sub(z, intOne)
}
}
return z
}
// Mod sets z to the modulus x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
func (z *Int) Mod(x, y *Int) *Int {
y0 := y // save y
if z == y || alias(z.abs, y.abs) {
y0 = new(Int).Set(y)
}
var q Int
q.QuoRem(x, y, z)
if z.neg {
if y0.neg {
z.Sub(z, y0)
} else {
z.Add(z, y0)
}
}
return z
}
// DivMod sets z to the quotient x div y and m to the modulus x mod y
// and returns the pair (z, m) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// DivMod implements Euclidean division and modulus (unlike Go):
//
// q = x div y such that
// m = x - y*q with 0 <= m < |q|
//
// (See Raymond T. Boute, ``The Euclidean definition of the functions
// div and mod''. ACM Transactions on Programming Languages and
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
// ACM press.)
// See QuoRem for T-division and modulus (like Go).
//
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
y0 := y // save y
if z == y || alias(z.abs, y.abs) {
y0 = new(Int).Set(y)
}
z.QuoRem(x, y, m)
if m.neg {
if y0.neg {
z.Add(z, intOne)
m.Sub(m, y0)
} else {
z.Sub(z, intOne)
m.Add(m, y0)
}
}
return z, m
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
func (x *Int) Cmp(y *Int) (r int) {
// x cmp y == x cmp y
// x cmp (-y) == x
// (-x) cmp y == y
// (-x) cmp (-y) == -(x cmp y)
switch {
case x.neg == y.neg:
r = x.abs.cmp(y.abs)
if x.neg {
r = -r
}
case x.neg:
r = -1
default:
r = 1
}
return
}
func (x *Int) String() string {
switch {
case x == nil:
return "<nil>"
case x.neg:
return "-" + x.abs.decimalString()
}
return x.abs.decimalString()
}
func charset(ch rune) string {
switch ch {
case 'b':
return lowercaseDigits[0:2]
case 'o':
return lowercaseDigits[0:8]
case 'd', 's', 'v':
return lowercaseDigits[0:10]
case 'x':
return lowercaseDigits[0:16]
case 'X':
return uppercaseDigits[0:16]
}
return "" // unknown format
}
// write count copies of text to s
func writeMultiple(s fmt.State, text string, count int) {
if len(text) > 0 {
b := []byte(text)
for ; count > 0; count-- {
s.Write(b)
}
}
}
// Format is a support routine for fmt.Formatter. It accepts
// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x'
// (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
// Also supported are the full suite of package fmt's format
// verbs for integral types, including '+', '-', and ' '
// for sign control, '#' for leading zero in octal and for
// hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X"
// respectively, specification of minimum digits precision,
// output field width, space or zero padding, and left or
// right justification.
//
func (x *Int) Format(s fmt.State, ch rune) {
cs := charset(ch)
// special cases
switch {
case cs == "":
// unknown format
fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String())
return
case x == nil:
fmt.Fprint(s, "<nil>")
return
}
// determine sign character
sign := ""
switch {
case x.neg:
sign = "-"
case s.Flag('+'): // supersedes ' ' when both specified
sign = "+"
case s.Flag(' '):
sign = " "
}
// determine prefix characters for indicating output base
prefix := ""
if s.Flag('#') {
switch ch {
case 'o': // octal
prefix = "0"
case 'x': // hexadecimal
prefix = "0x"
case 'X':
prefix = "0X"
}
}
// determine digits with base set by len(cs) and digit characters from cs
digits := x.abs.string(cs)
// number of characters for the three classes of number padding
var left int // space characters to left of digits for right justification ("%8d")
var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d")
var right int // space characters to right of digits for left justification ("%-8d")
// determine number padding from precision: the least number of digits to output
precision, precisionSet := s.Precision()
if precisionSet {
switch {
case len(digits) < precision:
zeroes = precision - len(digits) // count of zero padding
case digits == "0" && precision == 0:
return // print nothing if zero value (x == 0) and zero precision ("." or ".0")
}
}
// determine field pad from width: the least number of characters to output
length := len(sign) + len(prefix) + zeroes + len(digits)
if width, widthSet := s.Width(); widthSet && length < width { // pad as specified
switch d := width - length; {
case s.Flag('-'):
// pad on the right with spaces; supersedes '0' when both specified
right = d
case s.Flag('0') && !precisionSet:
// pad with zeroes unless precision also specified
zeroes = d
default:
// pad on the left with spaces
left = d
}
}
// print number as [left pad][sign][prefix][zero pad][digits][right pad]
writeMultiple(s, " ", left)
writeMultiple(s, sign, 1)
writeMultiple(s, prefix, 1)
writeMultiple(s, "0", zeroes)
writeMultiple(s, digits, 1)
writeMultiple(s, " ", right)
}
// scan sets z to the integer value corresponding to the longest possible prefix
// read from r representing a signed integer number in a given conversion base.
