gcc/libgo/go/big/nat.go
Ian Lance Taylor 2fd401c8f1 libgo: Update to weekly.2011-11-02.
From-SVN: r181964
2011-12-03 02:17:34 +00:00

1272 lines
27 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package big implements multi-precision arithmetic (big numbers).
// The following numeric types are supported:
//
// - Int signed integers
// - Rat rational numbers
//
// All methods on Int take the result as the receiver; if it is one
// of the operands it may be overwritten (and its memory reused).
// To enable chaining of operations, the result is also returned.
//
package big
// This file contains operations on unsigned multi-precision integers.
// These are the building blocks for the operations on signed integers
// and rationals.
import (
"errors"
"io"
"rand"
)
// An unsigned integer x of the form
//
// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
//
// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
// with the digits x[i] as the slice elements.
//
// A number is normalized if the slice contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur but are
// always normalized before returning the final result. The normalized
// representation of 0 is the empty or nil slice (length = 0).
//
type nat []Word
var (
natOne = nat{1}
natTwo = nat{2}
natTen = nat{10}
)
func (z nat) clear() {
for i := range z {
z[i] = 0
}
}
func (z nat) norm() nat {
i := len(z)
for i > 0 && z[i-1] == 0 {
i--
}
return z[0:i]
}
func (z nat) make(n int) nat {
if n <= cap(z) {
return z[0:n] // reuse z
}
// Choosing a good value for e has significant performance impact
// because it increases the chance that a value can be reused.
const e = 4 // extra capacity
return make(nat, n, n+e)
}
func (z nat) setWord(x Word) nat {
if x == 0 {
return z.make(0)
}
z = z.make(1)
z[0] = x
return z
}
func (z nat) setUint64(x uint64) nat {
// single-digit values
if w := Word(x); uint64(w) == x {
return z.setWord(w)
}
// compute number of words n required to represent x
n := 0
for t := x; t > 0; t >>= _W {
n++
}
// split x into n words
z = z.make(n)
for i := range z {
z[i] = Word(x & _M)
x >>= _W
}
return z
}
func (z nat) set(x nat) nat {
z = z.make(len(x))
copy(z, x)
return z
}
func (z nat) add(x, y nat) nat {
m := len(x)
n := len(y)
switch {
case m < n:
return z.add(y, x)
case m == 0:
// n == 0 because m >= n; result is 0
return z.make(0)
case n == 0:
// result is x
return z.set(x)
}
// m > 0
z = z.make(m + 1)
c := addVV(z[0:n], x, y)
if m > n {
c = addVW(z[n:m], x[n:], c)
}
z[m] = c
return z.norm()
}
func (z nat) sub(x, y nat) nat {
m := len(x)
n := len(y)
switch {
case m < n:
panic("underflow")
case m == 0:
// n == 0 because m >= n; result is 0
return z.make(0)
case n == 0:
// result is x
return z.set(x)
}
// m > 0
z = z.make(m)
c := subVV(z[0:n], x, y)
if m > n {
c = subVW(z[n:], x[n:], c)
}
if c != 0 {
panic("underflow")
}
return z.norm()
}
func (x nat) cmp(y nat) (r int) {
m := len(x)
n := len(y)
if m != n || m == 0 {
switch {
case m < n:
r = -1
case m > n:
r = 1
}
return
}
i := m - 1
for i > 0 && x[i] == y[i] {
i--
}
switch {
case x[i] < y[i]:
r = -1
case x[i] > y[i]:
r = 1
}
return
}
func (z nat) mulAddWW(x nat, y, r Word) nat {
m := len(x)
if m == 0 || y == 0 {
return z.setWord(r) // result is r
}
// m > 0
z = z.make(m + 1)
z[m] = mulAddVWW(z[0:m], x, y, r)
return z.norm()
}
// basicMul multiplies x and y and leaves the result in z.
// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
func basicMul(z, x, y nat) {
z[0 : len(x)+len(y)].clear() // initialize z
for i, d := range y {
if d != 0 {
z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
}
}
}
// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
// Factored out for readability - do not use outside karatsuba.
func karatsubaAdd(z, x nat, n int) {
if c := addVV(z[0:n], z, x); c != 0 {
addVW(z[n:n+n>>1], z[n:], c)
}
}
// Like karatsubaAdd, but does subtract.
func karatsubaSub(z, x nat, n int) {
if c := subVV(z[0:n], z, x); c != 0 {
subVW(z[n:n+n>>1], z[n:], c)
}
}
// Operands that are shorter than karatsubaThreshold are multiplied using
// "grade school" multiplication; for longer operands the Karatsuba algorithm
// is used.
var karatsubaThreshold int = 32 // computed by calibrate.go
// karatsuba multiplies x and y and leaves the result in z.
// Both x and y must have the same length n and n must be a
// power of 2. The result vector z must have len(z) >= 6*n.
// The (non-normalized) result is placed in z[0 : 2*n].
func karatsuba(z, x, y nat) {
n := len(y)
// Switch to basic multiplication if numbers are odd or small.
// (n is always even if karatsubaThreshold is even, but be
// conservative)
if n&1 != 0 || n < karatsubaThreshold || n < 2 {
basicMul(z, x, y)
return
}
// n&1 == 0 && n >= karatsubaThreshold && n >= 2
// Karatsuba multiplication is based on the observation that
// for two numbers x and y with:
//
// x = x1*b + x0
// y = y1*b + y0
//
// the product x*y can be obtained with 3 products z2, z1, z0
// instead of 4:
//
// x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
// = z2*b*b + z1*b + z0
//
// with:
//
// xd = x1 - x0
// yd = y0 - y1
//
// z1 = xd*yd + z1 + z0
// = (x1-x0)*(y0 - y1) + z1 + z0
// = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z1 + z0
// = x1*y0 - z1 - z0 + x0*y1 + z1 + z0
// = x1*y0 + x0*y1
// split x, y into "digits"
n2 := n >> 1 // n2 >= 1
x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0
// z is used for the result and temporary storage:
//
// 6*n 5*n 4*n 3*n 2*n 1*n 0*n
// z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
//
// For each recursive call of karatsuba, an unused slice of
// z is passed in that has (at least) half the length of the
// caller's z.
// compute z0 and z2 with the result "in place" in z
karatsuba(z, x0, y0) // z0 = x0*y0
karatsuba(z[n:], x1, y1) // z2 = x1*y1
// compute xd (or the negative value if underflow occurs)
s := 1 // sign of product xd*yd
xd := z[2*n : 2*n+n2]
if subVV(xd, x1, x0) != 0 { // x1-x0
s = -s
subVV(xd, x0, x1) // x0-x1
}
// compute yd (or the negative value if underflow occurs)
yd := z[2*n+n2 : 3*n]
if subVV(yd, y0, y1) != 0 { // y0-y1
s = -s
subVV(yd, y1, y0) // y1-y0
}
// p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
// p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
p := z[n*3:]
karatsuba(p, xd, yd)
// save original z2:z0
// (ok to use upper half of z since we're done recursing)
r := z[n*4:]
copy(r, z)
// add up all partial products
//
// 2*n n 0
// z = [ z2 | z0 ]
// + [ z0 ]
// + [ z2 ]
// + [ p ]
//
karatsubaAdd(z[n2:], r, n)
karatsubaAdd(z[n2:], r[n:], n)
if s > 0 {
karatsubaAdd(z[n2:], p, n)
} else {
karatsubaSub(z[n2:], p, n)
}
}
// alias returns true if x and y share the same base array.
func alias(x, y nat) bool {
return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
}
// addAt implements z += x*(1<<(_W*i)); z must be long enough.
// (we don't use nat.add because we need z to stay the same
// slice, and we don't need to normalize z after each addition)
func addAt(z, x nat, i int) {
if n := len(x); n > 0 {
if c := addVV(z[i:i+n], z[i:], x); c != 0 {
j := i + n
if j < len(z) {
addVW(z[j:], z[j:], c)
}
}
}
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
// karatsubaLen computes an approximation to the maximum k <= n such that
// k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the
// result is the largest number that can be divided repeatedly by 2 before
// becoming about the value of karatsubaThreshold.
