expm1 implementation for 128-bit long double.
This commit is contained in:
parent
083973f34e
commit
ef25b29e9a
145
sysdeps/ieee754/ldbl-128/s_expm1l.c
Normal file
145
sysdeps/ieee754/ldbl-128/s_expm1l.c
Normal file
@ -0,0 +1,145 @@
|
||||
/* expm1l.c
|
||||
*
|
||||
* Exponential function, minus 1
|
||||
* 128-bit long double precision
|
||||
*
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* long double x, y, expm1l();
|
||||
*
|
||||
* y = expm1l( x );
|
||||
*
|
||||
*
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* Returns e (2.71828...) raised to the x power, minus one.
|
||||
*
|
||||
* Range reduction is accomplished by separating the argument
|
||||
* into an integer k and fraction f such that
|
||||
*
|
||||
* x k f
|
||||
* e = 2 e.
|
||||
*
|
||||
* An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
|
||||
* in the basic range [-0.5 ln 2, 0.5 ln 2].
|
||||
*
|
||||
*
|
||||
* ACCURACY:
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
* IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35
|
||||
*
|
||||
*/
|
||||
|
||||
/* Copyright 2001 by Stephen L. Moshier */
|
||||
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
|
||||
-.5 ln 2 < x < .5 ln 2
|
||||
Theoretical peak relative error = 8.1e-36 */
|
||||
|
||||
static long double
|
||||
P0 = 2.943520915569954073888921213330863757240E8L,
|
||||
P1 = -5.722847283900608941516165725053359168840E7L,
|
||||
P2 = 8.944630806357575461578107295909719817253E6L,
|
||||
P3 = -7.212432713558031519943281748462837065308E5L,
|
||||
P4 = 4.578962475841642634225390068461943438441E4L,
|
||||
P5 = -1.716772506388927649032068540558788106762E3L,
|
||||
P6 = 4.401308817383362136048032038528753151144E1L,
|
||||
P7 = -4.888737542888633647784737721812546636240E-1L,
|
||||
Q0 = 1.766112549341972444333352727998584753865E9L,
|
||||
Q1 = -7.848989743695296475743081255027098295771E8L,
|
||||
Q2 = 1.615869009634292424463780387327037251069E8L,
|
||||
Q3 = -2.019684072836541751428967854947019415698E7L,
|
||||
Q4 = 1.682912729190313538934190635536631941751E6L,
|
||||
Q5 = -9.615511549171441430850103489315371768998E4L,
|
||||
Q6 = 3.697714952261803935521187272204485251835E3L,
|
||||
Q7 = -8.802340681794263968892934703309274564037E1L,
|
||||
/* Q8 = 1.000000000000000000000000000000000000000E0 */
|
||||
/* C1 + C2 = ln 2 */
|
||||
|
||||
C1 = 6.93145751953125E-1L,
|
||||
C2 = 1.428606820309417232121458176568075500134E-6L,
|
||||
/* ln (2^16384 * (1 - 2^-113)) */
|
||||
maxlog = 1.1356523406294143949491931077970764891253E4L,
|
||||
/* ln 2^-114 */
|
||||
minarg = -7.9018778583833765273564461846232128760607E1L, big = 2e4932L;
|
||||
|
||||
|
||||
long double
|
||||
__expm1l (long double x)
|
||||
{
|
||||
long double px, qx, xx;
|
||||
int32_t ix, sign;
|
||||
ieee854_long_double_shape_type u;
|
||||
int k;
|
||||
|
||||
/* Overflow. */
|
||||
if (x > maxlog)
|
||||
return (big * big);
|
||||
|
||||
/* Minimum value. */
|
||||
if (x < minarg)
|
||||
return (4.0 / big - 1.0L);
|
||||
|
||||
/* Detect infinity and NaN. */
|
||||
u.value = x;
|
||||
ix = u.parts32.w0;
|
||||
sign = ix & 0x80000000;
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x7fff0000)
|
||||
{
|
||||
/* Infinity. */
|
||||
if (((ix & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)
|
||||
{
|
||||
if (sign)
|
||||
return -1.0L;
|
||||
else
|
||||
return x;
|
||||
}
|
||||
/* NaN. */
|
||||
return (x + x);
|
||||
}
|
||||
|
||||
/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
|
||||
xx = C1 + C2; /* ln 2. */
|
||||
px = __floorl (0.5 + x / xx);
|
||||
k = px;
|
||||
/* remainder times ln 2 */
|
||||
x -= px * C1;
|
||||
x -= px * C2;
|
||||
|
||||
/* Approximate exp(remainder ln 2). */
|
||||
px = (((((((P7 * x
|
||||
+ P6) * x
|
||||
+ P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
|
||||
|
||||
qx = (((((((x
|
||||
+ Q7) * x
|
||||
+ Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
|
||||
|
||||
xx = x * x;
|
||||
qx = x + (0.5 * xx + xx * px / qx);
|
||||
|
||||
/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
|
||||
|
||||
We have qx = exp(remainder ln 2) - 1, so
|
||||
exp(x) - 1 = 2^k (qx + 1) - 1
|
||||
= 2^k qx + 2^k - 1. */
|
||||
|
||||
px = ldexpl (1.0L, k);
|
||||
x = px * qx + (px - 1.0);
|
||||
return x;
|
||||
}
|
||||
|
||||
weak_alias (__expm1l, expm1l)
|
||||
#ifdef NO_LONG_DOUBLE
|
||||
strong_alias (__expm1, __expm1l) weak_alias (__expm1, expm1l)
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user