// It returns z, the actual conversion base used, and an error, if any. In the
// error case, the value of z is undefined but the returned value is nil. The
// syntax follows the syntax of integer literals in Go.
//
// The base argument must be 0 or a value from 2 through MaxBase. If the base
// is 0, the string prefix determines the actual conversion base. A prefix of
// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
//
func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) {
// determine sign
ch, _, err := r.ReadRune()
if err != nil {
return nil, 0, err
}
neg := false
switch ch {
case '-':
neg = true
case '+': // nothing to do
default:
r.UnreadRune()
}
// determine mantissa
z.abs, base, err = z.abs.scan(r, base)
if err != nil {
return nil, base, err
}
z.neg = len(z.abs) > 0 && neg // 0 has no sign
return z, base, nil
}
// Scan is a support routine for fmt.Scanner; it sets z to the value of
// the scanned number. It accepts the formats 'b' (binary), 'o' (octal),
// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
func (z *Int) Scan(s fmt.ScanState, ch rune) error {
s.SkipSpace() // skip leading space characters
base := 0
switch ch {
case 'b':
base = 2
case 'o':
base = 8
case 'd':
base = 10
case 'x', 'X':
base = 16
case 's', 'v':
// let scan determine the base
default:
return errors.New("Int.Scan: invalid verb")
}
_, _, err := z.scan(s, base)
return err
}
// Int64 returns the int64 representation of x.
// If x cannot be represented in an int64, the result is undefined.
func (x *Int) Int64() int64 {
if len(x.abs) == 0 {
return 0
}
v := int64(x.abs[0])
if _W == 32 && len(x.abs) > 1 {
v |= int64(x.abs[1]) << 32
}
if x.neg {
v = -v
}
return v
}
// SetString sets z to the value of s, interpreted in the given base,
// and returns z and a boolean indicating success. If SetString fails,
// the value of z is undefined but the returned value is nil.
//
// The base argument must be 0 or a value from 2 through MaxBase. If the base
// is 0, the string prefix determines the actual conversion base. A prefix of
// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
//
func (z *Int) SetString(s string, base int) (*Int, bool) {
r := strings.NewReader(s)
_, _, err := z.scan(r, base)
if err != nil {
return nil, false
}
_, _, err = r.ReadRune()
if err != io.EOF {
return nil, false
}
return z, true // err == io.EOF => scan consumed all of s
}
// SetBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z *Int) SetBytes(buf []byte) *Int {
z.abs = z.abs.setBytes(buf)
z.neg = false
return z
}
// Bytes returns the absolute value of z as a big-endian byte slice.
func (x *Int) Bytes() []byte {
buf := make([]byte, len(x.abs)*_S)
return buf[x.abs.bytes(buf):]
}
// BitLen returns the length of the absolute value of z in bits.
// The bit length of 0 is 0.
func (x *Int) BitLen() int {
return x.abs.bitLen()
}
// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
// If y <= 0, the result is 1; if m == nil or m == 0, z = x**y.
// See Knuth, volume 2, section 4.6.3.
func (z *Int) Exp(x, y, m *Int) *Int {
if y.neg || len(y.abs) == 0 {
return z.SetInt64(1)
}
// y > 0
var mWords nat
if m != nil {
mWords = m.abs // m.abs may be nil for m == 0
}
z.abs = z.abs.expNN(x.abs, y.abs, mWords)
z.neg = len(z.abs) > 0 && x.neg && y.abs[0]&1 == 1 // 0 has no sign
return z
}
// GCD sets z to the greatest common divisor of a and b, which both must
// be > 0, and returns z.
