Prepare to convert _Complex tangent functions

This patch has no function changes, except to
ensure the git history correctly tracks the
changes to convert the double version of these
functions into a templated version.
This commit is contained in:
Paul E. Murphy 2016-07-01 11:00:21 -05:00
parent c50eee19c4
commit f6d3a72eca
5 changed files with 545 additions and 0 deletions

View File

@ -1,3 +1,10 @@
2016-08-19 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
* s_catan_template.c: Copy of s_catan.c.
* s_catanh_template.c: Copy of s_catanh.c.
* s_ctan_template.c: Copy of s_ctan.c.
* s_ctanh_template.c: Copy of s_ctanh.c.
2016-08-19 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
* math/Makefile (gen-libm-calls): Move

143
math/s_catan_template.c Normal file
View File

@ -0,0 +1,143 @@
/* Return arc tangent of complex double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__catan (__complex__ double x)
{
__complex__ double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (rcls == FP_INFINITE)
{
__real__ res = __copysign (M_PI_2, __real__ x);
__imag__ res = __copysign (0.0, __imag__ x);
}
else if (icls == FP_INFINITE)
{
if (rcls >= FP_ZERO)
__real__ res = __copysign (M_PI_2, __real__ x);
else
__real__ res = __nan ("");
__imag__ res = __copysign (0.0, __imag__ x);
}
else if (icls == FP_ZERO || icls == FP_INFINITE)
{
__real__ res = __nan ("");
__imag__ res = __copysign (0.0, __imag__ x);
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
}
}
else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
res = x;
}
else
{
if (fabs (__real__ x) >= 16.0 / DBL_EPSILON
|| fabs (__imag__ x) >= 16.0 / DBL_EPSILON)
{
__real__ res = __copysign (M_PI_2, __real__ x);
if (fabs (__real__ x) <= 1.0)
__imag__ res = 1.0 / __imag__ x;
else if (fabs (__imag__ x) <= 1.0)
__imag__ res = __imag__ x / __real__ x / __real__ x;
else
{
double h = __ieee754_hypot (__real__ x / 2.0, __imag__ x / 2.0);
__imag__ res = __imag__ x / h / h / 4.0;
}
}
else
{
double den, absx, absy;
absx = fabs (__real__ x);
absy = fabs (__imag__ x);
if (absx < absy)
{
double t = absx;
absx = absy;
absy = t;
}
if (absy < DBL_EPSILON / 2.0)
{
den = (1.0 - absx) * (1.0 + absx);
if (den == -0.0)
den = 0.0;
}
else if (absx >= 1.0)
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
else if (absx >= 0.75 || absy >= 0.5)
den = -__x2y2m1 (absx, absy);
else
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
__real__ res = 0.5 * __ieee754_atan2 (2.0 * __real__ x, den);
if (fabs (__imag__ x) == 1.0
&& fabs (__real__ x) < DBL_EPSILON * DBL_EPSILON)
__imag__ res = (__copysign (0.5, __imag__ x)
* (M_LN2 - __ieee754_log (fabs (__real__ x))));
else
{
double r2 = 0.0, num, f;
if (fabs (__real__ x) >= DBL_EPSILON * DBL_EPSILON)
r2 = __real__ x * __real__ x;
num = __imag__ x + 1.0;
num = r2 + num * num;
den = __imag__ x - 1.0;
den = r2 + den * den;
f = num / den;
if (f < 0.5)
__imag__ res = 0.25 * __ieee754_log (f);
else
{
num = 4.0 * __imag__ x;
__imag__ res = 0.25 * __log1p (num / den);
}
}
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__catan, catan)
#ifdef NO_LONG_DOUBLE
strong_alias (__catan, __catanl)
weak_alias (__catan, catanl)
#endif