func karatsubaLen(n int) int {
i := uint(0)
for n > karatsubaThreshold {
n >>= 1
i++
}
return n << i
}
func (z nat) mul(x, y nat) nat {
m := len(x)
n := len(y)
switch {
case m < n:
return z.mul(y, x)
case m == 0 || n == 0:
return z.make(0)
case n == 1:
return z.mulAddWW(x, y[0], 0)
}
// m >= n > 1
// determine if z can be reused
if alias(z, x) || alias(z, y) {
z = nil // z is an alias for x or y - cannot reuse
}
// use basic multiplication if the numbers are small
if n < karatsubaThreshold || n < 2 {
z = z.make(m + n)
basicMul(z, x, y)
return z.norm()
}
// m >= n && n >= karatsubaThreshold && n >= 2
// determine Karatsuba length k such that
//
// x = x1*b + x0
// y = y1*b + y0 (and k <= len(y), which implies k <= len(x))
// b = 1<<(_W*k) ("base" of digits xi, yi)
//
k := karatsubaLen(n)
// k <= n
// multiply x0 and y0 via Karatsuba
x0 := x[0:k] // x0 is not normalized
y0 := y[0:k] // y0 is not normalized
z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
karatsuba(z, x0, y0)
z = z[0 : m+n] // z has final length but may be incomplete, upper portion is garbage
// If x1 and/or y1 are not 0, add missing terms to z explicitly:
//
// m+n 2*k 0
// z = [ ... | x0*y0 ]
// + [ x1*y1 ]
// + [ x1*y0 ]
// + [ x0*y1 ]
//
if k < n || m != n {
x1 := x[k:] // x1 is normalized because x is
y1 := y[k:] // y1 is normalized because y is
var t nat
t = t.mul(x1, y1)
copy(z[2*k:], t)
z[2*k+len(t):].clear() // upper portion of z is garbage
t = t.mul(x1, y0.norm())
addAt(z, t, k)
t = t.mul(x0.norm(), y1)
addAt(z, t, k)
}
return z.norm()
}
// mulRange computes the product of all the unsigned integers in the
// range [a, b] inclusively. If a > b (empty range), the result is 1.
func (z nat) mulRange(a, b uint64) nat {
switch {
case a == 0:
// cut long ranges short (optimization)
return z.setUint64(0)
case a > b:
return z.setUint64(1)
case a == b:
return z.setUint64(a)
case a+1 == b:
return z.mul(nat{}.setUint64(a), nat{}.setUint64(b))
}
m := (a + b) / 2
return z.mul(nat{}.mulRange(a, m), nat{}.mulRange(m+1, b))
}
// q = (x-r)/y, with 0 <= r < y
func (z nat) divW(x nat, y Word) (q nat, r Word) {
m := len(x)
switch {
case y == 0:
panic("division by zero")
case y == 1:
q = z.set(x) // result is x
return
case m == 0:
q = z.make(0) // result is 0
return
}
// m > 0
z = z.make(m)
r = divWVW(z, 0, x, y)
q = z.norm()
return
}
func (z nat) div(z2, u, v nat) (q, r nat) {
if len(v) == 0 {
panic("division by zero")
}
if u.cmp(v) < 0 {
q = z.make(0)
r = z2.set(u)
return
}
if len(v) == 1 {
var rprime Word
q, rprime = z.divW(u, v[0])
if rprime > 0 {
r = z2.make(1)
r[0] = rprime
} else {
r = z2.make(0)
}
return
}
q, r = z.divLarge(z2, u, v)
return
}
// q = (uIn-r)/v, with 0 <= r < y
// Uses z as storage for q, and u as storage for r if possible.
// See Knuth, Volume 2, section 4.3.1, Algorithm D.
// Preconditions:
// len(v) >= 2
// len(uIn) >= len(v)
func (z nat) divLarge(u, uIn, v nat) (q, r nat) {
n := len(v)
m := len(uIn) - n
// determine if z can be reused
// TODO(gri) should find a better solution - this if statement
// is very costly (see e.g. time pidigits -s -n 10000)
if alias(z, uIn) || alias(z, v) {
z = nil // z is an alias for uIn or v - cannot reuse
}
q = z.make(m + 1)
qhatv := make(nat, n+1)
if alias(u, uIn) || alias(u, v) {
u = nil // u is an alias for uIn or v - cannot reuse
}
u = u.make(len(uIn) + 1)
u.clear()
// D1.