// If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
// If either a or b is <= 0, GCD sets z = x = y = 0.
func (z *Int) GCD(x, y, a, b *Int) *Int {
if a.Sign() <= 0 || b.Sign() <= 0 {
z.SetInt64(0)
if x != nil {
x.SetInt64(0)
}
if y != nil {
y.SetInt64(0)
}
return z
}
if x == nil && y == nil {
return z.binaryGCD(a, b)
}
A := new(Int).Set(a)
B := new(Int).Set(b)
X := new(Int)
Y := new(Int).SetInt64(1)
lastX := new(Int).SetInt64(1)
lastY := new(Int)
q := new(Int)
temp := new(Int)
for len(B.abs) > 0 {
r := new(Int)
q, r = q.QuoRem(A, B, r)
A, B = B, r
temp.Set(X)
X.Mul(X, q)
X.neg = !X.neg
X.Add(X, lastX)
lastX.Set(temp)
temp.Set(Y)
Y.Mul(Y, q)
Y.neg = !Y.neg
Y.Add(Y, lastY)
lastY.Set(temp)
}
if x != nil {
*x = *lastX
}
if y != nil {
*y = *lastY
}
*z = *A
return z
}
// binaryGCD sets z to the greatest common divisor of a and b, which both must
// be > 0, and returns z.
// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B.
func (z *Int) binaryGCD(a, b *Int) *Int {
u := z
v := new(Int)
// use one Euclidean iteration to ensure that u and v are approx. the same size
switch {
case len(a.abs) > len(b.abs):
u.Set(b)
v.Rem(a, b)
case len(a.abs) < len(b.abs):
u.Set(a)
v.Rem(b, a)
default:
u.Set(a)
v.Set(b)
}
// v might be 0 now
if len(v.abs) == 0 {
return u
}
// u > 0 && v > 0
// determine largest k such that u = u' << k, v = v' << k
k := u.abs.trailingZeroBits()
if vk := v.abs.trailingZeroBits(); vk < k {
k = vk
}
u.Rsh(u, k)
v.Rsh(v, k)
// determine t (we know that u > 0)
t := new(Int)
if u.abs[0]&1 != 0 {
// u is odd
t.Neg(v)
} else {
t.Set(u)
}
for len(t.abs) > 0 {
// reduce t
t.Rsh(t, t.abs.trailingZeroBits())
if t.neg {
v.Neg(t)
} else {
u.Set(t)
}
t.Sub(u, v)
}
return u.Lsh(u, k)
}
// ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.
// If it returns true, x is prime with probability 1 - 1/4^n.
// If it returns false, x is not prime.
func (x *Int) ProbablyPrime(n int) bool {
return !x.neg && x.abs.probablyPrime(n)
}
// Rand sets z to a pseudo-random number in [0, n) and returns z.
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
z.neg = false
if n.neg == true || len(n.abs) == 0 {
z.abs = nil
return z
}
z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
return z
}
// ModInverse sets z to the multiplicative inverse of g in the group /p (where
// p is a prime) and returns z.
func (z *Int) ModInverse(g, p *Int) *Int {
var d Int
d.GCD(z, nil, g, p)
// x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking
// that modulo p results in g*x = 1, therefore x is the inverse element.
if z.neg {
z.Add(z, p)
}
return z
}
// Lsh sets z = x << n and returns z.
func (z *Int) Lsh(x *Int, n uint) *Int {
z.abs = z.abs.shl(x.abs, n)
z.neg = x.neg
return z
}
// Rsh sets z = x >> n and returns z.
func (z *Int) Rsh(x *Int, n uint) *Int {
if x.neg {
// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
t = t.shr(t, n)
z.abs = t.add(t, natOne)
z.neg = true // z cannot be zero if x is negative
return z
}
z.abs = z.abs.shr(x.abs, n)
z.neg = false
return z
}
// Bit returns the value of the i'th bit of x. That is, it
// returns (x>>i)&1. The bit index i must be >= 0.
func (x *Int) Bit(i int) uint {
if i == 0 {
// optimization for common case: odd/even test of x
if len(x.abs) > 0 {
return uint(x.abs[0] & 1) // bit 0 is same for -x
}
return 0
}
if i < 0 {
panic("negative bit index")
}
if x.neg {
t := nat(nil).sub(x.abs, natOne)
return t.bit(uint(i)) ^ 1
}
return x.abs.bit(uint(i))
}
// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
// That is, if bit is 1 SetBit sets z = x | (1 << i);
// if bit is 0 it sets z = x &^ (1 << i). If bit is not 0 or 1,
// SetBit will panic.
