gcc/libgo/go/math/big/rat.go
Ian Lance Taylor 4ccad563d2 libgo: Update to current sources.
From-SVN: r192704
2012-10-23 04:31:11 +00:00

431 lines
9.8 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements multi-precision rational numbers.
package big
import (
"encoding/binary"
"errors"
"fmt"
"strings"
)
// A Rat represents a quotient a/b of arbitrary precision.
// The zero value for a Rat represents the value 0.
type Rat struct {
// To make zero values for Rat work w/o initialization,
// a zero value of b (len(b) == 0) acts like b == 1.
// a.neg determines the sign of the Rat, b.neg is ignored.
a, b Int
}
// NewRat creates a new Rat with numerator a and denominator b.
func NewRat(a, b int64) *Rat {
return new(Rat).SetFrac64(a, b)
}
// SetFrac sets z to a/b and returns z.
func (z *Rat) SetFrac(a, b *Int) *Rat {
z.a.neg = a.neg != b.neg
babs := b.abs
if len(babs) == 0 {
panic("division by zero")
}
if &z.a == b || alias(z.a.abs, babs) {
babs = nat(nil).set(babs) // make a copy
}
z.a.abs = z.a.abs.set(a.abs)
z.b.abs = z.b.abs.set(babs)
return z.norm()
}
// SetFrac64 sets z to a/b and returns z.
func (z *Rat) SetFrac64(a, b int64) *Rat {
z.a.SetInt64(a)
if b == 0 {
panic("division by zero")
}
if b < 0 {
b = -b
z.a.neg = !z.a.neg
}
z.b.abs = z.b.abs.setUint64(uint64(b))
return z.norm()
}
// SetInt sets z to x (by making a copy of x) and returns z.
func (z *Rat) SetInt(x *Int) *Rat {
z.a.Set(x)
z.b.abs = z.b.abs.make(0)
return z
}
// SetInt64 sets z to x and returns z.
func (z *Rat) SetInt64(x int64) *Rat {
z.a.SetInt64(x)
z.b.abs = z.b.abs.make(0)
return z
}
// Set sets z to x (by making a copy of x) and returns z.
func (z *Rat) Set(x *Rat) *Rat {
if z != x {
z.a.Set(&x.a)
z.b.Set(&x.b)
}
return z
}
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Rat) Abs(x *Rat) *Rat {
z.Set(x)
z.a.neg = false
return z
}
// Neg sets z to -x and returns z.
func (z *Rat) Neg(x *Rat) *Rat {
z.Set(x)
z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
return z
}
// Inv sets z to 1/x and returns z.
func (z *Rat) Inv(x *Rat) *Rat {
if len(x.a.abs) == 0 {
panic("division by zero")
}
z.Set(x)
a := z.b.abs
if len(a) == 0 {
a = a.set(natOne) // materialize numerator
}
b := z.a.abs
if b.cmp(natOne) == 0 {
b = b.make(0) // normalize denominator
}
z.a.abs, z.b.abs = a, b // sign doesn't change
return z
}
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0
// +1 if x > 0
//
func (x *Rat) Sign() int {
return x.a.Sign()
}
// IsInt returns true if the denominator of x is 1.
func (x *Rat) IsInt() bool {
return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
}
// Num returns the numerator of x; it may be <= 0.
// The result is a reference to x's numerator; it
// may change if a new value is assigned to x, and vice versa.
// The sign of the numerator corresponds to the sign of x.
func (x *Rat) Num() *Int {
return &x.a
}
// Denom returns the denominator of x; it is always > 0.
// The result is a reference to x's denominator; it
// may change if a new value is assigned to x, and vice versa.
func (x *Rat) Denom() *Int {
x.b.neg = false // the result is always >= 0
if len(x.b.abs) == 0 {
x.b.abs = x.b.abs.set(natOne) // materialize denominator
}
return &x.b
}
func (z *Rat) norm() *Rat {
switch {
case len(z.a.abs) == 0:
// z == 0 - normalize sign and denominator
z.a.neg = false
z.b.abs = z.b.abs.make(0)
case len(z.b.abs) == 0:
// z is normalized int - nothing to do
case z.b.abs.cmp(natOne) == 0:
// z is int - normalize denominator
z.b.abs = z.b.abs.make(0)
default:
neg := z.a.neg
z.a.neg = false
z.b.neg = false
if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 {
z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
if z.b.abs.cmp(natOne) == 0 {
// z is int - normalize denominator
z.b.abs = z.b.abs.make(0)
}
}
z.a.neg = neg
}
return z
}
// mulDenom sets z to the denominator product x*y (by taking into
// account that 0 values for x or y must be interpreted as 1) and
// returns z.
func mulDenom(z, x, y nat) nat {
switch {
case len(x) == 0:
return z.set(y)
case len(y) == 0:
return z.set(x)
}
return z.mul(x, y)
}
// scaleDenom computes x*f.
