gcc/libgfortran/generated/maxloc1_4_r10.c
Tobias Burnus 9731c4a348 libgfortran.h (likely,unlikely): New makros.
2008-09-06  Tobias Burnus  <burnus@net-b.de>

	* libgfortran.h (likely,unlikely): New makros.
	(runtime_warning_at,__mingw_snprintf): Add __attribute__(format()).
	* m4/spread.m4 (spread_'rtype_code`): Use unlikely for bounds_check.
	* m4/iforeach.m4 (name`'rtype_qual`_'atype_code): Ditto.
	* m4/matmull.m4 (matmul_'rtype_code`): Ditto.
	* m4/ifunction_logical.m4 (name`'rtype_qual`_'atype_code): Ditto.
	* m4/ifunction.m4 (name`'rtype_qual`_'atype_code): Ditto.
	* m4/matmul.m4 (matmul_'rtype_code`): Ditto.

	* generated/minval_r8.c: Regenerated.
	* generated/spread_r10.c: Regenerated.
	* generated/minloc1_16_r16.c: Regenerated.
	* generated/maxloc1_4_r8.c: Regenerated.
	* generated/sum_i8.c: Regenerated.
	* generated/any_l16.c: Regenerated.
	* generated/spread_i8.c: Regenerated.
	* generated/maxval_i2.c: Regenerated.
	* generated/any_l2.c: Regenerated.
	* generated/product_r4.c: Regenerated.
	* generated/maxloc1_8_i4.c: Regenerated.
	* generated/maxloc0_4_r4.c: Regenerated.
	* generated/all_l1.c: Regenerated.
	* generated/matmul_r8.c: Regenerated.
	* generated/product_i2.c: Regenerated.
	* generated/minloc0_4_r16.c: Regenerated.
	* generated/minloc0_4_i1.c: Regenerated.
	* generated/maxloc0_4_r16.c: Regenerated.
	* generated/maxloc0_4_i2.c: Regenerated.
	* generated/minloc1_8_r16.c: Regenerated.
	* generated/maxloc1_8_r16.c: Regenerated.
	* generated/maxloc0_8_i8.c: Regenerated.
	* generated/sum_r16.c: Regenerated.
	* generated/sum_i1.c: Regenerated.
	* generated/minloc1_4_r8.c: Regenerated.
	* generated/maxloc1_16_r16.c: Regenerated.
	* generated/minloc1_16_i4.c: Regenerated.
	* generated/maxloc1_16_i4.c: Regenerated.
	* generated/minloc0_16_i8.c: Regenerated.
	* generated/spread_i1.c: Regenerated.
	* generated/maxloc0_16_i8.c: Regenerated.
	* generated/maxval_r16.c: Regenerated.
	* generated/product_c10.c: Regenerated.
	* generated/minloc1_8_i4.c: Regenerated.
	* generated/minloc0_16_i16.c: Regenerated.
	* generated/matmul_r16.c: Regenerated.
	* generated/minloc0_4_r4.c: Regenerated.
	* generated/all_l2.c: Regenerated.
	* generated/product_c4.c: Regenerated.
	* generated/sum_r4.c: Regenerated.
	* generated/minloc0_4_i2.c: Regenerated.
	* generated/spread_c10.c: Regenerated.
	* generated/maxloc0_8_i1.c: Regenerated.
	* generated/spread_r4.c: Regenerated.
	* generated/minloc0_8_i8.c: Regenerated.
	* generated/matmul_c8.c: Regenerated.
	* generated/all_l16.c: Regenerated.
	* generated/minloc1_16_r10.c: Regenerated.
	* generated/sum_i2.c: Regenerated.
	* generated/minloc0_16_i1.c: Regenerated.
	* generated/maxloc0_16_i1.c: Regenerated.
	* generated/maxloc1_8_r8.c: Regenerated.
	* generated/minval_i16.c: Regenerated.
	* generated/spread_i2.c: Regenerated.
	* generated/maxval_i4.c: Regenerated.
	* generated/minval_i8.c: Regenerated.
	* generated/any_l4.c: Regenerated.
	* generated/maxloc1_4_i8.c: Regenerated.
	* generated/maxloc0_16_i16.c: Regenerated.
	* generated/maxloc0_8_r4.c: Regenerated.
	* generated/minloc1_4_i16.c: Regenerated.
	* generated/maxloc1_4_i16.c: Regenerated.
	* generated/minloc0_4_r10.c: Regenerated.
	* generated/minloc0_8_i16.c: Regenerated.
	* generated/maxloc0_4_r10.c: Regenerated.
	* generated/maxloc0_8_i16.c: Regenerated.
	* generated/minloc1_8_r10.c: Regenerated.
	* generated/product_i4.c: Regenerated.
	* generated/minloc0_16_r4.c: Regenerated.
