Mon Mar 4 20:54:40 1996 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>

* Makeconfig ($(common-objpfx)config.make): Depend on config.h.in.


Mon Mar  4 17:35:09 1996  Roland McGrath  <roland@charlie-brown.gnu.ai.mit.edu>

	* hurd/catch-signal.c (hurd_safe_memmove): New function.
	(hurd_safe_copyin, hurd_safe_copyout): New functions.
	* hurd/hurd/sigpreempt.h: Declare them.

Sun Mar  3 08:43:44 1996  Roland McGrath  <roland@charlie-brown.gnu.ai.mit.edu>

	Replace math code with fdlibm from Sun as modified for netbsd by
	JT Conklin and Ian Taylor, including x86 FPU support.
	* sysdeps/libm-ieee754, sysdeps/libm-i387: New directories.
	* math/math_private.h: New file.
	* sysdeps/i386/fpu/Implies: New file.
	* sysdeps/ieee754/Implies: New file.
	* math/machine/asm.h, math/machine/endian.h: New files.
	* math/Makefile, math/math.h: Rewritten.
	* mathcalls.h, math/mathcalls.h: New file, broken out of math.h.
	* math/finite.c: File removed.
	* sysdeps/generic/Makefile [$(subdir)=math]: Frobnication removed.

	* math/test-math.c: Include errno.h and string.h.

	* sysdeps/unix/bsd/dirstream.h: File removed.
	* sysdeps/unix/bsd/readdir.c: File removed.
This commit is contained in:
Roland McGrath 1996-03-05 21:41:30 +00:00
parent 1521668f2a
commit f7eac6eb50
210 changed files with 16857 additions and 296 deletions

View File

@ -1,3 +1,7 @@
Mon Mar 4 20:54:40 1996 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
* Makeconfig ($(common-objpfx)config.make): Depend on config.h.in.
Tue Mar 5 12:14:57 1996 Miles Bader <miles@gnu.ai.mit.edu>
* sysdeps/mach/hurd/select.c (__select): Also don't fault just
@ -10,6 +14,31 @@ Mon Mar 4 17:35:35 1996 Miles Bader <miles@gnu.ai.mit.edu>
Don't return without frobbing the bitmasks after a timeout.
When clearing the bitmasks, only loop from FIRSTFD to LASTFD.
Mon Mar 4 17:35:09 1996 Roland McGrath <roland@charlie-brown.gnu.ai.mit.edu>
* hurd/catch-signal.c (hurd_safe_memmove): New function.
(hurd_safe_copyin, hurd_safe_copyout): New functions.
* hurd/hurd/sigpreempt.h: Declare them.
Sun Mar 3 08:43:44 1996 Roland McGrath <roland@charlie-brown.gnu.ai.mit.edu>
Replace math code with fdlibm from Sun as modified for netbsd by
JT Conklin and Ian Taylor, including x86 FPU support.
* sysdeps/libm-ieee754, sysdeps/libm-i387: New directories.
* math/math_private.h: New file.
* sysdeps/i386/fpu/Implies: New file.
* sysdeps/ieee754/Implies: New file.
* math/machine/asm.h, math/machine/endian.h: New files.
* math/Makefile, math/math.h: Rewritten.
* mathcalls.h, math/mathcalls.h: New file, broken out of math.h.
* math/finite.c: File removed.
* sysdeps/generic/Makefile [$(subdir)=math]: Frobnication removed.
* math/test-math.c: Include errno.h and string.h.
* sysdeps/unix/bsd/dirstream.h: File removed.
* sysdeps/unix/bsd/readdir.c: File removed.
Sat Mar 2 16:35:40 1996 Roland McGrath <roland@charlie-brown.gnu.ai.mit.edu>
* sysdeps/unix/sysv/linux/m68k/profil-counter.h: File removed.

