2012 lines
64 KiB
Go
2012 lines
64 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
// Garbage collector: type and heap bitmaps.
|
||
//
|
||
// Stack, data, and bss bitmaps
|
||
//
|
||
// Stack frames and global variables in the data and bss sections are
|
||
// described by bitmaps with 1 bit per pointer-sized word. A "1" bit
|
||
// means the word is a live pointer to be visited by the GC (referred to
|
||
// as "pointer"). A "0" bit means the word should be ignored by GC
|
||
// (referred to as "scalar", though it could be a dead pointer value).
|
||
//
|
||
// Heap bitmap
|
||
//
|
||
// The heap bitmap comprises 2 bits for each pointer-sized word in the heap,
|
||
// stored in the heapArena metadata backing each heap arena.
|
||
// That is, if ha is the heapArena for the arena starting a start,
|
||
// then ha.bitmap[0] holds the 2-bit entries for the four words start
|
||
// through start+3*ptrSize, ha.bitmap[1] holds the entries for
|
||
// start+4*ptrSize through start+7*ptrSize, and so on.
|
||
//
|
||
// In each 2-bit entry, the lower bit is a pointer/scalar bit, just
|
||
// like in the stack/data bitmaps described above. The upper bit
|
||
// indicates scan/dead: a "1" value ("scan") indicates that there may
|
||
// be pointers in later words of the allocation, and a "0" value
|
||
// ("dead") indicates there are no more pointers in the allocation. If
|
||
// the upper bit is 0, the lower bit must also be 0, and this
|
||
// indicates scanning can ignore the rest of the allocation.
|
||
//
|
||
// The 2-bit entries are split when written into the byte, so that the top half
|
||
// of the byte contains 4 high (scan) bits and the bottom half contains 4 low
|
||
// (pointer) bits. This form allows a copy from the 1-bit to the 4-bit form to
|
||
// keep the pointer bits contiguous, instead of having to space them out.
|
||
//
|
||
// The code makes use of the fact that the zero value for a heap
|
||
// bitmap means scalar/dead. This property must be preserved when
|
||
// modifying the encoding.
|
||
//
|
||
// The bitmap for noscan spans is not maintained. Code must ensure
|
||
// that an object is scannable before consulting its bitmap by
|
||
// checking either the noscan bit in the span or by consulting its
|
||
// type's information.
|
||
|
||
package runtime
|
||
|
||
import (
|
||
"runtime/internal/atomic"
|
||
"runtime/internal/sys"
|
||
"unsafe"
|
||
)
|
||
|
||
const (
|
||
bitPointer = 1 << 0
|
||
bitScan = 1 << 4
|
||
|
||
heapBitsShift = 1 // shift offset between successive bitPointer or bitScan entries
|
||
wordsPerBitmapByte = 8 / 2 // heap words described by one bitmap byte
|
||
|
||
// all scan/pointer bits in a byte
|
||
bitScanAll = bitScan | bitScan<<heapBitsShift | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift)
|
||
bitPointerAll = bitPointer | bitPointer<<heapBitsShift | bitPointer<<(2*heapBitsShift) | bitPointer<<(3*heapBitsShift)
|
||
)
|
||
|
||
// addb returns the byte pointer p+n.
|
||
//go:nowritebarrier
|
||
//go:nosplit
|
||
func addb(p *byte, n uintptr) *byte {
|
||
// Note: wrote out full expression instead of calling add(p, n)
|
||
// to reduce the number of temporaries generated by the
|
||
// compiler for this trivial expression during inlining.
|
||
return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n))
|
||
}
|
||
|
||
// subtractb returns the byte pointer p-n.
|
||
//go:nowritebarrier
|
||
//go:nosplit
|
||
func subtractb(p *byte, n uintptr) *byte {
|
||
// Note: wrote out full expression instead of calling add(p, -n)
|
||
// to reduce the number of temporaries generated by the
|
||
// compiler for this trivial expression during inlining.
|
||
return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n))
|
||
}
|
||
|
||
// add1 returns the byte pointer p+1.
|
||
//go:nowritebarrier
|
||
//go:nosplit
|
||
func add1(p *byte) *byte {
|
||
// Note: wrote out full expression instead of calling addb(p, 1)
|
||
// to reduce the number of temporaries generated by the
|
||
// compiler for this trivial expression during inlining.
|
||
return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1))
|
||
}
|
||
|
||
// subtract1 returns the byte pointer p-1.
|
||
//go:nowritebarrier
|
||
//
|
||
// nosplit because it is used during write barriers and must not be preempted.
|
||
//go:nosplit
|
||
func subtract1(p *byte) *byte {
|
||
// Note: wrote out full expression instead of calling subtractb(p, 1)
|
||
// to reduce the number of temporaries generated by the
|
||
// compiler for this trivial expression during inlining.
|
||
return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1))
|
||
}
|
||
|
||
// heapBits provides access to the bitmap bits for a single heap word.
|
||
// The methods on heapBits take value receivers so that the compiler
|
||
// can more easily inline calls to those methods and registerize the
|
||
// struct fields independently.
|
||
type heapBits struct {
|
||
bitp *uint8
|
||
shift uint32
|
||
arena uint32 // Index of heap arena containing bitp
|
||
last *uint8 // Last byte arena's bitmap
|
||
}
|
||
|
||
// Make the compiler check that heapBits.arena is large enough to hold
|
||
// the maximum arena frame number.
|
||
var _ = heapBits{arena: (1<<heapAddrBits)/heapArenaBytes - 1}
|
||
|
||
// markBits provides access to the mark bit for an object in the heap.
|
||
// bytep points to the byte holding the mark bit.
|
||
// mask is a byte with a single bit set that can be &ed with *bytep
|
||
// to see if the bit has been set.
|
||
// *m.byte&m.mask != 0 indicates the mark bit is set.
|
||
// index can be used along with span information to generate
|
||
// the address of the object in the heap.
|
||
// We maintain one set of mark bits for allocation and one for
|
||
// marking purposes.
|
||
type markBits struct {
|
||
bytep *uint8
|
||
mask uint8
|
||
index uintptr
|
||
}
|
||
|
||
//go:nosplit
|
||
func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits {
|
||
bytep, mask := s.allocBits.bitp(allocBitIndex)
|
||
return markBits{bytep, mask, allocBitIndex}
|
||
}
|
||
|
||
// refillAllocCache takes 8 bytes s.allocBits starting at whichByte
|
||
// and negates them so that ctz (count trailing zeros) instructions
|
||
// can be used. It then places these 8 bytes into the cached 64 bit
|
||
// s.allocCache.
|
||
func (s *mspan) refillAllocCache(whichByte uintptr) {
|
||
bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(whichByte)))
|
||
aCache := uint64(0)
|
||
aCache |= uint64(bytes[0])
|
||
aCache |= uint64(bytes[1]) << (1 * 8)
|
||
aCache |= uint64(bytes[2]) << (2 * 8)
|
||
aCache |= uint64(bytes[3]) << (3 * 8)
|
||
aCache |= uint64(bytes[4]) << (4 * 8)
|
||
aCache |= uint64(bytes[5]) << (5 * 8)
|
||
aCache |= uint64(bytes[6]) << (6 * 8)
|
||
aCache |= uint64(bytes[7]) << (7 * 8)
|
||
s.allocCache = ^aCache
|
||
}
|
||
|
||
// nextFreeIndex returns the index of the next free object in s at
|
||
// or after s.freeindex.
|
||
// There are hardware instructions that can be used to make this
|
||
// faster if profiling warrants it.
|
||
func (s *mspan) nextFreeIndex() uintptr {
|
||
sfreeindex := s.freeindex
|
||
snelems := s.nelems
|
||
if sfreeindex == snelems {
|
||
return sfreeindex
|
||
}
|
||
if sfreeindex > snelems {
|
||
throw("s.freeindex > s.nelems")
|
||
}
|
||
|
||
aCache := s.allocCache
|
||
|
||
bitIndex := sys.Ctz64(aCache)
|
||
for bitIndex == 64 {
|
||
// Move index to start of next cached bits.
|
||
sfreeindex = (sfreeindex + 64) &^ (64 - 1)
|
||
if sfreeindex >= snelems {
|
||
s.freeindex = snelems
|
||
return snelems
|
||
}
|
||
whichByte := sfreeindex / 8
|
||
// Refill s.allocCache with the next 64 alloc bits.
|
||
s.refillAllocCache(whichByte)
|
||
aCache = s.allocCache
|
||
bitIndex = sys.Ctz64(aCache)
|
||
// nothing available in cached bits
|
||
// grab the next 8 bytes and try again.
|
||
}
|
||
result := sfreeindex + uintptr(bitIndex)
|
||
if result >= snelems {
|
||
s.freeindex = snelems
|
||
return snelems
|
||
}
|
||
|
||
s.allocCache >>= uint(bitIndex + 1)
|
||
sfreeindex = result + 1
|
||
|
||
if sfreeindex%64 == 0 && sfreeindex != snelems {
|
||
// We just incremented s.freeindex so it isn't 0.
|
||
// As each 1 in s.allocCache was encountered and used for allocation
|
||
// it was shifted away. At this point s.allocCache contains all 0s.
|
||
// Refill s.allocCache so that it corresponds
|
||
// to the bits at s.allocBits starting at s.freeindex.
|
||
whichByte := sfreeindex / 8
|
||
s.refillAllocCache(whichByte)
|
||
}
|
||
s.freeindex = sfreeindex
|
||
return result
|
||
}
|
||
|
||
// isFree reports whether the index'th object in s is unallocated.
|
||
//
|
||
// The caller must ensure s.state is mSpanInUse, and there must have
|
||
// been no preemption points since ensuring this (which could allow a
|
||
// GC transition, which would allow the state to change).
|
||
func (s *mspan) isFree(index uintptr) bool {
|
||
if index < s.freeindex {
|
||
return false
|
||
}
|
||
bytep, mask := s.allocBits.bitp(index)
|
||
return *bytep&mask == 0
|
||
}
|
||
|
||
// divideByElemSize returns n/s.elemsize.
|
||
// n must be within [0, s.npages*_PageSize),
|
||
// or may be exactly s.npages*_PageSize
|
||
// if s.elemsize is from sizeclasses.go.
|
||
func (s *mspan) divideByElemSize(n uintptr) uintptr {
|
||
const doubleCheck = false
|
||
|
||
// See explanation in mksizeclasses.go's computeDivMagic.