shift := leadingZeros(v[n-1])
if shift > 0 {
// do not modify v, it may be used by another goroutine simultaneously
v1 := make(nat, n)
shlVU(v1, v, shift)
v = v1
}
u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
// D2.
for j := m; j >= 0; j-- {
// D3.
qhat := Word(_M)
if u[j+n] != v[n-1] {
var rhat Word
qhat, rhat = divWW(u[j+n], u[j+n-1], v[n-1])
// x1 | x2 = q̂v_{n-2}
x1, x2 := mulWW(qhat, v[n-2])
// test if q̂v_{n-2} > br̂ + u_{j+n-2}
for greaterThan(x1, x2, rhat, u[j+n-2]) {
qhat--
prevRhat := rhat
rhat += v[n-1]
// v[n-1] >= 0, so this tests for overflow.
if rhat < prevRhat {
break
}
x1, x2 = mulWW(qhat, v[n-2])
}
}
// D4.
qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)
c := subVV(u[j:j+len(qhatv)], u[j:], qhatv)
if c != 0 {
c := addVV(u[j:j+n], u[j:], v)
u[j+n] += c
qhat--
}
q[j] = qhat
}
q = q.norm()
shrVU(u, u, shift)
r = u.norm()
return q, r
}
// Length of x in bits. x must be normalized.
func (x nat) bitLen() int {
if i := len(x) - 1; i >= 0 {
return i*_W + bitLen(x[i])
}
return 0
}
// MaxBase is the largest number base accepted for string conversions.
const MaxBase = 'z' - 'a' + 10 + 1 // = hexValue('z') + 1
func hexValue(ch rune) Word {
d := MaxBase + 1 // illegal base
switch {
case '0' <= ch && ch <= '9':
d = int(ch - '0')
case 'a' <= ch && ch <= 'z':
d = int(ch - 'a' + 10)
case 'A' <= ch && ch <= 'Z':
d = int(ch - 'A' + 10)
}
return Word(d)
}
// scan sets z to the natural number corresponding to the longest possible prefix
// read from r representing an unsigned integer in a given conversion base.
// It returns z, the actual conversion base used, and an error, if any. In the
// error case, the value of z is undefined. The syntax follows the syntax of
// unsigned integer literals in Go.
//
// The base argument must be 0 or a value from 2 through MaxBase. If the base
// is 0, the string prefix determines the actual conversion base. A prefix of
// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
//
func (z nat) scan(r io.RuneScanner, base int) (nat, int, error) {
// reject illegal bases
if base < 0 || base == 1 || MaxBase < base {
return z, 0, errors.New("illegal number base")
}
// one char look-ahead
ch, _, err := r.ReadRune()
if err != nil {
return z, 0, err
}
// determine base if necessary
b := Word(base)
if base == 0 {
b = 10
if ch == '0' {
switch ch, _, err = r.ReadRune(); err {
case nil:
b = 8
switch ch {
case 'x', 'X':
b = 16
case 'b', 'B':
b = 2
}
if b == 2 || b == 16 {
if ch, _, err = r.ReadRune(); err != nil {
return z, 0, err
}
}
case io.EOF:
return z.make(0), 10, nil
default:
return z, 10, err
}
}
}
// convert string
// - group as many digits d as possible together into a "super-digit" dd with "super-base" bb
// - only when bb does not fit into a word anymore, do a full number mulAddWW using bb and dd
z = z.make(0)
bb := Word(1)
dd := Word(0)
for max := _M / b; ; {
d := hexValue(ch)
if d >= b {
r.UnreadRune() // ch does not belong to number anymore
break
}
if bb <= max {
bb *= b
dd = dd*b + d
} else {
// bb * b would overflow
z = z.mulAddWW(z, bb, dd)
bb = b
dd = d
}
if ch, _, err = r.ReadRune(); err != nil {
if err != io.EOF {
return z, int(b), err
}
break
}
}
switch {
case bb > 1:
// there was at least one mantissa digit
z = z.mulAddWW(z, bb, dd)
case base == 0 && b == 8:
// there was only the octal prefix 0 (possibly followed by digits > 7);
// return base 10, not 8
return z, 10, nil
case base != 0 || b != 8:
// there was neither a mantissa digit nor the octal prefix 0
return z, int(b), errors.New("syntax error scanning number")
}
return z.norm(), int(b), nil
}
// Character sets for string conversion.
const (
lowercaseDigits = "0123456789abcdefghijklmnopqrstuvwxyz"
uppercaseDigits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
)
// decimalString returns a decimal representation of x.