137
math/s_catanh_template.c Normal file
View File

@ -0,0 +1,137 @@
/* Return arc hyperbole tangent for double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__catanh (__complex__ double x)
{
__complex__ double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (icls == FP_INFINITE)
{
__real__ res = __copysign (0.0, __real__ x);
__imag__ res = __copysign (M_PI_2, __imag__ x);
}
else if (rcls == FP_INFINITE || rcls == FP_ZERO)
{
__real__ res = __copysign (0.0, __real__ x);
if (icls >= FP_ZERO)
__imag__ res = __copysign (M_PI_2, __imag__ x);
else
__imag__ res = __nan ("");
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
}
}
else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
res = x;
}
else
{
if (fabs (__real__ x) >= 16.0 / DBL_EPSILON
|| fabs (__imag__ x) >= 16.0 / DBL_EPSILON)
{
__imag__ res = __copysign (M_PI_2, __imag__ x);
if (fabs (__imag__ x) <= 1.0)
__real__ res = 1.0 / __real__ x;
else if (fabs (__real__ x) <= 1.0)
__real__ res = __real__ x / __imag__ x / __imag__ x;
else
{
double h = __ieee754_hypot (__real__ x / 2.0, __imag__ x / 2.0);
__real__ res = __real__ x / h / h / 4.0;
}
}
else
{
if (fabs (__real__ x) == 1.0
&& fabs (__imag__ x) < DBL_EPSILON * DBL_EPSILON)
__real__ res = (__copysign (0.5, __real__ x)
* (M_LN2 - __ieee754_log (fabs (__imag__ x))));
else
{
double i2 = 0.0;
if (fabs (__imag__ x) >= DBL_EPSILON * DBL_EPSILON)
i2 = __imag__ x * __imag__ x;
double num = 1.0 + __real__ x;
num = i2 + num * num;
double den = 1.0 - __real__ x;
den = i2 + den * den;
double f = num / den;
if (f < 0.5)
__real__ res = 0.25 * __ieee754_log (f);
else
{
num = 4.0 * __real__ x;
__real__ res = 0.25 * __log1p (num / den);
}
}
double absx, absy, den;
absx = fabs (__real__ x);
absy = fabs (__imag__ x);
if (absx < absy)
{
double t = absx;
absx = absy;
absy = t;
}
if (absy < DBL_EPSILON / 2.0)
{
den = (1.0 - absx) * (1.0 + absx);
if (den == -0.0)
den = 0.0;
}
else if (absx >= 1.0)
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
else if (absx >= 0.75 || absy >= 0.5)
den = -__x2y2m1 (absx, absy);
else
den = (1.0 - absx) * (1.0 + absx) - absy * absy;
__imag__ res = 0.5 * __ieee754_atan2 (2.0 * __imag__ x, den);
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__catanh, catanh)
#ifdef NO_LONG_DOUBLE
strong_alias (__catanh, __catanhl)
weak_alias (__catanh, catanhl)
#endif

129
math/s_ctan_template.c Normal file
View File

@ -0,0 +1,129 @@
/* Complex tangent function for double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__ctan (__complex__ double x)
{
__complex__ double res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__imag__ x))
{
if (isfinite (__real__ x) && fabs (__real__ x) > 1.0)
{
double sinrx, cosrx;
__sincos (__real__ x, &sinrx, &cosrx);
__real__ res = __copysign (0.0, sinrx * cosrx);
}
else
__real__ res = __copysign (0.0, __real__ x);
__imag__ res = __copysign (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
if (isinf (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
double sinrx, cosrx;
double den;
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabs (__real__ x) > DBL_MIN))
{
__sincos (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0;
}
if (fabs (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
double exp_2t = __ieee754_exp (2 * t);
__imag__ res = __copysign (1.0, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabs (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_exp (2 * __imag__ x);
}
else
{
double sinhix, coshix;
if (fabs (__imag__ x) > DBL_MIN)
{
sinhix = __ieee754_sinh (__imag__ x);
coshix = __ieee754_cosh (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0;
}
if (fabs (sinhix) > fabs (cosrx) * DBL_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * cosrx / den;
__imag__ res = sinhix * coshix / den;
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__ctan, ctan)
#ifdef NO_LONG_DOUBLE
strong_alias (__ctan, __ctanl)
weak_alias (__ctan, ctanl)
#endif

129
math/s_ctanh_template.c Normal file
View File

@ -0,0 +1,129 @@
/* Complex hyperbole tangent for double.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__ctanh (__complex__ double x)
{
__complex__ double res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__real__ x))
{
__real__ res = __copysign (1.0, __real__ x);
if (isfinite (__imag__ x) && fabs (__imag__ x) > 1.0)
{
double sinix, cosix;
__sincos (__imag__ x, &sinix, &cosix);
__imag__ res = __copysign (0.0, sinix * cosix);
}
else
__imag__ res = __copysign (0.0, __imag__ x);
}
else if (__imag__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
if (isinf (__imag__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
double sinix, cosix;
double den;
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2);
/* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y))
= (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
if (fabs (__real__ x) > t)
{
/* Avoid intermediate overflow when the imaginary part of
the result may be subnormal. Ignoring negligible terms,
the real part is +/- 1, the imaginary part is
sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */
double exp_2t = __ieee754_exp (2 * t);
__real__ res = __copysign (1.0, __real__ x);
__imag__ res = 4 * sinix * cosix;
__real__ x = fabs (__real__ x);
__real__ x -= t;
__imag__ res /= exp_2t;
if (__real__ x > t)
{
/* Underflow (original real part of x has absolute value
> 2t). */
__imag__ res /= exp_2t;
}
else
__imag__ res /= __ieee754_exp (2 * __real__ x);
}
else
{
double sinhrx, coshrx;
if (fabs (__real__ x) > DBL_MIN)
{
sinhrx = __ieee754_sinh (__real__ x);
coshrx = __ieee754_cosh (__real__ x);
}
else
{
sinhrx = __real__ x;
coshrx = 1.0;
}
if (fabs (sinhrx) > fabs (cosix) * DBL_EPSILON)
den = sinhrx * sinhrx + cosix * cosix;
else
den = cosix * cosix;
__real__ res = sinhrx * coshrx / den;
__imag__ res = sinix * cosix / den;
}
math_check_force_underflow_complex (res);
}
return res;
}
weak_alias (__ctanh, ctanh)
#ifdef NO_LONG_DOUBLE
strong_alias (__ctanh, __ctanhl)
weak_alias (__ctanh, ctanhl)
#endif