|
||
q := uintptr((uint64(n) * uint64(s.divMul)) >> 32)
|
||
|
||
if doubleCheck && q != n/s.elemsize {
|
||
println(n, "/", s.elemsize, "should be", n/s.elemsize, "but got", q)
|
||
throw("bad magic division")
|
||
}
|
||
return q
|
||
}
|
||
|
||
func (s *mspan) objIndex(p uintptr) uintptr {
|
||
return s.divideByElemSize(p - s.base())
|
||
}
|
||
|
||
func markBitsForAddr(p uintptr) markBits {
|
||
s := spanOf(p)
|
||
objIndex := s.objIndex(p)
|
||
return s.markBitsForIndex(objIndex)
|
||
}
|
||
|
||
func (s *mspan) markBitsForIndex(objIndex uintptr) markBits {
|
||
bytep, mask := s.gcmarkBits.bitp(objIndex)
|
||
return markBits{bytep, mask, objIndex}
|
||
}
|
||
|
||
func (s *mspan) markBitsForBase() markBits {
|
||
return markBits{(*uint8)(s.gcmarkBits), uint8(1), 0}
|
||
}
|
||
|
||
// isMarked reports whether mark bit m is set.
|
||
func (m markBits) isMarked() bool {
|
||
return *m.bytep&m.mask != 0
|
||
}
|
||
|
||
// setMarked sets the marked bit in the markbits, atomically.
|
||
func (m markBits) setMarked() {
|
||
// Might be racing with other updates, so use atomic update always.
|
||
// We used to be clever here and use a non-atomic update in certain
|
||
// cases, but it's not worth the risk.
|
||
atomic.Or8(m.bytep, m.mask)
|
||
}
|
||
|
||
// setMarkedNonAtomic sets the marked bit in the markbits, non-atomically.
|
||
func (m markBits) setMarkedNonAtomic() {
|
||
*m.bytep |= m.mask
|
||
}
|
||
|
||
// clearMarked clears the marked bit in the markbits, atomically.
|
||
func (m markBits) clearMarked() {
|
||
// Might be racing with other updates, so use atomic update always.
|
||
// We used to be clever here and use a non-atomic update in certain
|
||
// cases, but it's not worth the risk.
|
||
atomic.And8(m.bytep, ^m.mask)
|
||
}
|
||
|
||
// markBitsForSpan returns the markBits for the span base address base.
|
||
func markBitsForSpan(base uintptr) (mbits markBits) {
|
||
mbits = markBitsForAddr(base)
|
||
if mbits.mask != 1 {
|
||
throw("markBitsForSpan: unaligned start")
|
||
}
|
||
return mbits
|
||
}
|
||
|
||
// advance advances the markBits to the next object in the span.
|
||
func (m *markBits) advance() {
|
||
if m.mask == 1<<7 {
|
||
m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1))
|
||
m.mask = 1
|
||
} else {
|
||
m.mask = m.mask << 1
|
||
}
|
||
m.index++
|
||
}
|
||
|
||
// heapBitsForAddr returns the heapBits for the address addr.
|
||
// The caller must ensure addr is in an allocated span.
|
||
// In particular, be careful not to point past the end of an object.
|
||
//
|
||
// nosplit because it is used during write barriers and must not be preempted.
|
||
//go:nosplit
|
||
func heapBitsForAddr(addr uintptr) (h heapBits) {
|
||
// 2 bits per word, 4 pairs per byte, and a mask is hard coded.
|
||
arena := arenaIndex(addr)
|
||
ha := mheap_.arenas[arena.l1()][arena.l2()]
|
||
// The compiler uses a load for nil checking ha, but in this
|
||
// case we'll almost never hit that cache line again, so it
|
||
// makes more sense to do a value check.
|
||
if ha == nil {
|
||
// addr is not in the heap. Return nil heapBits, which
|
||
// we expect to crash in the caller.
|
||
return
|
||
}
|
||
h.bitp = &ha.bitmap[(addr/(sys.PtrSize*4))%heapArenaBitmapBytes]
|
||
h.shift = uint32((addr / sys.PtrSize) & 3)
|
||
h.arena = uint32(arena)
|
||
h.last = &ha.bitmap[len(ha.bitmap)-1]
|
||
return
|
||
}
|
||
|
||
// clobberdeadPtr is a special value that is used by the compiler to
|
||
// clobber dead stack slots, when -clobberdead flag is set.
|
||
const clobberdeadPtr = uintptr(0xdeaddead | 0xdeaddead<<((^uintptr(0)>>63)*32))
|
||
|
||
// badPointer throws bad pointer in heap panic.
|
||
func badPointer(s *mspan, p, refBase, refOff uintptr) {
|
||
// Typically this indicates an incorrect use
|
||
// of unsafe or cgo to store a bad pointer in
|
||
// the Go heap. It may also indicate a runtime
|
||
// bug.
|
||
//
|
||
// TODO(austin): We could be more aggressive
|
||
// and detect pointers to unallocated objects
|
||
// in allocated spans.
|
||
printlock()
|
||
print("runtime: pointer ", hex(p))
|
||
if s != nil {
|
||
state := s.state.get()
|
||
if state != mSpanInUse {
|
||
print(" to unallocated span")
|
||
} else {
|
||
print(" to unused region of span")
|
||
}
|
||
print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state)
|
||
}
|
||
print("\n")
|
||
if refBase != 0 {
|
||
print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n")
|
||
gcDumpObject("object", refBase, refOff)
|
||
}
|
||
getg().m.traceback = 2
|
||
throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)")
|
||
}
|
||
|
||
// findObject returns the base address for the heap object containing
|
||
// the address p, the object's span, and the index of the object in s.
|
||
// If p does not point into a heap object, it returns base == 0.
|
||
//
|
||
// If p points is an invalid heap pointer and debug.invalidptr != 0,
|
||
// findObject panics.
|
||
//
|
||
// For gccgo, the forStack parameter is true if the value came from the stack.
|
||
// The stack is collected conservatively and may contain invalid pointers.
|
||
//
|
||
// refBase and refOff optionally give the base address of the object
|
||
// in which the pointer p was found and the byte offset at which it
|
||
// was found. These are used for error reporting.
|
||
//
|
||
// It is nosplit so it is safe for p to be a pointer to the current goroutine's stack.
|
||
// Since p is a uintptr, it would not be adjusted if the stack were to move.
|
||
//go:nosplit
|
||
func findObject(p, refBase, refOff uintptr, forStack bool) (base uintptr, s *mspan, objIndex uintptr) {
|
||
s = spanOf(p)
|
||
// If s is nil, the virtual address has never been part of the heap.
|
||
// This pointer may be to some mmap'd region, so we allow it.
|
||
if s == nil {
|
||
if GOARCH == "amd64" && p == clobberdeadPtr && debug.invalidptr != 0 {
|
||
// Crash if clobberdeadPtr is seen. Only on AMD64 for now, as
|
||
// it is the only platform where compiler's clobberdead mode is
|
||
// implemented. On AMD64 clobberdeadPtr cannot be a valid address.
|
||
badPointer(s, p, refBase, refOff)
|
||
}
|
||
return
|
||
}
|
||
// If p is a bad pointer, it may not be in s's bounds.
|
||
//
|
||
// Check s.state to synchronize with span initialization
|
||
// before checking other fields. See also spanOfHeap.
|
||
if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit {
|
||
// Pointers into stacks are also ok, the runtime manages these explicitly.
|
||
if state == mSpanManual || forStack {
|
||
return
|
||
}
|
||
// The following ensures that we are rigorous about what data
|
||
// structures hold valid pointers.
|
||
if debug.invalidptr != 0 {
|
||
badPointer(s, p, refBase, refOff)
|
||
}
|
||
return
|
||
}
|
||
|
||
if forStack {
|
||
// A span can be entered in mheap_.spans, and be set
|
||
// to mSpanInUse, before it is fully initialized.
|
||
// All we need in practice is allocBits and gcmarkBits,
|
||
// so make sure they are set.
|
||
if s.allocBits == nil || s.gcmarkBits == nil {
|
||
return
|
||
}
|
||
}
|
||
|
||
objIndex = s.objIndex(p)
|
||
base = s.base() + objIndex*s.elemsize
|
||
return
|
||
}
|
||
|
||
// next returns the heapBits describing the next pointer-sized word in memory.
|
||
// That is, if h describes address p, h.next() describes p+ptrSize.
|
||
// Note that next does not modify h. The caller must record the result.
|
||
//
|
||
// nosplit because it is used during write barriers and must not be preempted.
|
||
//go:nosplit
|
||
func (h heapBits) next() heapBits {
|
||
if h.shift < 3*heapBitsShift {
|
||
h.shift += heapBitsShift
|
||
} else if h.bitp != h.last {
|
||
h.bitp, h.shift = add1(h.bitp), 0
|
||
} else {
|
||
// Move to the next arena.
|
||
return h.nextArena()
|
||
}
|
||
return h
|
||
}
|
||
|
||
// nextArena advances h to the beginning of the next heap arena.
|
||
//
|
||
// This is a slow-path helper to next. gc's inliner knows that
|
||
// heapBits.next can be inlined even though it calls this. This is
|
||
// marked noinline so it doesn't get inlined into next and cause next
|
||
// to be too big to inline.
|
||
//
|
||
//go:nosplit
|
||
//go:noinline
|
||
func (h heapBits) nextArena() heapBits {
|
||
h.arena++
|
||
ai := arenaIdx(h.arena)
|
||
l2 := mheap_.arenas[ai.l1()]
|
||
if l2 == nil {
|
||
// We just passed the end of the object, which
|
||
// was also the end of the heap. Poison h. It
|
||
// should never be dereferenced at this point.
|
||
return heapBits{}
|
||
}
|
||
ha := l2[ai.l2()]
|
||
if ha == nil {
|
||
return heapBits{}
|
||
}
|
||
h.bitp, h.shift = &ha.bitmap[0], 0
|
||
h.last = &ha.bitmap[len(ha.bitmap)-1]
|
||
return h
|
||
}
|
||
|
||
// forward returns the heapBits describing n pointer-sized words ahead of h in memory.
|
||
// That is, if h describes address p, h.forward(n) describes p+n*ptrSize.
|
||
// h.forward(1) is equivalent to h.next(), just slower.
|
||
// Note that forward does not modify h. The caller must record the result.
|
||
// bits returns the heap bits for the current word.
|
||
//go:nosplit
|
||
func (h heapBits) forward(n uintptr) heapBits {
|
||
n += uintptr(h.shift) / heapBitsShift
|
||
nbitp := uintptr(unsafe.Pointer(h.bitp)) + n/4
|
||
h.shift = uint32(n%4) * heapBitsShift
|
||
if nbitp <= uintptr(unsafe.Pointer(h.last)) {
|
||
h.bitp = (*uint8)(unsafe.Pointer(nbitp))
|
||
return h
|
||
}
|
||
|
||
// We're in a new heap arena.