	* generated/sum_c16.c: Regenerated.
	* generated/maxloc1_8_r10.c: Regenerated.
	* generated/maxloc0_16_r4.c: Regenerated.
	* generated/minloc1_16_r8.c: Regenerated.
	* generated/minloc0_8_i1.c: Regenerated.
	* generated/maxloc0_4_i4.c: Regenerated.
	* generated/maxloc1_16_r8.c: Regenerated.
	* generated/maxloc0_8_i2.c: Regenerated.
	* generated/sum_r10.c: Regenerated.
	* generated/count_4_l.c: Regenerated.
	* generated/sum_c4.c: Regenerated.
	* generated/count_8_l.c: Regenerated.
	* generated/maxloc1_16_r10.c: Regenerated.
	* generated/matmul_i8.c: Regenerated.
	* generated/minloc0_16_i2.c: Regenerated.
	* generated/minloc1_8_r8.c: Regenerated.
	* generated/maxloc0_16_i2.c: Regenerated.
	* generated/spread_c4.c: Regenerated.
	* generated/matmul_c16.c: Regenerated.
	* generated/maxval_r10.c: Regenerated.
	* generated/minval_i1.c: Regenerated.
	* generated/maxloc1_4_i1.c: Regenerated.
	* generated/matmul_r10.c: Regenerated.
	* generated/minloc1_4_i8.c: Regenerated.
	* generated/minloc0_8_r4.c: Regenerated.
	* generated/matmul_l4.c: Regenerated.
	* generated/product_i16.c: Regenerated.
	* generated/minloc0_16_r16.c: Regenerated.
	* generated/all_l4.c: Regenerated.
	* generated/minloc0_4_i4.c: Regenerated.
	* generated/minloc0_8_i2.c: Regenerated.
	* generated/matmul_i1.c: Regenerated.
	* generated/minval_r4.c: Regenerated.
	* generated/maxloc1_4_r4.c: Regenerated.
	* generated/spread_i16.c: Regenerated.
	* generated/sum_i4.c: Regenerated.
	* generated/maxval_r8.c: Regenerated.
	* generated/spread_i4.c: Regenerated.
	* generated/minloc1_4_i1.c: Regenerated.
	* generated/minval_r16.c: Regenerated.
	* generated/minval_i2.c: Regenerated.
	* generated/maxloc1_4_i2.c: Regenerated.
	* generated/product_r8.c: Regenerated.
	* generated/maxloc1_8_i8.c: Regenerated.
	* generated/maxloc0_4_r8.c: Regenerated.
	* generated/maxloc0_16_r16.c: Regenerated.
	* generated/matmul_r4.c: Regenerated.
	* generated/sum_c10.c: Regenerated.
	* generated/minloc1_4_r16.c: Regenerated.
	* generated/maxloc1_4_r16.c: Regenerated.
	* generated/minloc0_8_r16.c: Regenerated.
	* generated/maxloc0_8_r16.c: Regenerated.
	* generated/count_1_l.c: Regenerated.
	* generated/maxloc0_8_i4.c: Regenerated.
	* generated/matmul_i2.c: Regenerated.
	* generated/minloc1_4_r4.c: Regenerated.
	* generated/matmul_c10.c: Regenerated.
	* generated/minloc0_16_i4.c: Regenerated.
	* generated/maxloc0_16_i4.c: Regenerated.
	* generated/minloc1_16_i8.c: Regenerated.
	* generated/maxloc1_16_i8.c: Regenerated.
	* generated/minloc1_4_i2.c: Regenerated.
	* generated/matmul_l16.c: Regenerated.
	* generated/maxloc1_8_i1.c: Regenerated.
	* generated/minloc0_16_r10.c: Regenerated.
	* generated/minloc1_8_i8.c: Regenerated.
	* generated/minloc0_4_r8.c: Regenerated.
	* generated/product_r16.c: Regenerated.
	* generated/product_c8.c: Regenerated.
	* generated/sum_r8.c: Regenerated.
	* generated/minloc0_8_i4.c: Regenerated.
	* generated/matmul_c4.c: Regenerated.
	* generated/minloc1_16_i16.c: Regenerated.
	* generated/spread_r8.c: Regenerated.
	* generated/maxloc1_8_r4.c: Regenerated.
	* generated/minloc1_16_i1.c: Regenerated.
	* generated/maxloc1_16_i1.c: Regenerated.
	* generated/spread_r16.c: Regenerated.
	* generated/minval_r10.c: Regenerated.
	* generated/count_16_l.c: Regenerated.
	* generated/minval_i4.c: Regenerated.
	* generated/minloc1_8_i1.c: Regenerated.
	* generated/maxloc1_4_i4.c: Regenerated.
	* generated/maxloc1_8_i2.c: Regenerated.
	* generated/maxval_i8.c: Regenerated.