// It calls x.string with the charset "0123456789".
func (x nat) decimalString() string {
return x.string(lowercaseDigits[0:10])
}
// string converts x to a string using digits from a charset; a digit with
// value d is represented by charset[d]. The conversion base is determined
// by len(charset), which must be >= 2.
func (x nat) string(charset string) string {
b := Word(len(charset))
// special cases
switch {
case b < 2 || b > 256:
panic("illegal base")
case len(x) == 0:
return string(charset[0])
}
// allocate buffer for conversion
i := x.bitLen()/log2(b) + 1 // +1: round up
s := make([]byte, i)
// special case: power of two bases can avoid divisions completely
if b == b&-b {
// shift is base-b digit size in bits
shift := uint(trailingZeroBits(b)) // shift > 0 because b >= 2
mask := Word(1)<<shift - 1
w := x[0]
nbits := uint(_W) // number of unprocessed bits in w
// convert less-significant words
for k := 1; k < len(x); k++ {
// convert full digits
for nbits >= shift {
i--
s[i] = charset[w&mask]
w >>= shift
nbits -= shift
}
// convert any partial leading digit and advance to next word
if nbits == 0 {
// no partial digit remaining, just advance
w = x[k]
nbits = _W
} else {
// partial digit in current (k-1) and next (k) word
w |= x[k] << nbits
i--
s[i] = charset[w&mask]
// advance
w = x[k] >> (shift - nbits)
nbits = _W - (shift - nbits)
}
}
// convert digits of most-significant word (omit leading zeros)
for nbits >= 0 && w != 0 {
i--
s[i] = charset[w&mask]
w >>= shift
nbits -= shift
}
return string(s[i:])
}
// general case: extract groups of digits by multiprecision division
// maximize ndigits where b**ndigits < 2^_W; bb (big base) is b**ndigits
bb := Word(1)
ndigits := 0
for max := Word(_M / b); bb <= max; bb *= b {
ndigits++
}
// preserve x, create local copy for use in repeated divisions
q := nat{}.set(x)
var r Word
// convert
if b == 10 { // hard-coding for 10 here speeds this up by 1.25x
for len(q) > 0 {
// extract least significant, base bb "digit"
q, r = q.divW(q, bb) // N.B. >82% of time is here. Optimize divW
if len(q) == 0 {
// skip leading zeros in most-significant group of digits
for j := 0; j < ndigits && r != 0; j++ {
i--
s[i] = charset[r%10]
r /= 10
}
} else {
for j := 0; j < ndigits; j++ {
i--
s[i] = charset[r%10]
r /= 10
}
}
}
} else {
for len(q) > 0 {
// extract least significant group of digits
q, r = q.divW(q, bb) // N.B. >82% of time is here. Optimize divW
if len(q) == 0 {
// skip leading zeros in most-significant group of digits
for j := 0; j < ndigits && r != 0; j++ {
i--
s[i] = charset[r%b]
r /= b
}
} else {
for j := 0; j < ndigits; j++ {
i--
s[i] = charset[r%b]
r /= b
}
}
}
}
return string(s[i:])
}
const deBruijn32 = 0x077CB531
var deBruijn32Lookup = []byte{
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
}
const deBruijn64 = 0x03f79d71b4ca8b09
var deBruijn64Lookup = []byte{
0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
}
// trailingZeroBits returns the number of consecutive zero bits on the right
// side of the given Word.
// See Knuth, volume 4, section 7.3.1
func trailingZeroBits(x Word) int {
// x & -x leaves only the right-most bit set in the word. Let k be the
// index of that bit. Since only a single bit is set, the value is two
// to the power of k. Multiplying by a power of two is equivalent to
// left shifting, in this case by k bits. The de Bruijn constant is
// such that all six bit, consecutive substrings are distinct.