|
||
past := nbitp - (uintptr(unsafe.Pointer(h.last)) + 1)
|
||
h.arena += 1 + uint32(past/heapArenaBitmapBytes)
|
||
ai := arenaIdx(h.arena)
|
||
if l2 := mheap_.arenas[ai.l1()]; l2 != nil && l2[ai.l2()] != nil {
|
||
a := l2[ai.l2()]
|
||
h.bitp = &a.bitmap[past%heapArenaBitmapBytes]
|
||
h.last = &a.bitmap[len(a.bitmap)-1]
|
||
} else {
|
||
h.bitp, h.last = nil, nil
|
||
}
|
||
return h
|
||
}
|
||
|
||
// forwardOrBoundary is like forward, but stops at boundaries between
|
||
// contiguous sections of the bitmap. It returns the number of words
|
||
// advanced over, which will be <= n.
|
||
func (h heapBits) forwardOrBoundary(n uintptr) (heapBits, uintptr) {
|
||
maxn := 4 * ((uintptr(unsafe.Pointer(h.last)) + 1) - uintptr(unsafe.Pointer(h.bitp)))
|
||
if n > maxn {
|
||
n = maxn
|
||
}
|
||
return h.forward(n), n
|
||
}
|
||
|
||
// The caller can test morePointers and isPointer by &-ing with bitScan and bitPointer.
|
||
// The result includes in its higher bits the bits for subsequent words
|
||
// described by the same bitmap byte.
|
||
//
|
||
// nosplit because it is used during write barriers and must not be preempted.
|
||
//go:nosplit
|
||
func (h heapBits) bits() uint32 {
|
||
// The (shift & 31) eliminates a test and conditional branch
|
||
// from the generated code.
|
||
return uint32(*h.bitp) >> (h.shift & 31)
|
||
}
|
||
|
||
// morePointers reports whether this word and all remaining words in this object
|
||
// are scalars.
|
||
// h must not describe the second word of the object.
|
||
func (h heapBits) morePointers() bool {
|
||
return h.bits()&bitScan != 0
|
||
}
|
||
|
||
// isPointer reports whether the heap bits describe a pointer word.
|
||
//
|
||
// nosplit because it is used during write barriers and must not be preempted.
|
||
//go:nosplit
|
||
func (h heapBits) isPointer() bool {
|
||
return h.bits()&bitPointer != 0
|
||
}
|
||
|
||
// bulkBarrierPreWrite executes a write barrier
|
||
// for every pointer slot in the memory range [src, src+size),
|
||
// using pointer/scalar information from [dst, dst+size).
|
||
// This executes the write barriers necessary before a memmove.
|
||
// src, dst, and size must be pointer-aligned.
|
||
// The range [dst, dst+size) must lie within a single object.
|
||
// It does not perform the actual writes.
|
||
//
|
||
// As a special case, src == 0 indicates that this is being used for a
|
||
// memclr. bulkBarrierPreWrite will pass 0 for the src of each write
|
||
// barrier.
|
||
//
|
||
// Callers should call bulkBarrierPreWrite immediately before
|
||
// calling memmove(dst, src, size). This function is marked nosplit
|
||
// to avoid being preempted; the GC must not stop the goroutine
|
||
// between the memmove and the execution of the barriers.
|
||
// The caller is also responsible for cgo pointer checks if this
|
||
// may be writing Go pointers into non-Go memory.
|
||
//
|
||
// The pointer bitmap is not maintained for allocations containing
|
||
// no pointers at all; any caller of bulkBarrierPreWrite must first
|
||
// make sure the underlying allocation contains pointers, usually
|
||
// by checking typ.ptrdata.
|
||
//
|
||
// Callers must perform cgo checks if writeBarrier.cgo.
|
||
//
|
||
//go:nosplit
|
||
func bulkBarrierPreWrite(dst, src, size uintptr) {
|
||
if (dst|src|size)&(sys.PtrSize-1) != 0 {
|
||
throw("bulkBarrierPreWrite: unaligned arguments")
|
||
}
|
||
if !writeBarrier.needed {
|
||
return
|
||
}
|
||
if s := spanOf(dst); s == nil {
|
||
// If dst is a global, use the data or BSS bitmaps to
|
||
// execute write barriers.
|
||
lo := 0
|
||
hi := len(gcRootsIndex)
|
||
for lo < hi {
|
||
m := lo + (hi-lo)/2
|
||
pr := gcRootsIndex[m]
|
||
addr := uintptr(pr.decl)
|
||
if addr <= dst && dst < addr+pr.size {
|
||
if dst < addr+pr.ptrdata {
|
||
bulkBarrierBitmap(dst, src, size, dst-addr, pr.gcdata)
|
||
}
|
||
return
|
||
}
|
||
if dst < addr {
|
||
hi = m
|
||
} else {
|
||
lo = m + 1
|
||
}
|
||
}
|
||
return
|
||
} else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst {
|
||
// dst was heap memory at some point, but isn't now.
|
||
// It can't be a global. It must be either our stack,
|
||
// or in the case of direct channel sends, it could be
|
||
// another stack. Either way, no need for barriers.
|
||
// This will also catch if dst is in a freed span,
|
||
// though that should never have.
|
||
return
|
||
}
|
||
|
||
buf := &getg().m.p.ptr().wbBuf
|
||
h := heapBitsForAddr(dst)
|
||
if src == 0 {
|
||
for i := uintptr(0); i < size; i += sys.PtrSize {
|
||
if h.isPointer() {
|
||
dstx := (*uintptr)(unsafe.Pointer(dst + i))
|
||
if !buf.putFast(*dstx, 0) {
|
||
wbBufFlush(nil, 0)
|
||
}
|
||
}
|
||
h = h.next()
|
||
}
|
||
} else {
|
||
for i := uintptr(0); i < size; i += sys.PtrSize {
|
||
if h.isPointer() {
|
||
dstx := (*uintptr)(unsafe.Pointer(dst + i))
|
||
srcx := (*uintptr)(unsafe.Pointer(src + i))
|
||
if !buf.putFast(*dstx, *srcx) {
|
||
wbBufFlush(nil, 0)
|
||
}
|
||
}
|
||
h = h.next()
|
||
}
|
||
}
|
||
}
|
||
|
||
// bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but
|
||
// does not execute write barriers for [dst, dst+size).
|
||
//
|
||
// In addition to the requirements of bulkBarrierPreWrite
|
||
// callers need to ensure [dst, dst+size) is zeroed.
|
||
//
|
||
// This is used for special cases where e.g. dst was just
|
||
// created and zeroed with malloc.
|
||
//go:nosplit
|
||
func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr) {
|
||
if (dst|src|size)&(sys.PtrSize-1) != 0 {
|
||
throw("bulkBarrierPreWrite: unaligned arguments")
|
||
}
|
||
if !writeBarrier.needed {
|
||
return
|
||
}
|
||
buf := &getg().m.p.ptr().wbBuf
|
||
h := heapBitsForAddr(dst)
|
||
for i := uintptr(0); i < size; i += sys.PtrSize {
|
||
if h.isPointer() {
|
||
srcx := (*uintptr)(unsafe.Pointer(src + i))
|
||
if !buf.putFast(0, *srcx) {
|
||
wbBufFlush(nil, 0)
|
||
}
|
||
}
|
||
h = h.next()
|
||
}
|
||
}
|
||
|
||
// bulkBarrierBitmap executes write barriers for copying from [src,
|
||
// src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is
|
||
// assumed to start maskOffset bytes into the data covered by the
|
||
// bitmap in bits (which may not be a multiple of 8).
|
||
//
|
||
// This is used by bulkBarrierPreWrite for writes to data and BSS.
|
||
//
|
||
//go:nosplit
|
||
func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) {
|
||
word := maskOffset / sys.PtrSize
|
||
bits = addb(bits, word/8)
|
||
mask := uint8(1) << (word % 8)
|
||
|
||
buf := &getg().m.p.ptr().wbBuf
|
||
for i := uintptr(0); i < size; i += sys.PtrSize {
|
||
if mask == 0 {
|
||
bits = addb(bits, 1)
|
||
if *bits == 0 {
|
||
// Skip 8 words.
|
||
i += 7 * sys.PtrSize
|
||
continue
|
||
}
|
||
mask = 1
|
||
}
|
||
if *bits&mask != 0 {
|
||
dstx := (*uintptr)(unsafe.Pointer(dst + i))
|
||
if src == 0 {
|
||
if !buf.putFast(*dstx, 0) {
|
||
wbBufFlush(nil, 0)
|
||
}
|
||
} else {
|
||
srcx := (*uintptr)(unsafe.Pointer(src + i))
|
||
if !buf.putFast(*dstx, *srcx) {
|
||
wbBufFlush(nil, 0)
|
||
}
|
||
}
|
||
}
|
||
mask <<= 1
|
||
}
|
||
}
|
||
|
||
// typeBitsBulkBarrier executes a write barrier for every
|
||
// pointer that would be copied from [src, src+size) to [dst,
|
||
// dst+size) by a memmove using the type bitmap to locate those
|
||
// pointer slots.
|
||
//
|
||
// The type typ must correspond exactly to [src, src+size) and [dst, dst+size).
|
||
// dst, src, and size must be pointer-aligned.
|
||
// The type typ must have a plain bitmap, not a GC program.
|
||
// The only use of this function is in channel sends, and the
|
||
// 64 kB channel element limit takes care of this for us.
|
||
//
|
||
// Must not be preempted because it typically runs right before memmove,
|
||
// and the GC must observe them as an atomic action.
|
||
//
|
||
// Callers must perform cgo checks if writeBarrier.cgo.
|
||
//
|
||
//go:nosplit
|
||
func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) {
|
||
if typ == nil {
|
||
throw("runtime: typeBitsBulkBarrier without type")
|
||
}
|
||
if typ.size != size {
|
||
println("runtime: typeBitsBulkBarrier with type ", typ.string(), " of size ", typ.size, " but memory size", size)
|
||
throw("runtime: invalid typeBitsBulkBarrier")
|
||
}
|
||
if typ.kind&kindGCProg != 0 {
|
||
println("runtime: typeBitsBulkBarrier with type ", typ.string(), " with GC prog")
|
||
throw("runtime: invalid typeBitsBulkBarrier")
|
||
}
|
||
if !writeBarrier.needed {
|
||
return
|
||
}
|
||
ptrmask := typ.gcdata
|
||
buf := &getg().m.p.ptr().wbBuf
|
||
var bits uint32
|
||
for i := uintptr(0); i < typ.ptrdata; i += sys.PtrSize {
|
||
if i&(sys.PtrSize*8-1) == 0 {
|
||
bits = uint32(*ptrmask)
|
||
ptrmask = addb(ptrmask, 1)
|
||
} else {
|
||
bits = bits >> 1
|
||
}
|
||
if bits&1 != 0 {
|
||
dstx := (*uintptr)(unsafe.Pointer(dst + i))
|
||
srcx := (*uintptr)(unsafe.Pointer(src + i))
|
||
if !buf.putFast(*dstx, *srcx) {
|
||
wbBufFlush(nil, 0)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// The methods operating on spans all require that h has been returned
|
||
// by heapBitsForSpan and that size, n, total are the span layout description
|
||
// returned by the mspan's layout method.