	* generated/any_l8.c: Regenerated.
	* generated/maxloc0_16_r10.c: Regenerated.
	* generated/minloc0_4_i16.c: Regenerated.
	* generated/maxloc0_8_r8.c: Regenerated.
	* generated/maxloc0_4_i16.c: Regenerated.
	* generated/minloc1_4_r10.c: Regenerated.
	* generated/minloc1_8_i16.c: Regenerated.
	* generated/maxloc1_4_r10.c: Regenerated.
	* generated/maxloc1_8_i16.c: Regenerated.
	* generated/minloc0_8_r10.c: Regenerated.
	* generated/maxloc0_8_r10.c: Regenerated.
	* generated/minloc1_16_r4.c: Regenerated.
	* generated/maxloc1_16_r4.c: Regenerated.
	* generated/minloc0_16_r8.c: Regenerated.
	* generated/product_i8.c: Regenerated.
	* generated/maxloc0_16_r8.c: Regenerated.
	* generated/sum_i16.c: Regenerated.
	* generated/count_2_l.c: Regenerated.
	* generated/maxloc0_4_i8.c: Regenerated.
	* generated/maxloc1_16_i16.c: Regenerated.
	* generated/matmul_i4.c: Regenerated.
	* generated/minloc1_8_r4.c: Regenerated.
	* generated/sum_c8.c: Regenerated.
	* generated/minloc1_16_i2.c: Regenerated.
	* generated/maxloc1_16_i2.c: Regenerated.
	* generated/maxval_i16.c: Regenerated.
	* generated/spread_c8.c: Regenerated.
	* generated/matmul_i16.c: Regenerated.
	* generated/minloc1_4_i4.c: Regenerated.
	* generated/maxval_i1.c: Regenerated.
	* generated/minloc1_8_i2.c: Regenerated.
	* generated/any_l1.c: Regenerated.
	* generated/product_c16.c: Regenerated.
	* generated/minloc0_8_r8.c: Regenerated.
	* generated/matmul_l8.c: Regenerated.
	* generated/product_r10.c: Regenerated.
	* generated/product_i1.c: Regenerated.
	* generated/all_l8.c: Regenerated.
	* generated/maxloc0_4_i1.c: Regenerated.
	* generated/minloc0_4_i8.c: Regenerated.
	* generated/spread_c16.c: Regenerated.
	* generated/maxval_r4.c: Regenerated.

From-SVN: r140060
2008-09-06 16:53:26 +02:00

563 lines
14 KiB
C

/* Implementation of the MAXLOC intrinsic
Copyright 2002, 2007 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_4)
extern void maxloc1_4_r10 (gfc_array_i4 * const restrict,
gfc_array_r10 * const restrict, const index_type * const restrict);
export_proto(maxloc1_4_r10);
void
maxloc1_4_r10 (gfc_array_i4 * const restrict retarray,
gfc_array_r10 * const restrict array,
const index_type * const restrict pdim)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
const GFC_REAL_10 * restrict base;
GFC_INTEGER_4 * restrict dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type dim;
int continue_loop;
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
if (len < 0)
len = 0;
delta = array->dim[dim].stride;
for (n = 0; n < dim; n++)
{
sstride[n] = array->dim[n].stride;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = array->dim[n + 1].stride;
extent[n] =
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size;
for (n = 0; n < rank; n++)
{
retarray->dim[n].lbound = 0;
retarray->dim[n].ubound = extent[n]-1;
if (n == 0)
retarray->dim[n].stride = 1;
else
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
}
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
* extent[rank-1];
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = -1;
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" MAXLOC intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
{
for (n=0; n < rank; n++)
{
index_type ret_extent;
ret_extent = retarray->dim[n].ubound + 1
- retarray->dim[n].lbound;
if (extent[n] != ret_extent)
runtime_error ("Incorrect extent in return value of"
" MAXLOC intrinsic in dimension %ld:"
" is %ld, should be %ld", (long int) n + 1,
(long int) ret_extent, (long int) extent[n]);
}
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = retarray->dim[n].stride;
if (extent[n] <= 0)
len = 0;
}
base = array->data;
dest = retarray->data;
continue_loop = 1;
while (continue_loop)
{
const GFC_REAL_10 * restrict src;
GFC_INTEGER_4 result;
src = base;
{
GFC_REAL_10 maxval;
maxval = -GFC_REAL_10_HUGE;
result = 0;
if (len <= 0)
*dest = 0;
else
{
for (n = 0; n < len; n++, src += delta)
{
if (*src > maxval || !result)
{
maxval = *src;
result = (GFC_INTEGER_4)n + 1;
}
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
continue_loop = 0;
break;
}
else
{
count[n]++;
base += sstride[n];
dest += dstride[n];
}
}
}
}
extern void mmaxloc1_4_r10 (gfc_array_i4 * const restrict,
gfc_array_r10 * const restrict, const index_type * const restrict,
gfc_array_l1 * const restrict);
export_proto(mmaxloc1_4_r10);
void
mmaxloc1_4_r10 (gfc_array_i4 * const restrict retarray,
gfc_array_r10 * const restrict array,
const index_type * const restrict pdim,
gfc_array_l1 * const restrict mask)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
GFC_INTEGER_4 * restrict dest;
const GFC_REAL_10 * restrict base;
const GFC_LOGICAL_1 * restrict mbase;