// Therefore, if we have a left shifted version of this constant we can
// find by how many bits it was shifted by looking at which six bit
// substring ended up at the top of the word.
switch _W {
case 32:
return int(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])
case 64:
return int(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])
default:
panic("Unknown word size")
}
return 0
}
// z = x << s
func (z nat) shl(x nat, s uint) nat {
m := len(x)
if m == 0 {
return z.make(0)
}
// m > 0
n := m + int(s/_W)
z = z.make(n + 1)
z[n] = shlVU(z[n-m:n], x, s%_W)
z[0 : n-m].clear()
return z.norm()
}
// z = x >> s
func (z nat) shr(x nat, s uint) nat {
m := len(x)
n := m - int(s/_W)
if n <= 0 {
return z.make(0)
}
// n > 0
z = z.make(n)
shrVU(z, x[m-n:], s%_W)
return z.norm()
}
func (z nat) setBit(x nat, i uint, b uint) nat {
j := int(i / _W)
m := Word(1) << (i % _W)
n := len(x)
switch b {
case 0:
z = z.make(n)
copy(z, x)
if j >= n {
// no need to grow
return z
}
z[j] &^= m
return z.norm()
case 1:
if j >= n {
n = j + 1
}
z = z.make(n)
copy(z, x)
z[j] |= m
// no need to normalize
return z
}
panic("set bit is not 0 or 1")
}
func (z nat) bit(i uint) uint {
j := int(i / _W)
if j >= len(z) {
return 0
}
return uint(z[j] >> (i % _W) & 1)
}
func (z nat) and(x, y nat) nat {
m := len(x)
n := len(y)
if m > n {
m = n
}
// m <= n
z = z.make(m)
for i := 0; i < m; i++ {
z[i] = x[i] & y[i]
}
return z.norm()
}
func (z nat) andNot(x, y nat) nat {
m := len(x)
n := len(y)
if n > m {
n = m
}
// m >= n
z = z.make(m)
for i := 0; i < n; i++ {
z[i] = x[i] &^ y[i]
}
copy(z[n:m], x[n:m])
return z.norm()
}
func (z nat) or(x, y nat) nat {
m := len(x)
n := len(y)
s := x
if m < n {
n, m = m, n
s = y
}
// m >= n
z = z.make(m)
for i := 0; i < n; i++ {
z[i] = x[i] | y[i]
}
copy(z[n:m], s[n:m])
return z.norm()
}
func (z nat) xor(x, y nat) nat {
m := len(x)
n := len(y)
s := x
if m < n {
n, m = m, n
s = y
}
// m >= n
z = z.make(m)
for i := 0; i < n; i++ {
z[i] = x[i] ^ y[i]
}
copy(z[n:m], s[n:m])
return z.norm()
}
// greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2)
func greaterThan(x1, x2, y1, y2 Word) bool {
return x1 > y1 || x1 == y1 && x2 > y2
}
// modW returns x % d.
func (x nat) modW(d Word) (r Word) {
// TODO(agl): we don't actually need to store the q value.
var q nat
q = q.make(len(x))
return divWVW(q, 0, x, d)
}
// powersOfTwoDecompose finds q and k with x = q * 1<<k and q is odd, or q and k are 0.
func (x nat) powersOfTwoDecompose() (q nat, k int) {
if len(x) == 0 {
return x, 0
}
// One of the words must be non-zero by definition,
// so this loop will terminate with i < len(x), and
// i is the number of 0 words.
i := 0
for x[i] == 0 {
i++
}
n := trailingZeroBits(x[i]) // x[i] != 0
q = make(nat, len(x)-i)
shrVU(q, x[i:], uint(n))
q = q.norm()
k = i*_W + n
return
}
// random creates a random integer in [0..limit), using the space in z if
// possible. n is the bit length of limit.
func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
bitLengthOfMSW := uint(n % _W)
if bitLengthOfMSW == 0 {
bitLengthOfMSW = _W
}
mask := Word((1 << bitLengthOfMSW) - 1)
z = z.make(len(limit))
for {
for i := range z {
switch _W {
case 32:
z[i] = Word(rand.Uint32())
case 64:
z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
}
}
z[len(limit)-1] &= mask
if z.cmp(limit) < 0 {
break
}
}
return z.norm()
}
// If m != nil, expNN calculates x**y mod m. Otherwise it calculates x**y. It
// reuses the storage of z if possible.