|
||
// If total > size*n, it means that there is extra leftover memory in the span,
|
||
// usually due to rounding.
|
||
//
|
||
// TODO(rsc): Perhaps introduce a different heapBitsSpan type.
|
||
|
||
// initSpan initializes the heap bitmap for a span.
|
||
// If this is a span of pointer-sized objects, it initializes all
|
||
// words to pointer/scan.
|
||
// Otherwise, it initializes all words to scalar/dead.
|
||
func (h heapBits) initSpan(s *mspan) {
|
||
// Clear bits corresponding to objects.
|
||
nw := (s.npages << _PageShift) / sys.PtrSize
|
||
if nw%wordsPerBitmapByte != 0 {
|
||
throw("initSpan: unaligned length")
|
||
}
|
||
if h.shift != 0 {
|
||
throw("initSpan: unaligned base")
|
||
}
|
||
isPtrs := sys.PtrSize == 8 && s.elemsize == sys.PtrSize
|
||
for nw > 0 {
|
||
hNext, anw := h.forwardOrBoundary(nw)
|
||
nbyte := anw / wordsPerBitmapByte
|
||
if isPtrs {
|
||
bitp := h.bitp
|
||
for i := uintptr(0); i < nbyte; i++ {
|
||
*bitp = bitPointerAll | bitScanAll
|
||
bitp = add1(bitp)
|
||
}
|
||
} else {
|
||
memclrNoHeapPointers(unsafe.Pointer(h.bitp), nbyte)
|
||
}
|
||
h = hNext
|
||
nw -= anw
|
||
}
|
||
}
|
||
|
||
// countAlloc returns the number of objects allocated in span s by
|
||
// scanning the allocation bitmap.
|
||
func (s *mspan) countAlloc() int {
|
||
count := 0
|
||
bytes := divRoundUp(s.nelems, 8)
|
||
// Iterate over each 8-byte chunk and count allocations
|
||
// with an intrinsic. Note that newMarkBits guarantees that
|
||
// gcmarkBits will be 8-byte aligned, so we don't have to
|
||
// worry about edge cases, irrelevant bits will simply be zero.
|
||
for i := uintptr(0); i < bytes; i += 8 {
|
||
// Extract 64 bits from the byte pointer and get a OnesCount.
|
||
// Note that the unsafe cast here doesn't preserve endianness,
|
||
// but that's OK. We only care about how many bits are 1, not
|
||
// about the order we discover them in.
|
||
mrkBits := *(*uint64)(unsafe.Pointer(s.gcmarkBits.bytep(i)))
|
||
count += sys.OnesCount64(mrkBits)
|
||
}
|
||
return count
|
||
}
|
||
|
||
// heapBitsSetType records that the new allocation [x, x+size)
|
||
// holds in [x, x+dataSize) one or more values of type typ.
|
||
// (The number of values is given by dataSize / typ.size.)
|
||
// If dataSize < size, the fragment [x+dataSize, x+size) is
|
||
// recorded as non-pointer data.
|
||
// It is known that the type has pointers somewhere;
|
||
// malloc does not call heapBitsSetType when there are no pointers,
|
||
// because all free objects are marked as noscan during
|
||
// heapBitsSweepSpan.
|
||
//
|
||
// There can only be one allocation from a given span active at a time,
|
||
// and the bitmap for a span always falls on byte boundaries,
|
||
// so there are no write-write races for access to the heap bitmap.
|
||
// Hence, heapBitsSetType can access the bitmap without atomics.
|
||
//
|
||
// There can be read-write races between heapBitsSetType and things
|
||
// that read the heap bitmap like scanobject. However, since
|
||
// heapBitsSetType is only used for objects that have not yet been
|
||
// made reachable, readers will ignore bits being modified by this
|
||
// function. This does mean this function cannot transiently modify
|
||
// bits that belong to neighboring objects. Also, on weakly-ordered
|
||
// machines, callers must execute a store/store (publication) barrier
|
||
// between calling this function and making the object reachable.
|
||
func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
|
||
const doubleCheck = false // slow but helpful; enable to test modifications to this code
|
||
|
||
const (
|
||
mask1 = bitPointer | bitScan // 00010001
|
||
mask2 = bitPointer | bitScan | mask1<<heapBitsShift // 00110011
|
||
mask3 = bitPointer | bitScan | mask2<<heapBitsShift // 01110111
|
||
)
|
||
|
||
// dataSize is always size rounded up to the next malloc size class,
|
||
// except in the case of allocating a defer block, in which case
|
||
// size is sizeof(_defer{}) (at least 6 words) and dataSize may be
|
||
// arbitrarily larger.
|
||
//
|
||
// The checks for size == sys.PtrSize and size == 2*sys.PtrSize can therefore
|
||
// assume that dataSize == size without checking it explicitly.
|
||
|
||
if sys.PtrSize == 8 && size == sys.PtrSize {
|
||
// It's one word and it has pointers, it must be a pointer.
|
||
// Since all allocated one-word objects are pointers
|
||
// (non-pointers are aggregated into tinySize allocations),
|
||
// initSpan sets the pointer bits for us. Nothing to do here.
|
||
if doubleCheck {
|
||
h := heapBitsForAddr(x)
|
||
if !h.isPointer() {
|
||
throw("heapBitsSetType: pointer bit missing")
|
||
}
|
||
if !h.morePointers() {
|
||
throw("heapBitsSetType: scan bit missing")
|
||
}
|
||
}
|
||
return
|
||
}
|
||
|
||
h := heapBitsForAddr(x)
|
||
ptrmask := typ.gcdata // start of 1-bit pointer mask (or GC program, handled below)
|
||
|
||
// 2-word objects only have 4 bitmap bits and 3-word objects only have 6 bitmap bits.
|
||
// Therefore, these objects share a heap bitmap byte with the objects next to them.
|
||
// These are called out as a special case primarily so the code below can assume all
|
||
// objects are at least 4 words long and that their bitmaps start either at the beginning
|
||
// of a bitmap byte, or half-way in (h.shift of 0 and 2 respectively).
|
||
|
||
if size == 2*sys.PtrSize {
|
||
if typ.size == sys.PtrSize {
|
||
// We're allocating a block big enough to hold two pointers.
|
||
// On 64-bit, that means the actual object must be two pointers,
|
||
// or else we'd have used the one-pointer-sized block.
|
||
// On 32-bit, however, this is the 8-byte block, the smallest one.
|
||
// So it could be that we're allocating one pointer and this was
|
||
// just the smallest block available. Distinguish by checking dataSize.
|
||
// (In general the number of instances of typ being allocated is
|
||
// dataSize/typ.size.)
|
||
if sys.PtrSize == 4 && dataSize == sys.PtrSize {
|
||
// 1 pointer object. On 32-bit machines clear the bit for the
|
||
// unused second word.
|
||
*h.bitp &^= (bitPointer | bitScan | (bitPointer|bitScan)<<heapBitsShift) << h.shift
|
||
*h.bitp |= (bitPointer | bitScan) << h.shift
|
||
} else {
|
||
// 2-element array of pointer.
|
||
*h.bitp |= (bitPointer | bitScan | (bitPointer|bitScan)<<heapBitsShift) << h.shift
|
||
}
|
||
return
|
||
}
|
||
// Otherwise typ.size must be 2*sys.PtrSize,
|
||
// and typ.kind&kindGCProg == 0.
|
||
if doubleCheck {
|
||
if typ.size != 2*sys.PtrSize || typ.kind&kindGCProg != 0 {
|
||
print("runtime: heapBitsSetType size=", size, " but typ.size=", typ.size, " gcprog=", typ.kind&kindGCProg != 0, "\n")
|
||
throw("heapBitsSetType")
|
||
}
|
||
}
|
||
b := uint32(*ptrmask)
|
||
hb := b & 3
|
||
hb |= bitScanAll & ((bitScan << (typ.ptrdata / sys.PtrSize)) - 1)
|
||
// Clear the bits for this object so we can set the
|
||
// appropriate ones.
|
||
*h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift
|
||
*h.bitp |= uint8(hb << h.shift)
|
||
return
|
||
} else if size == 3*sys.PtrSize {
|
||
b := uint8(*ptrmask)
|
||
if doubleCheck {
|
||
if b == 0 {
|
||
println("runtime: invalid type ", typ.string())
|
||
throw("heapBitsSetType: called with non-pointer type")
|
||
}
|
||
if sys.PtrSize != 8 {
|
||
throw("heapBitsSetType: unexpected 3 pointer wide size class on 32 bit")
|
||
}
|
||
if typ.kind&kindGCProg != 0 {
|
||
throw("heapBitsSetType: unexpected GC prog for 3 pointer wide size class")
|
||
}
|
||
if typ.size == 2*sys.PtrSize {
|
||
print("runtime: heapBitsSetType size=", size, " but typ.size=", typ.size, "\n")
|
||
throw("heapBitsSetType: inconsistent object sizes")
|
||
}
|
||
}
|
||
if typ.size == sys.PtrSize {
|
||
// The type contains a pointer otherwise heapBitsSetType wouldn't have been called.
|
||
// Since the type is only 1 pointer wide and contains a pointer, its gcdata must be exactly 1.
|
||
if doubleCheck && *typ.gcdata != 1 {
|
||
print("runtime: heapBitsSetType size=", size, " typ.size=", typ.size, "but *typ.gcdata", *typ.gcdata, "\n")
|
||
throw("heapBitsSetType: unexpected gcdata for 1 pointer wide type size in 3 pointer wide size class")
|
||
}
|
||
// 3 element array of pointers. Unrolling ptrmask 3 times into p yields 00000111.
|
||
b = 7
|
||
}
|
||
|
||
hb := b & 7
|
||
// Set bitScan bits for all pointers.
|
||
hb |= hb << wordsPerBitmapByte
|
||
// First bitScan bit is always set since the type contains pointers.
|
||
hb |= bitScan
|
||
// Second bitScan bit needs to also be set if the third bitScan bit is set.
|
||
hb |= hb & (bitScan << (2 * heapBitsShift)) >> 1
|
||
|
||
// For h.shift > 1 heap bits cross a byte boundary and need to be written part
|
||
// to h.bitp and part to the next h.bitp.
|
||
switch h.shift {
|
||
case 0:
|
||
*h.bitp &^= mask3 << 0
|
||
*h.bitp |= hb << 0
|
||
case 1:
|
||
*h.bitp &^= mask3 << 1
|
||
*h.bitp |= hb << 1
|
||
case 2:
|
||
*h.bitp &^= mask2 << 2
|
||
*h.bitp |= (hb & mask2) << 2
|
||
// Two words written to the first byte.