int rank;
int dim;
index_type n;
index_type len;
index_type delta;
index_type mdelta;
int mask_kind;
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
if (len <= 0)
return;
mbase = mask->data;
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
else
runtime_error ("Funny sized logical array");
delta = array->dim[dim].stride;
mdelta = mask->dim[dim].stride * mask_kind;
for (n = 0; n < dim; n++)
{
sstride[n] = array->dim[n].stride;
mstride[n] = mask->dim[n].stride * mask_kind;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = array->dim[n + 1].stride;
mstride[n] = mask->dim[n + 1].stride * mask_kind;
extent[n] =
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size;
for (n = 0; n < rank; n++)
{
retarray->dim[n].lbound = 0;
retarray->dim[n].ubound = extent[n]-1;
if (n == 0)
retarray->dim[n].stride = 1;
else
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
}
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
* extent[rank-1];
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = -1;
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in MAXLOC intrinsic");
if (unlikely (compile_options.bounds_check))
{
for (n=0; n < rank; n++)
{
index_type ret_extent;
ret_extent = retarray->dim[n].ubound + 1
- retarray->dim[n].lbound;
if (extent[n] != ret_extent)
runtime_error ("Incorrect extent in return value of"
" MAXLOC intrinsic in dimension %ld:"
" is %ld, should be %ld", (long int) n + 1,
(long int) ret_extent, (long int) extent[n]);
}
for (n=0; n<= rank; n++)
{
index_type mask_extent, array_extent;
array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound;
mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound;
if (array_extent != mask_extent)
runtime_error ("Incorrect extent in MASK argument of"
" MAXLOC intrinsic in dimension %ld:"
" is %ld, should be %ld", (long int) n + 1,
(long int) mask_extent, (long int) array_extent);
}
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = retarray->dim[n].stride;
if (extent[n] <= 0)
return;
}
dest = retarray->data;
base = array->data;
while (base)
{
const GFC_REAL_10 * restrict src;
const GFC_LOGICAL_1 * restrict msrc;
GFC_INTEGER_4 result;
src = base;
msrc = mbase;
{
GFC_REAL_10 maxval;
maxval = -GFC_REAL_10_HUGE;
result = 0;
if (len <= 0)
*dest = 0;
else
{
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
{
if (*msrc && (*src > maxval || !result))
{
maxval = *src;
result = (GFC_INTEGER_4)n + 1;
}
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
mbase += mstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
mbase -= mstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
mbase += mstride[n];
dest += dstride[n];
}
}
}
}
extern void smaxloc1_4_r10 (gfc_array_i4 * const restrict,
gfc_array_r10 * const restrict, const index_type * const restrict,
GFC_LOGICAL_4 *);
export_proto(smaxloc1_4_r10);
void
smaxloc1_4_r10 (gfc_array_i4 * const restrict retarray,
gfc_array_r10 * const restrict array,
const index_type * const restrict pdim,
GFC_LOGICAL_4 * mask)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
GFC_INTEGER_4 * restrict dest;
index_type rank;
index_type n;
index_type dim;
if (*mask)
{
maxloc1_4_r10 (retarray, array, pdim);
return;
}
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
for (n = 0; n < dim; n++)
{
sstride[n] = array->dim[n].stride;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
if (extent[n] <= 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = array->dim[n + 1].stride;
extent[n] =
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
if (extent[n] <= 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size;
for (n = 0; n < rank; n++)
{
retarray->dim[n].lbound = 0;
retarray->dim[n].ubound = extent[n]-1;
if (n == 0)
retarray->dim[n].stride = 1;
else
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
}
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
* extent[rank-1];
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = -1;
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" MAXLOC intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
{
for (n=0; n < rank; n++)
{
index_type ret_extent;
ret_extent = retarray->dim[n].ubound + 1
- retarray->dim[n].lbound;
if (extent[n] != ret_extent)
runtime_error ("Incorrect extent in return value of"
" MAXLOC intrinsic in dimension %ld:"
" is %ld, should be %ld", (long int) n + 1,
(long int) ret_extent, (long int) extent[n]);
}
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = retarray->dim[n].stride;
}
dest = retarray->data;
while(1)
{
*dest = 0;
count[0]++;
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
return;
else
{
count[n]++;
dest += dstride[n];
}
}
}
}
#endif