gcc/libgfortran/generated/in_unpack_r10.c
Thomas Koenig 8e1d7686de re PR libfortran/32972 (performance of pack/unpack)
2008-03-19  Thomas Koenig  <tkoenig@gcc.gnu.org>

	PR libfortran/32972
	* Makefile.am (in_pack_c): Add in_pack_i1.c, in_pack_i2.c,
	in_pack_r4.c, in_pack_r8.c, in_pack_r10.c and in_pack_r16.c.
	(in_unpack_c): Add in_unpack_i1.c, in_unpack_i2.c,
	in_unpack_r4.c, in_unpack_r8.c, in_unpack_r10.c and
	in_unpack_r16.c.
	* Makefile.in: Regenerate.
	* libgfortran.h:  Add prototypes for internal_pack_1,
	internal_pack_2, internal_pack_16, internal_pack_r4,
	internal_pack_r8, internal_pack_r10, internal_pack_r16,
	internal_pack_c10 and internal_pack_c16.  Add prototypes for
	internal_unpack_1, internal_unpack_2, internal_unpack_16,
	internal_unpack_r4, internal_unpack_r8, internal_unpack_r10,
	internal_unpack_r16, internal_unpack_c10 and
	internal_unpack_c16.
	* runtime/in_pack_generic.c (internal_pack): Use sizeof instead
	of hardwired sizes.
	Add calls to internal_pack_1, internal_pack_2,
	internal_pack_16, internal_pack_r4, internal_pack_r8,
	internal_pack_r10, internal_pack_r16, internal_pack_c10 and
	internal_pack_c16.
	* runtime/in_unpack_generic.c (internal_unpack):  Use sizeof
	instead of hardwired sizes.
	Add calls to internal_unpack_1, internal_unpack_2,
	internal_unpack_16, internal_unpack_r4, internal_unpack_r8,
	internal_unpack_r10, internal_unpack_r16, internal_unpack_c10
	and internal_unpack_c16.
	* generated/in_pack_r4.c:  New file.
	* generated/in_pack_i2.c:  New file.
	* generated/in_unpack_i1.c:  New file.
	* generated/in_pack_r10.c:  New file.
	* generated/in_unpack_r4.c:  New file.
	* generated/in_unpack_i2.c:  New file.
	* generated/in_unpack_r16.c:  New file.
	* generated/in_pack_r8.c:  New file.
	* generated/in_unpack_r10.c:  New file.
	* generated/in_unpack_r8.c:  New file.
	* generated/in_pack_r16.c:  New file.
	* generated/in_pack_i1.c:  New file.

2008-03-19  Thomas Koenig  <tkoenig@gcc.gnu.org>

	PR libfortran/32972
	* gfortran.dg/internal_pack_1.f90:  New test case.
	* gfortran.dg/internal_pack_2.f90:  New test case.
	* gfortran.dg/internal_pack_3.f90:  New test case.

From-SVN: r133344
2008-03-19 15:42:55 +00:00

113 lines
3.1 KiB
C

/* Helper function for repacking arrays.
Copyright 2003, 2006, 2007 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_REAL_10)
void
internal_unpack_r10 (gfc_array_r10 * d, const GFC_REAL_10 * src)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
index_type dsize;
GFC_REAL_10 *dest;
int n;
dest = d->data;
if (src == dest || !src)
return;
dim = GFC_DESCRIPTOR_RANK (d);
dsize = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = d->dim[n].stride;
extent[n] = d->dim[n].ubound + 1 - d->dim[n].lbound;
if (extent[n] <= 0)
abort ();
if (dsize == stride[n])
dsize *= extent[n];
else
dsize = 0;
}
if (dsize != 0)
{
memcpy (dest, src, dsize * sizeof (GFC_REAL_10));
return;
}
stride0 = stride[0];
while (dest)
{
/* Copy the data. */
*dest = *(src++);
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
#endif