|
||
// Advance two words to get to the next byte.
|
||
h = h.next().next()
|
||
*h.bitp &^= mask1
|
||
*h.bitp |= (hb >> 2) & mask1
|
||
case 3:
|
||
*h.bitp &^= mask1 << 3
|
||
*h.bitp |= (hb & mask1) << 3
|
||
// One word written to the first byte.
|
||
// Advance one word to get to the next byte.
|
||
h = h.next()
|
||
*h.bitp &^= mask2
|
||
*h.bitp |= (hb >> 1) & mask2
|
||
}
|
||
return
|
||
}
|
||
|
||
// Copy from 1-bit ptrmask into 2-bit bitmap.
|
||
// The basic approach is to use a single uintptr as a bit buffer,
|
||
// alternating between reloading the buffer and writing bitmap bytes.
|
||
// In general, one load can supply two bitmap byte writes.
|
||
// This is a lot of lines of code, but it compiles into relatively few
|
||
// machine instructions.
|
||
|
||
outOfPlace := false
|
||
if arenaIndex(x+size-1) != arenaIdx(h.arena) || (doubleCheck && fastrand()%2 == 0) {
|
||
// This object spans heap arenas, so the bitmap may be
|
||
// discontiguous. Unroll it into the object instead
|
||
// and then copy it out.
|
||
//
|
||
// In doubleCheck mode, we randomly do this anyway to
|
||
// stress test the bitmap copying path.
|
||
outOfPlace = true
|
||
h.bitp = (*uint8)(unsafe.Pointer(x))
|
||
h.last = nil
|
||
}
|
||
|
||
var (
|
||
// Ptrmask input.
|
||
p *byte // last ptrmask byte read
|
||
b uintptr // ptrmask bits already loaded
|
||
nb uintptr // number of bits in b at next read
|
||
endp *byte // final ptrmask byte to read (then repeat)
|
||
endnb uintptr // number of valid bits in *endp
|
||
pbits uintptr // alternate source of bits
|
||
|
||
// Heap bitmap output.
|
||
w uintptr // words processed
|
||
nw uintptr // number of words to process
|
||
hbitp *byte // next heap bitmap byte to write
|
||
hb uintptr // bits being prepared for *hbitp
|
||
)
|
||
|
||
hbitp = h.bitp
|
||
|
||
// Handle GC program. Delayed until this part of the code
|
||
// so that we can use the same double-checking mechanism
|
||
// as the 1-bit case. Nothing above could have encountered
|
||
// GC programs: the cases were all too small.
|
||
if typ.kind&kindGCProg != 0 {
|
||
heapBitsSetTypeGCProg(h, typ.ptrdata, typ.size, dataSize, size, addb(typ.gcdata, 4))
|
||
if doubleCheck {
|
||
// Double-check the heap bits written by GC program
|
||
// by running the GC program to create a 1-bit pointer mask
|
||
// and then jumping to the double-check code below.
|
||
// This doesn't catch bugs shared between the 1-bit and 4-bit
|
||
// GC program execution, but it does catch mistakes specific
|
||
// to just one of those and bugs in heapBitsSetTypeGCProg's
|
||
// implementation of arrays.
|
||
lock(&debugPtrmask.lock)
|
||
if debugPtrmask.data == nil {
|
||
debugPtrmask.data = (*byte)(persistentalloc(1<<20, 1, &memstats.other_sys))
|
||
}
|
||
ptrmask = debugPtrmask.data
|
||
runGCProg(addb(typ.gcdata, 4), nil, ptrmask, 1)
|
||
}
|
||
goto Phase4
|
||
}
|
||
|
||
// Note about sizes:
|
||
//
|
||
// typ.size is the number of words in the object,
|
||
// and typ.ptrdata is the number of words in the prefix
|
||
// of the object that contains pointers. That is, the final
|
||
// typ.size - typ.ptrdata words contain no pointers.
|
||
// This allows optimization of a common pattern where
|
||
// an object has a small header followed by a large scalar
|
||
// buffer. If we know the pointers are over, we don't have
|
||
// to scan the buffer's heap bitmap at all.
|
||
// The 1-bit ptrmasks are sized to contain only bits for
|
||
// the typ.ptrdata prefix, zero padded out to a full byte
|
||
// of bitmap. This code sets nw (below) so that heap bitmap
|
||
// bits are only written for the typ.ptrdata prefix; if there is
|
||
// more room in the allocated object, the next heap bitmap
|
||
// entry is a 00, indicating that there are no more pointers
|
||
// to scan. So only the ptrmask for the ptrdata bytes is needed.
|
||
//
|
||
// Replicated copies are not as nice: if there is an array of
|
||
// objects with scalar tails, all but the last tail does have to
|
||
// be initialized, because there is no way to say "skip forward".
|
||
// However, because of the possibility of a repeated type with
|
||
// size not a multiple of 4 pointers (one heap bitmap byte),
|
||
// the code already must handle the last ptrmask byte specially
|
||
// by treating it as containing only the bits for endnb pointers,
|
||
// where endnb <= 4. We represent large scalar tails that must
|
||
// be expanded in the replication by setting endnb larger than 4.
|
||
// This will have the effect of reading many bits out of b,
|
||
// but once the real bits are shifted out, b will supply as many
|
||
// zero bits as we try to read, which is exactly what we need.
|
||
|
||
p = ptrmask
|
||
if typ.size < dataSize {
|
||
// Filling in bits for an array of typ.
|
||
// Set up for repetition of ptrmask during main loop.
|
||
// Note that ptrmask describes only a prefix of
|
||
const maxBits = sys.PtrSize*8 - 7
|
||
if typ.ptrdata/sys.PtrSize <= maxBits {
|
||
// Entire ptrmask fits in uintptr with room for a byte fragment.
|
||
// Load into pbits and never read from ptrmask again.
|
||
// This is especially important when the ptrmask has
|
||
// fewer than 8 bits in it; otherwise the reload in the middle
|
||
// of the Phase 2 loop would itself need to loop to gather
|
||
// at least 8 bits.
|
||
|
||
// Accumulate ptrmask into b.
|
||
// ptrmask is sized to describe only typ.ptrdata, but we record
|
||
// it as describing typ.size bytes, since all the high bits are zero.
|
||
nb = typ.ptrdata / sys.PtrSize
|
||
for i := uintptr(0); i < nb; i += 8 {
|
||
b |= uintptr(*p) << i
|
||
p = add1(p)
|
||
}
|
||
nb = typ.size / sys.PtrSize
|
||
|
||
// Replicate ptrmask to fill entire pbits uintptr.
|
||
// Doubling and truncating is fewer steps than
|
||
// iterating by nb each time. (nb could be 1.)
|
||
// Since we loaded typ.ptrdata/sys.PtrSize bits
|
||
// but are pretending to have typ.size/sys.PtrSize,
|
||
// there might be no replication necessary/possible.
|
||
pbits = b
|
||
endnb = nb
|
||
if nb+nb <= maxBits {
|
||
for endnb <= sys.PtrSize*8 {
|
||
pbits |= pbits << endnb
|
||
endnb += endnb
|
||
}
|
||
// Truncate to a multiple of original ptrmask.
|
||
// Because nb+nb <= maxBits, nb fits in a byte.
|
||
// Byte division is cheaper than uintptr division.
|
||
endnb = uintptr(maxBits/byte(nb)) * nb
|
||
pbits &= 1<<endnb - 1
|
||
b = pbits
|
||
nb = endnb
|
||
}
|
||
|
||
// Clear p and endp as sentinel for using pbits.
|
||
// Checked during Phase 2 loop.
|
||
p = nil
|
||
endp = nil
|
||
} else {
|
||
// Ptrmask is larger. Read it multiple times.
|
||
n := (typ.ptrdata/sys.PtrSize+7)/8 - 1
|
||
endp = addb(ptrmask, n)
|
||
endnb = typ.size/sys.PtrSize - n*8
|
||
}
|
||
}
|
||
if p != nil {
|
||
b = uintptr(*p)
|
||
p = add1(p)
|
||
nb = 8
|
||
}
|
||
|
||
if typ.size == dataSize {
|
||
// Single entry: can stop once we reach the non-pointer data.
|
||
nw = typ.ptrdata / sys.PtrSize
|
||
} else {
|
||
// Repeated instances of typ in an array.
|
||
// Have to process first N-1 entries in full, but can stop
|
||
// once we reach the non-pointer data in the final entry.
|
||
nw = ((dataSize/typ.size-1)*typ.size + typ.ptrdata) / sys.PtrSize
|
||
}
|
||
if nw == 0 {
|
||
// No pointers! Caller was supposed to check.
|
||
println("runtime: invalid type ", typ.string())
|
||
throw("heapBitsSetType: called with non-pointer type")
|
||
return
|
||
}
|
||
|
||
// Phase 1: Special case for leading byte (shift==0) or half-byte (shift==2).
|
||
// The leading byte is special because it contains the bits for word 1,
|
||
// which does not have the scan bit set.
|
||
// The leading half-byte is special because it's a half a byte,
|
||
// so we have to be careful with the bits already there.
|
||
switch {
|
||
default:
|
||
throw("heapBitsSetType: unexpected shift")
|
||
|
||
case h.shift == 0:
|
||
// Ptrmask and heap bitmap are aligned.
|
||
//
|
||
// This is a fast path for small objects.
|
||
//
|
||
// The first byte we write out covers the first four
|
||
// words of the object. The scan/dead bit on the first
|
||
// word must be set to scan since there are pointers
|
||
// somewhere in the object.
|
||
// In all following words, we set the scan/dead
|
||
// appropriately to indicate that the object continues
|
||
// to the next 2-bit entry in the bitmap.
|
||
//
|
||
// We set four bits at a time here, but if the object
|
||
// is fewer than four words, phase 3 will clear
|
||
// unnecessary bits.
|
||
hb = b & bitPointerAll
|
||
hb |= bitScanAll
|
||
if w += 4; w >= nw {
|
||
goto Phase3
|
||
}
|
||
*hbitp = uint8(hb)
|
||
hbitp = add1(hbitp)
|
||
b >>= 4
|
||
nb -= 4
|
||
|
||
case h.shift == 2:
|
||
// Ptrmask and heap bitmap are misaligned.
|
||
//
|
||
// On 32 bit architectures only the 6-word object that corresponds
|
||
// to a 24 bytes size class can start with h.shift of 2 here since
|
||
// all other non 16 byte aligned size classes have been handled by
|
||
// special code paths at the beginning of heapBitsSetType on 32 bit.
|
||
//
|
||
// Many size classes are only 16 byte aligned. On 64 bit architectures
|
||
// this results in a heap bitmap position starting with a h.shift of 2.
|
||
//
|
||
// The bits for the first two words are in a byte shared
|
||
// with another object, so we must be careful with the bits
|
||
// already there.