func (z *Int) SetBit(x *Int, i int, b uint) *Int {
if i < 0 {
panic("negative bit index")
}
if x.neg {
t := z.abs.sub(x.abs, natOne)
t = t.setBit(t, uint(i), b^1)
z.abs = t.add(t, natOne)
z.neg = len(z.abs) > 0
return z
}
z.abs = z.abs.setBit(x.abs, uint(i), b)
z.neg = false
return z
}
// And sets z = x & y and returns z.
func (z *Int) And(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
x1 := nat(nil).sub(x.abs, natOne)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
z.neg = true // z cannot be zero if x and y are negative
return z
}
// x & y == x & y
z.abs = z.abs.and(x.abs, y.abs)
z.neg = false
return z
}
// x.neg != y.neg
if x.neg {
x, y = y, x // & is symmetric
}
// x & (-y) == x & ^(y-1) == x &^ (y-1)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.andNot(x.abs, y1)
z.neg = false
return z
}
// AndNot sets z = x &^ y and returns z.
func (z *Int) AndNot(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
x1 := nat(nil).sub(x.abs, natOne)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.andNot(y1, x1)
z.neg = false
return z
}
// x &^ y == x &^ y
z.abs = z.abs.andNot(x.abs, y.abs)
z.neg = false
return z
}
if x.neg {
// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
x1 := nat(nil).sub(x.abs, natOne)
z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
z.neg = true // z cannot be zero if x is negative and y is positive
return z
}
// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
y1 := nat(nil).add(y.abs, natOne)
z.abs = z.abs.and(x.abs, y1)
z.neg = false
return z
}
// Or sets z = x | y and returns z.
func (z *Int) Or(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
x1 := nat(nil).sub(x.abs, natOne)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
z.neg = true // z cannot be zero if x and y are negative
return z
}
// x | y == x | y
z.abs = z.abs.or(x.abs, y.abs)
z.neg = false
return z
}
// x.neg != y.neg
if x.neg {
x, y = y, x // | is symmetric
}
// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
z.neg = true // z cannot be zero if one of x or y is negative
return z
}
// Xor sets z = x ^ y and returns z.
func (z *Int) Xor(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
x1 := nat(nil).sub(x.abs, natOne)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.xor(x1, y1)
z.neg = false
return z
}
// x ^ y == x ^ y
z.abs = z.abs.xor(x.abs, y.abs)
z.neg = false
return z
}
// x.neg != y.neg
if x.neg {
x, y = y, x // ^ is symmetric
}
// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
z.neg = true // z cannot be zero if only one of x or y is negative
return z
}
// Not sets z = ^x and returns z.
func (z *Int) Not(x *Int) *Int {
if x.neg {
// ^(-x) == ^(^(x-1)) == x-1
z.abs = z.abs.sub(x.abs, natOne)
z.neg = false
return z
}
// ^x == -x-1 == -(x+1)
z.abs = z.abs.add(x.abs, natOne)
z.neg = true // z cannot be zero if x is positive
return z
}
// Gob codec version. Permits backward-compatible changes to the encoding.
const intGobVersion byte = 1
// GobEncode implements the gob.GobEncoder interface.
func (x *Int) GobEncode() ([]byte, error) {
buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit
i := x.abs.bytes(buf) - 1 // i >= 0
b := intGobVersion << 1 // make space for sign bit
if x.neg {
b |= 1
}
buf[i] = b
return buf[i:], nil
}
// GobDecode implements the gob.GobDecoder interface.
func (z *Int) GobDecode(buf []byte) error {
if len(buf) == 0 {
return errors.New("Int.GobDecode: no data")
}
b := buf[0]
if b>>1 != intGobVersion {
return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1))
}
z.neg = b&1 != 0
z.abs = z.abs.setBytes(buf[1:])
return nil
}
// MarshalJSON implements the json.Marshaler interface.
func (x *Int) MarshalJSON() ([]byte, error) {
// TODO(gri): get rid of the []byte/string conversions
return []byte(x.String()), nil
}
// UnmarshalJSON implements the json.Unmarshaler interface.
func (z *Int) UnmarshalJSON(x []byte) error {
// TODO(gri): get rid of the []byte/string conversions
_, ok := z.SetString(string(x), 0)
if !ok {
return fmt.Errorf("math/big: cannot unmarshal %s into a *big.Int", x)
}
return nil
}