305 lines
8.5 KiB
C
305 lines
8.5 KiB
C
|
/* Functions to compute SHA256 message digest of files or memory blocks.
|
||
|
according to the definition of SHA256 in FIPS 180-2.
|
||
|
Copyright (C) 2007 Free Software Foundation, Inc.
|
||
|
This file is part of the GNU C Library.
|
||
|
|
||
|
The GNU C Library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
The GNU C Library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with the GNU C Library; if not, write to the Free
|
||
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||
|
02111-1307 USA. */
|
||
|
|
||
|
/* Written by Ulrich Drepper <drepper@redhat.com>, 2007. */
|
||
|
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
# include <config.h>
|
||
|
#endif
|
||
|
|
||
|
#include <endian.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <sys/types.h>
|
||
|
|
||
|
#include "sha256.h"
|
||
|
|
||
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||
|
# ifdef _LIBC
|
||
|
# include <byteswap.h>
|
||
|
# define SWAP(n) bswap_32 (n)
|
||
|
# else
|
||
|
# define SWAP(n) \
|
||
|
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
|
||
|
# endif
|
||
|
#else
|
||
|
# define SWAP(n) (n)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* This array contains the bytes used to pad the buffer to the next
|
||
|
64-byte boundary. (FIPS 180-2:5.1.1) */
|
||
|
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
|
||
|
|
||
|
|
||
|
/* Constants for SHA256 from FIPS 180-2:4.2.2. */
|
||
|
static const uint32_t K[64] =
|
||
|
{
|
||
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
||
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
||
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
||
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
||
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
||
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
||
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
||
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
||
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
||
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
||
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
||
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
||
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
||
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
||
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
||
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
||
|
};
|
||
|
|
||
|
|
||
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
||
|
It is assumed that LEN % 64 == 0. */
|
||
|
static void
|
||
|
sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
|
||
|
{
|
||
|
const uint32_t *words = buffer;
|
||
|
size_t nwords = len / sizeof (uint32_t);
|
||
|
uint32_t a = ctx->H[0];
|
||
|
uint32_t b = ctx->H[1];
|
||
|
uint32_t c = ctx->H[2];
|
||
|
uint32_t d = ctx->H[3];
|
||
|
uint32_t e = ctx->H[4];
|
||
|
uint32_t f = ctx->H[5];
|
||
|
uint32_t g = ctx->H[6];
|
||
|
uint32_t h = ctx->H[7];
|
||
|
|
||
|
/* First increment the byte count. FIPS 180-2 specifies the possible
|
||
|
length of the file up to 2^64 bits. Here we only compute the
|
||
|
number of bytes. Do a double word increment. */
|
||
|
ctx->total[0] += len;
|
||
|
if (ctx->total[0] < len)
|
||
|
++ctx->total[1];
|
||
|
|
||
|
/* Process all bytes in the buffer with 64 bytes in each round of
|
||
|
the loop. */
|
||
|
while (nwords > 0)
|
||
|
{
|
||
|
uint32_t W[64];
|
||
|
uint32_t a_save = a;
|
||
|
uint32_t b_save = b;
|
||
|
uint32_t c_save = c;
|
||
|
uint32_t d_save = d;
|
||
|
uint32_t e_save = e;
|
||
|
uint32_t f_save = f;
|
||
|
uint32_t g_save = g;
|
||
|
uint32_t h_save = h;
|
||
|
|
||
|
/* Operators defined in FIPS 180-2:4.1.2. */
|
||
|
#define Ch(x, y, z) ((x & y) ^ (~x & z))
|
||
|
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
|
||
|
#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
|
||
|
#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
|
||
|
#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
|
||
|
#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))
|
||
|
|
||
|
/* It is unfortunate that C does not provide an operator for
|
||
|
cyclic rotation. Hope the C compiler is smart enough. */
|
||
|
#define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))
|
||
|
|
||
|
/* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
|
||
|
for (unsigned int t = 0; t < 16; ++t)
|
||
|
{
|
||
|
W[t] = SWAP (*words);
|
||
|
++words;
|
||
|
}
|
||
|
for (unsigned int t = 16; t < 64; ++t)
|
||
|
W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
|
||
|
|
||
|
/* The actual computation according to FIPS 180-2:6.2.2 step 3. */
|
||
|
for (unsigned int t = 0; t < 64; ++t)
|
||
|
{
|
||
|
uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
|
||
|
uint32_t T2 = S0 (a) + Maj (a, b, c);
|
||
|
h = g;
|
||
|
g = f;
|
||
|
f = e;
|
||
|
e = d + T1;
|
||
|
d = c;
|
||
|
c = b;
|
||
|
b = a;
|
||
|
a = T1 + T2;
|
||
|
}
|
||
|
|
||
|
/* Add the starting values of the context according to FIPS 180-2:6.2.2
|
||
|
step 4. */
|
||
|
a += a_save;
|
||
|
b += b_save;
|
||
|
c += c_save;
|
||
|
d += d_save;
|
||
|
e += e_save;
|
||
|
f += f_save;
|
||
|
g += g_save;
|
||
|
h += h_save;
|
||
|
|
||
|
/* Prepare for the next round. */
|
||
|
nwords -= 16;
|
||
|
}
|
||
|
|
||
|
/* Put checksum in context given as argument. */
|
||
|
ctx->H[0] = a;
|
||
|
ctx->H[1] = b;
|
||
|
ctx->H[2] = c;
|
||
|
ctx->H[3] = d;
|
||
|
ctx->H[4] = e;
|
||
|
ctx->H[5] = f;
|
||
|
ctx->H[6] = g;
|
||
|
ctx->H[7] = h;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Initialize structure containing state of computation.