|
||
//
|
||
// We took care of 1-word, 2-word, and 3-word objects above,
|
||
// so this is at least a 6-word object.
|
||
hb = (b & (bitPointer | bitPointer<<heapBitsShift)) << (2 * heapBitsShift)
|
||
hb |= bitScan << (2 * heapBitsShift)
|
||
if nw > 1 {
|
||
hb |= bitScan << (3 * heapBitsShift)
|
||
}
|
||
b >>= 2
|
||
nb -= 2
|
||
*hbitp &^= uint8((bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << (2 * heapBitsShift))
|
||
*hbitp |= uint8(hb)
|
||
hbitp = add1(hbitp)
|
||
if w += 2; w >= nw {
|
||
// We know that there is more data, because we handled 2-word and 3-word objects above.
|
||
// This must be at least a 6-word object. If we're out of pointer words,
|
||
// mark no scan in next bitmap byte and finish.
|
||
hb = 0
|
||
w += 4
|
||
goto Phase3
|
||
}
|
||
}
|
||
|
||
// Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap.
|
||
// The loop computes the bits for that last write but does not execute the write;
|
||
// it leaves the bits in hb for processing by phase 3.
|
||
// To avoid repeated adjustment of nb, we subtract out the 4 bits we're going to
|
||
// use in the first half of the loop right now, and then we only adjust nb explicitly
|
||
// if the 8 bits used by each iteration isn't balanced by 8 bits loaded mid-loop.
|
||
nb -= 4
|
||
for {
|
||
// Emit bitmap byte.
|
||
// b has at least nb+4 bits, with one exception:
|
||
// if w+4 >= nw, then b has only nw-w bits,
|
||
// but we'll stop at the break and then truncate
|
||
// appropriately in Phase 3.
|
||
hb = b & bitPointerAll
|
||
hb |= bitScanAll
|
||
if w += 4; w >= nw {
|
||
break
|
||
}
|
||
*hbitp = uint8(hb)
|
||
hbitp = add1(hbitp)
|
||
b >>= 4
|
||
|
||
// Load more bits. b has nb right now.
|
||
if p != endp {
|
||
// Fast path: keep reading from ptrmask.
|
||
// nb unmodified: we just loaded 8 bits,
|
||
// and the next iteration will consume 8 bits,
|
||
// leaving us with the same nb the next time we're here.
|
||
if nb < 8 {
|
||
b |= uintptr(*p) << nb
|
||
p = add1(p)
|
||
} else {
|
||
// Reduce the number of bits in b.
|
||
// This is important if we skipped
|
||
// over a scalar tail, since nb could
|
||
// be larger than the bit width of b.
|
||
nb -= 8
|
||
}
|
||
} else if p == nil {
|
||
// Almost as fast path: track bit count and refill from pbits.
|
||
// For short repetitions.
|
||
if nb < 8 {
|
||
b |= pbits << nb
|
||
nb += endnb
|
||
}
|
||
nb -= 8 // for next iteration
|
||
} else {
|
||
// Slow path: reached end of ptrmask.
|
||
// Process final partial byte and rewind to start.
|
||
b |= uintptr(*p) << nb
|
||
nb += endnb
|
||
if nb < 8 {
|
||
b |= uintptr(*ptrmask) << nb
|
||
p = add1(ptrmask)
|
||
} else {
|
||
nb -= 8
|
||
p = ptrmask
|
||
}
|
||
}
|
||
|
||
// Emit bitmap byte.
|
||
hb = b & bitPointerAll
|
||
hb |= bitScanAll
|
||
if w += 4; w >= nw {
|
||
break
|
||
}
|
||
*hbitp = uint8(hb)
|
||
hbitp = add1(hbitp)
|
||
b >>= 4
|
||
}
|
||
|
||
Phase3:
|
||
// Phase 3: Write last byte or partial byte and zero the rest of the bitmap entries.
|
||
if w > nw {
|
||
// Counting the 4 entries in hb not yet written to memory,
|
||
// there are more entries than possible pointer slots.
|
||
// Discard the excess entries (can't be more than 3).
|
||
mask := uintptr(1)<<(4-(w-nw)) - 1
|
||
hb &= mask | mask<<4 // apply mask to both pointer bits and scan bits
|
||
}
|
||
|
||
// Change nw from counting possibly-pointer words to total words in allocation.
|
||
nw = size / sys.PtrSize
|
||
|
||
// Write whole bitmap bytes.
|
||
// The first is hb, the rest are zero.
|
||
if w <= nw {
|
||
*hbitp = uint8(hb)
|
||
hbitp = add1(hbitp)
|
||
hb = 0 // for possible final half-byte below
|
||
for w += 4; w <= nw; w += 4 {
|
||
*hbitp = 0
|
||
hbitp = add1(hbitp)
|
||
}
|
||
}
|
||
|
||
// Write final partial bitmap byte if any.
|
||
// We know w > nw, or else we'd still be in the loop above.
|
||
// It can be bigger only due to the 4 entries in hb that it counts.
|
||
// If w == nw+4 then there's nothing left to do: we wrote all nw entries
|
||
// and can discard the 4 sitting in hb.
|
||
// But if w == nw+2, we need to write first two in hb.
|
||
// The byte is shared with the next object, so be careful with
|
||
// existing bits.
|
||
if w == nw+2 {
|
||
*hbitp = *hbitp&^(bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift) | uint8(hb)
|
||
}
|
||
|
||
Phase4:
|
||
// Phase 4: Copy unrolled bitmap to per-arena bitmaps, if necessary.
|
||
if outOfPlace {
|
||
// TODO: We could probably make this faster by
|
||
// handling [x+dataSize, x+size) specially.
|
||
h := heapBitsForAddr(x)
|
||
// cnw is the number of heap words, or bit pairs
|
||
// remaining (like nw above).
|
||
cnw := size / sys.PtrSize
|
||
src := (*uint8)(unsafe.Pointer(x))
|
||
// We know the first and last byte of the bitmap are
|
||
// not the same, but it's still possible for small
|
||
// objects span arenas, so it may share bitmap bytes
|
||
// with neighboring objects.
|
||
//
|
||
// Handle the first byte specially if it's shared. See
|
||
// Phase 1 for why this is the only special case we need.
|
||
if doubleCheck {
|
||
if !(h.shift == 0 || h.shift == 2) {
|
||
print("x=", x, " size=", size, " cnw=", h.shift, "\n")
|
||
throw("bad start shift")
|
||
}
|
||
}
|
||
if h.shift == 2 {
|
||
*h.bitp = *h.bitp&^((bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift)<<(2*heapBitsShift)) | *src
|
||
h = h.next().next()
|
||
cnw -= 2
|
||
src = addb(src, 1)
|
||
}
|
||
// We're now byte aligned. Copy out to per-arena
|
||
// bitmaps until the last byte (which may again be
|
||
// partial).
|
||
for cnw >= 4 {
|
||
// This loop processes four words at a time,
|
||
// so round cnw down accordingly.
|
||
hNext, words := h.forwardOrBoundary(cnw / 4 * 4)
|
||
|
||
// n is the number of bitmap bytes to copy.
|
||
n := words / 4
|
||
memmove(unsafe.Pointer(h.bitp), unsafe.Pointer(src), n)
|
||
cnw -= words
|
||
h = hNext
|
||
src = addb(src, n)
|
||
}
|
||
if doubleCheck && h.shift != 0 {
|
||
print("cnw=", cnw, " h.shift=", h.shift, "\n")
|
||
throw("bad shift after block copy")
|
||
}
|
||
// Handle the last byte if it's shared.
|
||
if cnw == 2 {
|
||
*h.bitp = *h.bitp&^(bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift) | *src
|
||
src = addb(src, 1)
|
||
h = h.next().next()
|
||
}
|
||
if doubleCheck {
|
||
if uintptr(unsafe.Pointer(src)) > x+size {
|
||
throw("copy exceeded object size")
|
||
}
|
||
if !(cnw == 0 || cnw == 2) {
|
||
print("x=", x, " size=", size, " cnw=", cnw, "\n")
|
||
throw("bad number of remaining words")
|
||
}
|
||
// Set up hbitp so doubleCheck code below can check it.
|
||
hbitp = h.bitp
|
||
}
|
||
// Zero the object where we wrote the bitmap.
|
||
memclrNoHeapPointers(unsafe.Pointer(x), uintptr(unsafe.Pointer(src))-x)
|
||
}
|
||
|
||
// Double check the whole bitmap.
|
||
if doubleCheck {
|
||
// x+size may not point to the heap, so back up one
|
||
// word and then advance it the way we do above.
|
||
end := heapBitsForAddr(x + size - sys.PtrSize)
|
||
if outOfPlace {
|
||
// In out-of-place copying, we just advance
|
||
// using next.
|
||
end = end.next()
|
||
} else {
|
||
// Don't use next because that may advance to
|
||
// the next arena and the in-place logic
|
||
// doesn't do that.
|
||
end.shift += heapBitsShift
|
||
if end.shift == 4*heapBitsShift {
|
||
end.bitp, end.shift = add1(end.bitp), 0
|
||
}
|
||
}
|
||
if typ.kind&kindGCProg == 0 && (hbitp != end.bitp || (w == nw+2) != (end.shift == 2)) {
|
||
println("ended at wrong bitmap byte for", typ.string(), "x", dataSize/typ.size)
|
||
print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
|
||
print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
|
||
h0 := heapBitsForAddr(x)
|
||
print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
|
||
print("ended at hbitp=", hbitp, " but next starts at bitp=", end.bitp, " shift=", end.shift, "\n")
|
||
throw("bad heapBitsSetType")
|
||
}
|
||
|
||
// Double-check that bits to be written were written correctly.
|
||
// Does not check that other bits were not written, unfortunately.
|
||
h := heapBitsForAddr(x)
|
||
nptr := typ.ptrdata / sys.PtrSize
|
||
ndata := typ.size / sys.PtrSize
|
||
count := dataSize / typ.size
|
||
totalptr := ((count-1)*typ.size + typ.ptrdata) / sys.PtrSize
|
||
for i := uintptr(0); i < size/sys.PtrSize; i++ {
|
||
j := i % ndata
|
||
var have, want uint8
|
||
have = (*h.bitp >> h.shift) & (bitPointer | bitScan)
|
||
if i >= totalptr {
|
||
if typ.kind&kindGCProg != 0 && i < (totalptr+3)/4*4 {
|
||
// heapBitsSetTypeGCProg always fills
|
||
// in full nibbles of bitScan.