// If f == 0 (zero value of denominator), the result is (a copy of) x.
func scaleDenom(x *Int, f nat) *Int {
var z Int
if len(f) == 0 {
return z.Set(x)
}
z.abs = z.abs.mul(x.abs, f)
z.neg = x.neg
return &z
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
func (x *Rat) Cmp(y *Rat) int {
return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs))
}
// Add sets z to the sum x+y and returns z.
func (z *Rat) Add(x, y *Rat) *Rat {
a1 := scaleDenom(&x.a, y.b.abs)
a2 := scaleDenom(&y.a, x.b.abs)
z.a.Add(a1, a2)
z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
// Sub sets z to the difference x-y and returns z.
func (z *Rat) Sub(x, y *Rat) *Rat {
a1 := scaleDenom(&x.a, y.b.abs)
a2 := scaleDenom(&y.a, x.b.abs)
z.a.Sub(a1, a2)
z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
// Mul sets z to the product x*y and returns z.
func (z *Rat) Mul(x, y *Rat) *Rat {
z.a.Mul(&x.a, &y.a)
z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
// Quo sets z to the quotient x/y and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
func (z *Rat) Quo(x, y *Rat) *Rat {
if len(y.a.abs) == 0 {
panic("division by zero")
}
a := scaleDenom(&x.a, y.b.abs)
b := scaleDenom(&y.a, x.b.abs)
z.a.abs = a.abs
z.b.abs = b.abs
z.a.neg = a.neg != b.neg
return z.norm()
}
func ratTok(ch rune) bool {
return strings.IndexRune("+-/0123456789.eE", ch) >= 0
}
// Scan is a support routine for fmt.Scanner. It accepts the formats
// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
tok, err := s.Token(true, ratTok)
if err != nil {
return err
}
if strings.IndexRune("efgEFGv", ch) < 0 {
return errors.New("Rat.Scan: invalid verb")
}
if _, ok := z.SetString(string(tok)); !ok {
return errors.New("Rat.Scan: invalid syntax")
}
return nil
}
// SetString sets z to the value of s and returns z and a boolean indicating
// success. s can be given as a fraction "a/b" or as a floating-point number
// optionally followed by an exponent. If the operation failed, the value of
// z is undefined but the returned value is nil.
func (z *Rat) SetString(s string) (*Rat, bool) {
if len(s) == 0 {
return nil, false
}
// check for a quotient
sep := strings.Index(s, "/")
if sep >= 0 {
if _, ok := z.a.SetString(s[0:sep], 10); !ok {
return nil, false
}
s = s[sep+1:]
var err error
if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil {
return nil, false
}
return z.norm(), true
}
// check for a decimal point
sep = strings.Index(s, ".")
// check for an exponent
e := strings.IndexAny(s, "eE")
var exp Int
if e >= 0 {
if e < sep {
// The E must come after the decimal point.
return nil, false
}
if _, ok := exp.SetString(s[e+1:], 10); !ok {
return nil, false
}
s = s[0:e]
}
if sep >= 0 {
s = s[0:sep] + s[sep+1:]
exp.Sub(&exp, NewInt(int64(len(s)-sep)))
}
if _, ok := z.a.SetString(s, 10); !ok {
return nil, false
}
powTen := nat(nil).expNN(natTen, exp.abs, nil)
if exp.neg {
z.b.abs = powTen
z.norm()
} else {
z.a.abs = z.a.abs.mul(z.a.abs, powTen)
z.b.abs = z.b.abs.make(0)
}
return z, true
}
// String returns a string representation of z in the form "a/b" (even if b == 1).
func (x *Rat) String() string {
s := "/1"
if len(x.b.abs) != 0 {
s = "/" + x.b.abs.decimalString()
}
return x.a.String() + s
}
// RatString returns a string representation of z in the form "a/b" if b != 1,
// and in the form "a" if b == 1.
func (x *Rat) RatString() string {
if x.IsInt() {
return x.a.String()
}
return x.String()
}
// FloatString returns a string representation of z in decimal form with prec
// digits of precision after the decimal point and the last digit rounded.
func (x *Rat) FloatString(prec int) string {
if x.IsInt() {
s := x.a.String()
if prec > 0 {
s += "." + strings.Repeat("0", prec)
}
return s
}
// x.b.abs != 0
q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
p := natOne
if prec > 0 {
p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil)
}
r = r.mul(r, p)
r, r2 := r.div(nat(nil), r, x.b.abs)
// see if we need to round up
r2 = r2.add(r2, r2)
if x.b.abs.cmp(r2) <= 0 {
r = r.add(r, natOne)
if r.cmp(p) >= 0 {
q = nat(nil).add(q, natOne)
r = nat(nil).sub(r, p)
}
}
s := q.decimalString()
if x.a.neg {
s = "-" + s
}
if prec > 0 {
rs := r.decimalString()
leadingZeros := prec - len(rs)
s += "." + strings.Repeat("0", leadingZeros) + rs
}
return s
}
// Gob codec version. Permits backward-compatible changes to the encoding.
const ratGobVersion byte = 1
// GobEncode implements the gob.GobEncoder interface.
func (x *Rat) GobEncode() ([]byte, error) {
buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
i := x.b.abs.bytes(buf)
j := x.a.abs.bytes(buf[0:i])
n := i - j
if int(uint32(n)) != n {
// this should never happen
return nil, errors.New("Rat.GobEncode: numerator too large")
}
binary.BigEndian.PutUint32(buf[j-4:j], uint32(n))
j -= 1 + 4
b := ratGobVersion << 1 // make space for sign bit
if x.a.neg {
b |= 1
}
buf[j] = b
return buf[j:], nil
}
// GobDecode implements the gob.GobDecoder interface.
func (z *Rat) GobDecode(buf []byte) error {
if len(buf) == 0 {
return errors.New("Rat.GobDecode: no data")
}
b := buf[0]
if b>>1 != ratGobVersion {
return errors.New(fmt.Sprintf("Rat.GobDecode: encoding version %d not supported", b>>1))
}
const j = 1 + 4
i := j + binary.BigEndian.Uint32(buf[j-4:j])
z.a.neg = b&1 != 0
z.a.abs = z.a.abs.setBytes(buf[j:i])
z.b.abs = z.b.abs.setBytes(buf[i:])
return nil
}