func (z nat) expNN(x, y, m nat) nat {
if alias(z, x) || alias(z, y) {
// We cannot allow in place modification of x or y.
z = nil
}
if len(y) == 0 {
z = z.make(1)
z[0] = 1
return z
}
if m != nil {
// We likely end up being as long as the modulus.
z = z.make(len(m))
}
z = z.set(x)
v := y[len(y)-1]
// It's invalid for the most significant word to be zero, therefore we
// will find a one bit.
shift := leadingZeros(v) + 1
v <<= shift
var q nat
const mask = 1 << (_W - 1)
// We walk through the bits of the exponent one by one. Each time we
// see a bit, we square, thus doubling the power. If the bit is a one,
// we also multiply by x, thus adding one to the power.
w := _W - int(shift)
for j := 0; j < w; j++ {
z = z.mul(z, z)
if v&mask != 0 {
z = z.mul(z, x)
}
if m != nil {
q, z = q.div(z, z, m)
}
v <<= 1
}
for i := len(y) - 2; i >= 0; i-- {
v = y[i]
for j := 0; j < _W; j++ {
z = z.mul(z, z)
if v&mask != 0 {
z = z.mul(z, x)
}
if m != nil {
q, z = q.div(z, z, m)
}
v <<= 1
}
}
return z
}
// probablyPrime performs reps Miller-Rabin tests to check whether n is prime.
// If it returns true, n is prime with probability 1 - 1/4^reps.
// If it returns false, n is not prime.
func (n nat) probablyPrime(reps int) bool {
if len(n) == 0 {
return false
}
if len(n) == 1 {
if n[0] < 2 {
return false
}
if n[0]%2 == 0 {
return n[0] == 2
}
// We have to exclude these cases because we reject all
// multiples of these numbers below.
switch n[0] {
case 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53:
return true
}
}
const primesProduct32 = 0xC0CFD797 // Π {p ∈ primes, 2 < p <= 29}
const primesProduct64 = 0xE221F97C30E94E1D // Π {p ∈ primes, 2 < p <= 53}
var r Word
switch _W {
case 32:
r = n.modW(primesProduct32)
case 64:
r = n.modW(primesProduct64 & _M)
default:
panic("Unknown word size")
}
if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 ||
r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 {
return false
}
if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 ||
r%43 == 0 || r%47 == 0 || r%53 == 0) {
return false
}
nm1 := nat{}.sub(n, natOne)
// 1<<k * q = nm1;
q, k := nm1.powersOfTwoDecompose()
nm3 := nat{}.sub(nm1, natTwo)
rand := rand.New(rand.NewSource(int64(n[0])))
var x, y, quotient nat
nm3Len := nm3.bitLen()
NextRandom:
for i := 0; i < reps; i++ {
x = x.random(rand, nm3, nm3Len)
x = x.add(x, natTwo)
y = y.expNN(x, q, n)
if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
continue
}
for j := 1; j < k; j++ {
y = y.mul(y, y)
quotient, y = quotient.div(y, y, n)
if y.cmp(nm1) == 0 {
continue NextRandom
}
if y.cmp(natOne) == 0 {
return false
}
}
return false
}
return true
}
// bytes writes the value of z into buf using big-endian encoding.
// len(buf) must be >= len(z)*_S. The value of z is encoded in the
// slice buf[i:]. The number i of unused bytes at the beginning of
// buf is returned as result.
func (z nat) bytes(buf []byte) (i int) {
i = len(buf)
for _, d := range z {
for j := 0; j < _S; j++ {
i--
buf[i] = byte(d)
d >>= 8
}
}
for i < len(buf) && buf[i] == 0 {
i++
}
return
}
// setBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z nat) setBytes(buf []byte) nat {
z = z.make((len(buf) + _S - 1) / _S)
k := 0
s := uint(0)
var d Word
for i := len(buf); i > 0; i-- {
d |= Word(buf[i-1]) << s
if s += 8; s == _S*8 {
z[k] = d
k++
s = 0
d = 0
}
}
if k < len(z) {
z[k] = d
}
return z.norm()
}