|
||
want = bitScan
|
||
}
|
||
} else {
|
||
if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 {
|
||
want |= bitPointer
|
||
}
|
||
want |= bitScan
|
||
}
|
||
if have != want {
|
||
println("mismatch writing bits for", typ.string(), "x", dataSize/typ.size)
|
||
print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
|
||
print("kindGCProg=", typ.kind&kindGCProg != 0, " outOfPlace=", outOfPlace, "\n")
|
||
print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
|
||
h0 := heapBitsForAddr(x)
|
||
print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
|
||
print("current bits h.bitp=", h.bitp, " h.shift=", h.shift, " *h.bitp=", hex(*h.bitp), "\n")
|
||
print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n")
|
||
println("at word", i, "offset", i*sys.PtrSize, "have", hex(have), "want", hex(want))
|
||
if typ.kind&kindGCProg != 0 {
|
||
println("GC program:")
|
||
dumpGCProg(addb(typ.gcdata, 4))
|
||
}
|
||
throw("bad heapBitsSetType")
|
||
}
|
||
h = h.next()
|
||
}
|
||
if ptrmask == debugPtrmask.data {
|
||
unlock(&debugPtrmask.lock)
|
||
}
|
||
}
|
||
}
|
||
|
||
var debugPtrmask struct {
|
||
lock mutex
|
||
data *byte
|
||
}
|
||
|
||
// heapBitsSetTypeGCProg implements heapBitsSetType using a GC program.
|
||
// progSize is the size of the memory described by the program.
|
||
// elemSize is the size of the element that the GC program describes (a prefix of).
|
||
// dataSize is the total size of the intended data, a multiple of elemSize.
|
||
// allocSize is the total size of the allocated memory.
|
||
//
|
||
// GC programs are only used for large allocations.
|
||
// heapBitsSetType requires that allocSize is a multiple of 4 words,
|
||
// so that the relevant bitmap bytes are not shared with surrounding
|
||
// objects.
|
||
func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize uintptr, prog *byte) {
|
||
if sys.PtrSize == 8 && allocSize%(4*sys.PtrSize) != 0 {
|
||
// Alignment will be wrong.
|
||
throw("heapBitsSetTypeGCProg: small allocation")
|
||
}
|
||
var totalBits uintptr
|
||
if elemSize == dataSize {
|
||
totalBits = runGCProg(prog, nil, h.bitp, 2)
|
||
if totalBits*sys.PtrSize != progSize {
|
||
println("runtime: heapBitsSetTypeGCProg: total bits", totalBits, "but progSize", progSize)
|
||
throw("heapBitsSetTypeGCProg: unexpected bit count")
|
||
}
|
||
} else {
|
||
count := dataSize / elemSize
|
||
|
||
// Piece together program trailer to run after prog that does:
|
||
// literal(0)
|
||
// repeat(1, elemSize-progSize-1) // zeros to fill element size
|
||
// repeat(elemSize, count-1) // repeat that element for count
|
||
// This zero-pads the data remaining in the first element and then
|
||
// repeats that first element to fill the array.
|
||
var trailer [40]byte // 3 varints (max 10 each) + some bytes
|
||
i := 0
|
||
if n := elemSize/sys.PtrSize - progSize/sys.PtrSize; n > 0 {
|
||
// literal(0)
|
||
trailer[i] = 0x01
|
||
i++
|
||
trailer[i] = 0
|
||
i++
|
||
if n > 1 {
|
||
// repeat(1, n-1)
|
||
trailer[i] = 0x81
|
||
i++
|
||
n--
|
||
for ; n >= 0x80; n >>= 7 {
|
||
trailer[i] = byte(n | 0x80)
|
||
i++
|
||
}
|
||
trailer[i] = byte(n)
|
||
i++
|
||
}
|
||
}
|
||
// repeat(elemSize/ptrSize, count-1)
|
||
trailer[i] = 0x80
|
||
i++
|
||
n := elemSize / sys.PtrSize
|
||
for ; n >= 0x80; n >>= 7 {
|
||
trailer[i] = byte(n | 0x80)
|
||
i++
|
||
}
|
||
trailer[i] = byte(n)
|
||
i++
|
||
n = count - 1
|
||
for ; n >= 0x80; n >>= 7 {
|
||
trailer[i] = byte(n | 0x80)
|
||
i++
|
||
}
|
||
trailer[i] = byte(n)
|
||
i++
|
||
trailer[i] = 0
|
||
i++
|
||
|
||
runGCProg(prog, &trailer[0], h.bitp, 2)
|
||
|
||
// Even though we filled in the full array just now,
|
||
// record that we only filled in up to the ptrdata of the
|
||
// last element. This will cause the code below to
|
||
// memclr the dead section of the final array element,
|
||
// so that scanobject can stop early in the final element.
|
||
totalBits = (elemSize*(count-1) + progSize) / sys.PtrSize
|
||
}
|
||
endProg := unsafe.Pointer(addb(h.bitp, (totalBits+3)/4))
|
||
endAlloc := unsafe.Pointer(addb(h.bitp, allocSize/sys.PtrSize/wordsPerBitmapByte))
|
||
memclrNoHeapPointers(endProg, uintptr(endAlloc)-uintptr(endProg))
|
||
}
|
||
|
||
// progToPointerMask returns the 1-bit pointer mask output by the GC program prog.
|
||
// size the size of the region described by prog, in bytes.
|
||
// The resulting bitvector will have no more than size/sys.PtrSize bits.
|
||
func progToPointerMask(prog *byte, size uintptr) bitvector {
|
||
n := (size/sys.PtrSize + 7) / 8
|
||
x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1]
|
||
x[len(x)-1] = 0xa1 // overflow check sentinel
|
||
n = runGCProg(prog, nil, &x[0], 1)
|
||
if x[len(x)-1] != 0xa1 {
|
||
throw("progToPointerMask: overflow")
|
||
}
|
||
return bitvector{int32(n), &x[0]}
|
||
}
|
||
|
||
// Packed GC pointer bitmaps, aka GC programs.
|
||
//
|
||
// For large types containing arrays, the type information has a
|
||
// natural repetition that can be encoded to save space in the
|
||
// binary and in the memory representation of the type information.
|
||
//
|
||
// The encoding is a simple Lempel-Ziv style bytecode machine
|
||
// with the following instructions:
|
||
//
|
||
// 00000000: stop
|
||
// 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes
|
||
// 10000000 n c: repeat the previous n bits c times; n, c are varints
|
||
// 1nnnnnnn c: repeat the previous n bits c times; c is a varint
|
||
|
||
// runGCProg executes the GC program prog, and then trailer if non-nil,
|
||
// writing to dst with entries of the given size.
|
||
// If size == 1, dst is a 1-bit pointer mask laid out moving forward from dst.
|
||
// If size == 2, dst is the 2-bit heap bitmap, and writes move backward
|
||
// starting at dst (because the heap bitmap does). In this case, the caller guarantees
|
||
// that only whole bytes in dst need to be written.
|
||
//
|
||
// runGCProg returns the number of 1- or 2-bit entries written to memory.
|
||
func runGCProg(prog, trailer, dst *byte, size int) uintptr {
|
||
dstStart := dst
|
||
|
||
// Bits waiting to be written to memory.
|
||
var bits uintptr
|
||
var nbits uintptr
|
||
|
||
p := prog
|
||
Run:
|
||
for {
|
||
// Flush accumulated full bytes.
|
||
// The rest of the loop assumes that nbits <= 7.
|
||
for ; nbits >= 8; nbits -= 8 {
|
||
if size == 1 {
|
||
*dst = uint8(bits)
|
||
dst = add1(dst)
|
||
bits >>= 8
|
||
} else {
|
||
v := bits&bitPointerAll | bitScanAll
|
||
*dst = uint8(v)
|
||
dst = add1(dst)
|
||
bits >>= 4
|
||
v = bits&bitPointerAll | bitScanAll
|
||
*dst = uint8(v)
|
||
dst = add1(dst)
|
||
bits >>= 4
|
||
}
|
||
}
|
||
|
||
// Process one instruction.
|
||
inst := uintptr(*p)
|
||
p = add1(p)
|
||
n := inst & 0x7F
|
||
if inst&0x80 == 0 {
|
||
// Literal bits; n == 0 means end of program.
|
||
if n == 0 {
|
||
// Program is over; continue in trailer if present.
|
||
if trailer != nil {
|
||
p = trailer
|
||
trailer = nil
|
||
continue
|
||
}
|
||
break Run
|
||
}
|
||
nbyte := n / 8
|
||
for i := uintptr(0); i < nbyte; i++ {
|
||
bits |= uintptr(*p) << nbits
|
||
p = add1(p)
|
||
if size == 1 {
|
||
*dst = uint8(bits)
|
||
dst = add1(dst)
|
||
bits >>= 8
|
||
} else {
|
||
v := bits&0xf | bitScanAll
|
||
*dst = uint8(v)
|
||
dst = add1(dst)
|
||
bits >>= 4
|
||
v = bits&0xf | bitScanAll
|
||
*dst = uint8(v)
|
||
dst = add1(dst)
|
||
bits >>= 4
|
||
}
|
||
}
|
||
if n %= 8; n > 0 {
|
||
bits |= uintptr(*p) << nbits
|
||
p = add1(p)
|
||
nbits += n
|
||
}
|
||
continue Run
|
||
}
|
||
|
||
// Repeat. If n == 0, it is encoded in a varint in the next bytes.
|
||
if n == 0 {
|
||
for off := uint(0); ; off += 7 {
|
||
x := uintptr(*p)
|
||
p = add1(p)
|
||
n |= (x & 0x7F) << off
|
||
if x&0x80 == 0 {
|
||
break
|
||
}
|
||
}
|
||
}
|
||
|
||
// Count is encoded in a varint in the next bytes.
|
||
c := uintptr(0)
|
||
for off := uint(0); ; off += 7 {
|
||
x := uintptr(*p)
|
||
p = add1(p)
|
||
c |= (x & 0x7F) << off
|
||
if x&0x80 == 0 {
|
||
break
|
||
}
|
||
}
|
||
c *= n // now total number of bits to copy
|
||
|
||
// If the number of bits being repeated is small, load them
|
||
// into a register and use that register for the entire loop
|
||
// instead of repeatedly reading from memory.
|
||
// Handling fewer than 8 bits here makes the general loop simpler.
|
||
// The cutoff is sys.PtrSize*8 - 7 to guarantee that when we add
|
||
// the pattern to a bit buffer holding at most 7 bits (a partial byte)
|
||
// it will not overflow.
|
||
src := dst
|
||
const maxBits = sys.PtrSize*8 - 7
|
||
if n <= maxBits {
|
||
// Start with bits in output buffer.
|
||
pattern := bits
|
||
npattern := nbits
|
||
|
||
// If we need more bits, fetch them from memory.