|
||
|
(FIPS 180-2:5.3.2) */
|
||
|
void
|
||
|
__sha256_init_ctx (ctx)
|
||
|
struct sha256_ctx *ctx;
|
||
|
{
|
||
|
ctx->H[0] = 0x6a09e667;
|
||
|
ctx->H[1] = 0xbb67ae85;
|
||
|
ctx->H[2] = 0x3c6ef372;
|
||
|
ctx->H[3] = 0xa54ff53a;
|
||
|
ctx->H[4] = 0x510e527f;
|
||
|
ctx->H[5] = 0x9b05688c;
|
||
|
ctx->H[6] = 0x1f83d9ab;
|
||
|
ctx->H[7] = 0x5be0cd19;
|
||
|
|
||
|
ctx->total[0] = ctx->total[1] = 0;
|
||
|
ctx->buflen = 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Process the remaining bytes in the internal buffer and the usual
|
||
|
prolog according to the standard and write the result to RESBUF.
|
||
|
|
||
|
IMPORTANT: On some systems it is required that RESBUF is correctly
|
||
|
aligned for a 32 bits value. */
|
||
|
void *
|
||
|
__sha256_finish_ctx (ctx, resbuf)
|
||
|
struct sha256_ctx *ctx;
|
||
|
void *resbuf;
|
||
|
{
|
||
|
/* Take yet unprocessed bytes into account. */
|
||
|
uint32_t bytes = ctx->buflen;
|
||
|
size_t pad;
|
||
|
|
||
|
/* Now count remaining bytes. */
|
||
|
ctx->total[0] += bytes;
|
||
|
if (ctx->total[0] < bytes)
|
||
|
++ctx->total[1];
|
||
|
|
||
|
pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
|
||
|
memcpy (&ctx->buffer[bytes], fillbuf, pad);
|
||
|
|
||
|
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
||
|
*(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3);
|
||
|
*(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
|
||
|
(ctx->total[0] >> 29));
|
||
|
|
||
|
/* Process last bytes. */
|
||
|
sha256_process_block (ctx->buffer, bytes + pad + 8, ctx);
|
||
|
|
||
|
/* Put result from CTX in first 32 bytes following RESBUF. */
|
||
|
for (unsigned int i = 0; i < 8; ++i)
|
||
|
((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]);
|
||
|
|
||
|
return resbuf;
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
__sha256_process_bytes (buffer, len, ctx)
|
||
|
const void *buffer;
|
||
|
size_t len;
|
||
|
struct sha256_ctx *ctx;
|
||
|
{
|
||
|
/* When we already have some bits in our internal buffer concatenate
|
||
|
both inputs first. */
|
||
|
if (ctx->buflen != 0)
|
||
|
{
|
||
|
size_t left_over = ctx->buflen;
|
||
|
size_t add = 128 - left_over > len ? len : 128 - left_over;
|
||
|
|
||
|
memcpy (&ctx->buffer[left_over], buffer, add);
|
||
|
ctx->buflen += add;
|
||
|
|
||
|
if (ctx->buflen > 64)
|
||
|
{
|
||
|
sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
|
||
|
|
||
|
ctx->buflen &= 63;
|
||
|
/* The regions in the following copy operation cannot overlap. */
|
||
|
memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
|
||
|
ctx->buflen);
|
||
|
}
|
||
|
|
||
|
buffer = (const char *) buffer + add;
|
||
|
len -= add;
|
||
|
}
|
||
|
|
||
|
/* Process available complete blocks. */
|
||
|
if (len >= 64)
|
||
|
{
|
||
|
#if !_STRING_ARCH_unaligned
|
||
|
/* To check alignment gcc has an appropriate operator. Other
|
||
|
compilers don't. */
|
||
|
# if __GNUC__ >= 2
|
||
|
# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
|
||
|
# else
|
||
|
# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
|
||
|
# endif
|
||
|
if (UNALIGNED_P (buffer))
|
||
|
while (len > 64)
|
||
|
{
|
||
|
sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
|
||
|
buffer = (const char *) buffer + 64;
|
||
|
len -= 64;
|
||
|
}
|
||
|
else
|
||
|
#endif
|
||
|
{
|
||
|
sha256_process_block (buffer, len & ~63, ctx);
|
||
|
buffer = (const char *) buffer + (len & ~63);
|
||
|
len &= 63;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Move remaining bytes into internal buffer. */
|
||
|
if (len > 0)
|
||
|
{
|
||
|
size_t left_over = ctx->buflen;
|
||
|
|
||
|
memcpy (&ctx->buffer[left_over], buffer, len);
|
||
|
left_over += len;
|
||
|
if (left_over >= 64)
|
||
|
{
|
||
|
sha256_process_block (ctx->buffer, 64, ctx);
|
||
|
left_over -= 64;
|
||
|
memcpy (ctx->buffer, &ctx->buffer[64], left_over);
|
||
|
}
|
||
|
ctx->buflen = left_over;
|
||
|
}
|
||
|
}
|