glibc/iconvdata/iso-2022-kr.c

274 lines
9.2 KiB
C
Raw Normal View History

/* Conversion module for ISO-2022-KR.
Copyright (C) 1998 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1998.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <gconv.h>
#include <stdint.h>
#include <string.h>
#include "ksc5601.h"
/* This makes obvious what everybody knows: 0x1b is the Esc character. */
#define SI 0x0f
#define SO 0x0e
/* Definitions used in the body of the `gconv' function. */
#define DEFINE_INIT 1
#define DEFINE_FINI 1
#define FROM_LOOP from_iso2022kr_loop
#define TO_LOOP to_iso2022kr_loop
#define MIN_NEEDED_FROM 1
#define MAX_NEEDED_FROM 3
#define MIN_NEEDED_TO 4
#define MAX_NEEDED_TO 4
#define PREPARE_LOOP \
int save_set;
int set = data->statep->count;
/* The COUNT element of the state keeps track of the currently selected
character set. The possible values are: */
enum
{
ASCII_set = 0,
KSC5601_set
};
/* Since this is a stateful encoding we have to provide code which resets
the output state to the initial state. This has to be done during the
flushing. */
#define EMIT_SHIFT_TO_INIT \
if (data->statep->count != 0) \
{ \
if (step->data == &from_object) \
/* It's easy, we don't have to emit anything, we just reset the \
state for the input. */ \
set = 0; \
else \
{ \
char *outbuf = data->outbuf; \
\
/* We are not in the initial state. To switch back we have \
to emit `SO'. */ \
if (outbuf == data->outbufend) \
/* We don't have enough room in the output buffer. */ \
status = GCONV_FULL_OUTPUT; \
else \
{ \
/* Write out the shift sequence. */ \
*outbuf++ = SO; \
data->outbuf = outbuf; \
set = 0; \
} \
} \
}
/* Since we might have to reset input pointer we must be able to save
and retore the state. */
#define SAVE_RESET_STATE(Save) \
if (Save) \
save_set = set; \
else \
set = save_set
/* First define the conversion function from ISO-2022-JP to UCS4. */
#define MIN_NEEDED_INPUT MIN_NEEDED_FROM
#define MAX_NEEDED_INPUT MAX_NEEDED_FROM
#define MIN_NEEDED_OUTPUT MIN_NEEDED_TO
#define LOOPFCT FROM_LOOP
#define BODY \
{ \
uint32_t ch = *inptr; \
\
/* This is a 7bit character set, disallow all 8bit characters. */ \
if (ch > 0x7f) \
{ \
result = GCONV_ILLEGAL_INPUT; \
break; \
} \
\
/* Recognize escape sequences. */ \
if (ch == ESC) \
{ \
/* We don't really have to handle escape sequences since all the \
switching is done using the SI and SO bytes. Butwe have to \
recognize `Esc $ ) C' since this is a kind of flag for this \
encoding. We simply ignore it. */ \
if (inptr + 1 > inend \
|| (inptr[1] == '$' \
&& (inptr + 2 > inend \
|| (inptr[2] == ')' && inptr + 3 > inend)))) \
\
{ \
result = GCONV_EMPTY_INPUT; \
break; \
} \
if (inptr[1] == '$' && inptr[2] == ')' && inptr[3] == 'C') \
{ \
/* Yeah, yeah, we know this is ISO 2022-KR. */ \
inptr += 4; \
continue; \
} \
} \
else if (ch == SI) \
{ \
/* Switch to use KSC. */ \
++inptr; \
set = KSC5601_set; \
continue; \
} \
else if (ch == SO) \
{ \
/* Switch to use ASCII. */ \
++inptr; \
set = ASCII_set; \
continue; \
} \
\
if (set == ASCII_set || ch < 0x21 || ch == 0x7f) \
/* Almost done, just advance the input pointer. */ \
++inptr; \
else \
{ \
assert (set == KSC5601_set); \
\
/* Use the KSC 5601 table. */ \
ch = ksc5601_to_ucs4 (&inptr, \
NEED_LENGTH_TEST ? inend - inptr : 2, 0); \
\
if (NEED_LENGTH_TEST && ch == 0) \
{ \
result = GCONV_EMPTY_INPUT; \
break; \
} \
else if (ch == UNKNOWN_10646_CHAR) \
{ \
result = GCONV_ILLEGAL_INPUT; \
break; \
} \
} \
\
*((uint32_t *) outptr)++ = ch; \
}
#define EXTRA_LOOP_DECLS , int set
#include <iconv/loop.c>
/* Next, define the other direction. */
#define MIN_NEEDED_INPUT MIN_NEEDED_TO
#define MIN_NEEDED_OUTPUT MIN_NEEDED_FROM
#define MAX_NEEDED_OUTPUT MAX_NEEDED_FROM
#define LOOPFCT TO_LOOP
#define BODY \
{ \
unsigned char ch; \
size_t written = 0; \
\
ch = *((uint32_t *) inptr); \
\
/* First see whether we can write the character using the currently \
selected character set. */ \
if (set == ASCII_set || (ch >= 0x01 && (ch < 0x21 || ch == 0x7f))) \
{ \
/* Please note that the NUL byte is *not* matched if we are not \
currently using the ASCII charset. This is because we must \
switch to the initial state whenever a NUL byte is written. */ \
if (ch <= 0x7f) \
{ \
*outptr++ = ch; \
written = 1; \
} \
} \
else \
{ \
assert (set == KSC5601_set); \
\
written = ucs4_to_ksc5601 (ch, outptr, \
(NEED_LENGTH_TEST ? outend - outptr : 2)); \
\
if (NEED_LENGTH_TEST && written == 0) \
{ \
result = GCONV_FULL_OUTPUT; \
break; \
} \
if (written == UNKNOWN_10646_CHAR) \
{ \
/* Either this is an unknown character or we have to switch \
the currently selected character set. The character sets \
do not code entirely separate parts of ISO 10646 and \
therefore there is no single correct result. If we choose \
the character set to use wrong we might be end up with \
using yet another character set for the next character \
though the current and the next could be encoded with one \
character set. We leave this kind of optimization for \
later and now simply use a fixed order in which we test for \
availability */ \
\
if (ch <= 0x7f) \
{ \
/* We must encode using ASCII. First write out the \
escape sequence. */ \
*outptr++ = SO; \
set = ASCII_set; \
\
if (NEED_LENGTH_TEST && outptr == outend) \
{ \
result = GCONV_FULL_OUTPUT; \
break; \
} \
\
*outptr++ = ch; \
} \
else \
{ \
written = ucs4_to_ksc5601 (ch, buf, 2); \
if (written != UNKNOWN_10646_CHAR) \
{ \
/* We use KSC 5601. */ \
*outptr++ = SI; \
set = KSC5601_set; \
\
if (NEED_LENGTH_TEST && outptr + 2 > outend) \
{ \
result = GCONV_FULL_OUTPUT; \
break; \
} \
\
*outptr++ = buf[0]; \
*outptr++ = buf[1]; \
} \
else \
{ \
result = GCONV_ILLEGAL_INPUT; \
break; \
} \
} \
} \
\
/* Now that we wrote the output increment the input pointer. */ \
inptr += 4; \
}
#define EXTRA_LOOP_DECLS , int set
#include <iconv/loop.c>
/* Now define the toplevel functions. */
#include <iconv/skeleton.c>