|
||
if size == 1 {
|
||
src = subtract1(src)
|
||
for npattern < n {
|
||
pattern <<= 8
|
||
pattern |= uintptr(*src)
|
||
src = subtract1(src)
|
||
npattern += 8
|
||
}
|
||
} else {
|
||
src = subtract1(src)
|
||
for npattern < n {
|
||
pattern <<= 4
|
||
pattern |= uintptr(*src) & 0xf
|
||
src = subtract1(src)
|
||
npattern += 4
|
||
}
|
||
}
|
||
|
||
// We started with the whole bit output buffer,
|
||
// and then we loaded bits from whole bytes.
|
||
// Either way, we might now have too many instead of too few.
|
||
// Discard the extra.
|
||
if npattern > n {
|
||
pattern >>= npattern - n
|
||
npattern = n
|
||
}
|
||
|
||
// Replicate pattern to at most maxBits.
|
||
if npattern == 1 {
|
||
// One bit being repeated.
|
||
// If the bit is 1, make the pattern all 1s.
|
||
// If the bit is 0, the pattern is already all 0s,
|
||
// but we can claim that the number of bits
|
||
// in the word is equal to the number we need (c),
|
||
// because right shift of bits will zero fill.
|
||
if pattern == 1 {
|
||
pattern = 1<<maxBits - 1
|
||
npattern = maxBits
|
||
} else {
|
||
npattern = c
|
||
}
|
||
} else {
|
||
b := pattern
|
||
nb := npattern
|
||
if nb+nb <= maxBits {
|
||
// Double pattern until the whole uintptr is filled.
|
||
for nb <= sys.PtrSize*8 {
|
||
b |= b << nb
|
||
nb += nb
|
||
}
|
||
// Trim away incomplete copy of original pattern in high bits.
|
||
// TODO(rsc): Replace with table lookup or loop on systems without divide?
|
||
nb = maxBits / npattern * npattern
|
||
b &= 1<<nb - 1
|
||
pattern = b
|
||
npattern = nb
|
||
}
|
||
}
|
||
|
||
// Add pattern to bit buffer and flush bit buffer, c/npattern times.
|
||
// Since pattern contains >8 bits, there will be full bytes to flush
|
||
// on each iteration.
|
||
for ; c >= npattern; c -= npattern {
|
||
bits |= pattern << nbits
|
||
nbits += npattern
|
||
if size == 1 {
|
||
for nbits >= 8 {
|
||
*dst = uint8(bits)
|
||
dst = add1(dst)
|
||
bits >>= 8
|
||
nbits -= 8
|
||
}
|
||
} else {
|
||
for nbits >= 4 {
|
||
*dst = uint8(bits&0xf | bitScanAll)
|
||
dst = add1(dst)
|
||
bits >>= 4
|
||
nbits -= 4
|
||
}
|
||
}
|
||
}
|
||
|
||
// Add final fragment to bit buffer.
|
||
if c > 0 {
|
||
pattern &= 1<<c - 1
|
||
bits |= pattern << nbits
|
||
nbits += c
|
||
}
|
||
continue Run
|
||
}
|
||
|
||
// Repeat; n too large to fit in a register.
|
||
// Since nbits <= 7, we know the first few bytes of repeated data
|
||
// are already written to memory.
|
||
off := n - nbits // n > nbits because n > maxBits and nbits <= 7
|
||
if size == 1 {
|
||
// Leading src fragment.
|
||
src = subtractb(src, (off+7)/8)
|
||
if frag := off & 7; frag != 0 {
|
||
bits |= uintptr(*src) >> (8 - frag) << nbits
|
||
src = add1(src)
|
||
nbits += frag
|
||
c -= frag
|
||
}
|
||
// Main loop: load one byte, write another.
|
||
// The bits are rotating through the bit buffer.
|
||
for i := c / 8; i > 0; i-- {
|
||
bits |= uintptr(*src) << nbits
|
||
src = add1(src)
|
||
*dst = uint8(bits)
|
||
dst = add1(dst)
|
||
bits >>= 8
|
||
}
|
||
// Final src fragment.
|
||
if c %= 8; c > 0 {
|
||
bits |= (uintptr(*src) & (1<<c - 1)) << nbits
|
||
nbits += c
|
||
}
|
||
} else {
|
||
// Leading src fragment.
|
||
src = subtractb(src, (off+3)/4)
|
||
if frag := off & 3; frag != 0 {
|
||
bits |= (uintptr(*src) & 0xf) >> (4 - frag) << nbits
|
||
src = add1(src)
|
||
nbits += frag
|
||
c -= frag
|
||
}
|
||
// Main loop: load one byte, write another.
|
||
// The bits are rotating through the bit buffer.
|
||
for i := c / 4; i > 0; i-- {
|
||
bits |= (uintptr(*src) & 0xf) << nbits
|
||
src = add1(src)
|
||
*dst = uint8(bits&0xf | bitScanAll)
|
||
dst = add1(dst)
|
||
bits >>= 4
|
||
}
|
||
// Final src fragment.
|
||
if c %= 4; c > 0 {
|
||
bits |= (uintptr(*src) & (1<<c - 1)) << nbits
|
||
nbits += c
|
||
}
|
||
}
|
||
}
|
||
|
||
// Write any final bits out, using full-byte writes, even for the final byte.
|
||
var totalBits uintptr
|
||
if size == 1 {
|
||
totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits
|
||
nbits += -nbits & 7
|
||
for ; nbits > 0; nbits -= 8 {
|
||
*dst = uint8(bits)
|
||
dst = add1(dst)
|
||
bits >>= 8
|
||
}
|
||
} else {
|
||
totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*4 + nbits
|
||
nbits += -nbits & 3
|
||
for ; nbits > 0; nbits -= 4 {
|
||
v := bits&0xf | bitScanAll
|
||
*dst = uint8(v)
|
||
dst = add1(dst)
|
||
bits >>= 4
|
||
}
|
||
}
|
||
return totalBits
|
||
}
|
||
|
||
// materializeGCProg allocates space for the (1-bit) pointer bitmask
|
||
// for an object of size ptrdata. Then it fills that space with the
|
||
// pointer bitmask specified by the program prog.
|
||
// The bitmask starts at s.startAddr.
|
||
// The result must be deallocated with dematerializeGCProg.
|
||
func materializeGCProg(ptrdata uintptr, prog *byte) *mspan {
|
||
// Each word of ptrdata needs one bit in the bitmap.
|
||
bitmapBytes := divRoundUp(ptrdata, 8*sys.PtrSize)
|
||
// Compute the number of pages needed for bitmapBytes.
|
||
pages := divRoundUp(bitmapBytes, pageSize)
|
||
s := mheap_.allocManual(pages, spanAllocPtrScalarBits)
|
||
runGCProg(addb(prog, 4), nil, (*byte)(unsafe.Pointer(s.startAddr)), 1)
|
||
return s
|
||
}
|
||
func dematerializeGCProg(s *mspan) {
|
||
mheap_.freeManual(s, spanAllocPtrScalarBits)
|
||
}
|
||
|
||
func dumpGCProg(p *byte) {
|
||
nptr := 0
|
||
for {
|
||
x := *p
|
||
p = add1(p)
|
||
if x == 0 {
|
||
print("\t", nptr, " end\n")
|
||
break
|
||
}
|
||
if x&0x80 == 0 {
|
||
print("\t", nptr, " lit ", x, ":")
|
||
n := int(x+7) / 8
|
||
for i := 0; i < n; i++ {
|
||
print(" ", hex(*p))
|
||
p = add1(p)
|
||
}
|
||
print("\n")
|
||
nptr += int(x)
|
||
} else {
|
||
nbit := int(x &^ 0x80)
|
||
if nbit == 0 {
|
||
for nb := uint(0); ; nb += 7 {
|
||
x := *p
|
||
p = add1(p)
|
||
nbit |= int(x&0x7f) << nb
|
||
if x&0x80 == 0 {
|
||
break
|
||
}
|
||
}
|
||
}
|
||
count := 0
|
||
for nb := uint(0); ; nb += 7 {
|
||
x := *p
|
||
p = add1(p)
|
||
count |= int(x&0x7f) << nb
|
||
if x&0x80 == 0 {
|
||
break
|
||
}
|
||
}
|
||
print("\t", nptr, " repeat ", nbit, " × ", count, "\n")
|
||
nptr += nbit * count
|
||
}
|
||
}
|
||
}
|
||
|
||
// Testing.
|
||
|
||
// gcbits returns the GC type info for x, for testing.
|
||
// The result is the bitmap entries (0 or 1), one entry per byte.
|
||
//go:linkname reflect_gcbits reflect.gcbits
|
||
func reflect_gcbits(x interface{}) []byte {
|
||
ret := getgcmask(x)
|
||
typ := (*ptrtype)(unsafe.Pointer(efaceOf(&x)._type)).elem
|
||
nptr := typ.ptrdata / sys.PtrSize
|
||
for uintptr(len(ret)) > nptr && ret[len(ret)-1] == 0 {
|
||
ret = ret[:len(ret)-1]
|
||
}
|
||
return ret
|
||
}
|
||
|
||
// Returns GC type info for the pointer stored in ep for testing.
|
||
// If ep points to the stack, only static live information will be returned
|
||
// (i.e. not for objects which are only dynamically live stack objects).
|
||
func getgcmask(ep interface{}) (mask []byte) {
|
||
e := *efaceOf(&ep)
|
||
p := e.data
|
||
t := e._type
|
||
// data or bss
|
||
roots := gcRoots
|
||
for roots != nil {
|
||
for i := 0; i < roots.count; i++ {
|
||
pr := roots.roots[i]
|
||
addr := uintptr(pr.decl)
|
||
if addr <= uintptr(p) && uintptr(p) < addr+pr.size {
|
||
n := (*ptrtype)(unsafe.Pointer(t)).elem.size
|
||
mask = make([]byte, n/sys.PtrSize)
|
||
copy(mask, (*[1 << 29]uint8)(unsafe.Pointer(pr.gcdata))[:pr.ptrdata])
|
||
}
|
||
return
|
||
}
|
||
roots = roots.next
|
||
}
|
||
|
||
// heap
|
||
if base, s, _ := findObject(uintptr(p), 0, 0, false); base != 0 {
|
||
hbits := heapBitsForAddr(base)
|
||
n := s.elemsize
|
||
mask = make([]byte, n/sys.PtrSize)
|
||
for i := uintptr(0); i < n; i += sys.PtrSize {
|
||
if hbits.isPointer() {
|
||
mask[i/sys.PtrSize] = 1
|
||
}
|
||
if !hbits.morePointers() {
|
||
mask = mask[:i/sys.PtrSize]
|
||
break
|
||
}
|
||
hbits = hbits.next()
|
||
}
|
||
return
|
||
}
|
||
|
||
// otherwise, not something the GC knows about.
|
||
// possibly read-only data, like malloc(0).
|
||
// must not have pointers
|
||
// For gccgo, may live on the stack, which is collected conservatively.
|
||
return
|
||
}
|