20
NEWS
View File

@ -37,6 +37,11 @@ Version 1.10
through the interface in <sys/gmon.h>. The profiling code was adapted
from 4.4 BSD-Lite.
* The math code has been replaced with a math library based on fdlibm from
Sun, and modified by JT Conklin with i387 support and by Ian Taylor with
`float' functions. The math functions now reside in a separate library,
so programs using them will need to use `-lm' their linking commands.
* The new functions `strtoq' and `strtouq' parse integer values from
strings, like `strtol' and `strtoul', but they return `long long int' and
`unsigned long long int' values, respectively (64-bit quantities).
@ -53,6 +58,10 @@ Version 1.10
* The new header <langinfo.h> defines an interface for accessing
various locale-dependent data (using the locale chosen with `setlocale').
* Ulrich Drepper has contributed a new suite of functions for operation on
wide-character and multibyte-character strings; see <wcstr.h> and <mbstr.h>.
These new functions are intended to conform to the ISO C specification.
* You can now use positional parameter specifications in format strings
for the `printf' and `scanf' families of functions. For example,
`printf ("Number %2$d, Mr %1$s\n", "Jones", 6);'' prints
@ -163,10 +172,13 @@ Version 1.10
* New function `getsid' returns session ID number on systems that support it.
* The 4.4 BSD `db' library has been incorporated into the GNU C library.
New header files <db.h> and <mpool.h> provide a rich set of functions for
several types of simple databases stored in memory and in files, and
<ndbm.h> is an old `ndbm'-compatbile interface using the `db' functions.
* We have incorporated the 4.4 BSD `db' library (version 1.85). New header
files <db.h> and <mpool.h> provide a rich set of functions for several
types of simple databases stored in memory and in files, and <ndbm.h> is
an old `ndbm'-compatbile interface using the `db' functions.
* New macro `strdupa' copies a string like `strdup', but uses local stack
space from `alloca' instead of dynamic heap space from `malloc'.
Version 1.09

View File

@ -1,4 +1,6 @@
# Copyright (C) 1991, 1992, 1994, 1995 Free Software Foundation, Inc.
# Makefile for the math library.
# Copyright (C) 1996 Free Software Foundation, Inc.
# This file is part of the GNU C Library.
# The GNU C Library is free software; you can redistribute it and/or
@ -16,24 +18,58 @@
# not, write to the Free Software Foundation, Inc., 675 Mass Ave,
# Cambridge, MA 02139, USA.
#
# Makefile for math.
#
subdir := math
headers := math.h __math.h huge_val.h nan.h
# Installed header files.
headers := math.h mathcalls.h __math.h huge_val.h nan.h
# Internal header files.
distribute := math_private.h machine/asm.h machine/endian.h
routines := acos asin atan cos sin tan cosh sinh tanh exp fabs ldexp \
log log10 floor sqrt fmod frexp pow atan2 ceil modf \
isinf isnan finite infnan copysign drem logb \
rint hypot cabs cbrt expm1 log1p acosh asinh atanh \
isinfl isnanl
tests := # test-math
install-lib := libm.a
# Build the -lm library.
extra-libs := libm
libm.so-version := .0
libm-routines := e_acos e_acosf e_acosh e_acoshf e_asin e_asinf \
e_atan2 e_atan2f e_atanh e_atanhf e_cosh e_coshf \
e_exp e_expf e_fmod e_fmodf e_hypot e_hypotf e_j0 \
e_j0f e_j1 e_j1f e_jn e_jnf e_lgamma_r e_lgammaf_r \
e_log e_log10 e_log10f e_logf e_pow e_powf \
e_rem_pio2 e_rem_pio2f e_remainder e_remainderf \
e_scalb e_scalbf e_sinh e_sinhf e_sqrt e_sqrtf k_cos \
k_cosf k_rem_pio2 k_rem_pio2f k_sin k_sinf \
k_standard k_tan k_tanf s_asinh s_asinhf s_atan \
s_atanf s_cbrt s_cbrtf s_ceil s_ceilf s_copysign \
s_copysignf s_cos s_cosf s_erf s_erff s_expm1 \
s_expm1f s_fabs s_fabsf s_finite s_finitef s_floor \
s_floorf s_frexp s_frexpf s_ilogb s_ilogbf \
s_ldexp s_ldexpf s_lib_version s_log1p s_log1pf \
s_logb s_logbf s_matherr s_modf s_modff s_nextafter \
s_nextafterf s_rint s_rintf s_scalbn s_scalbnf \
s_signgam s_significand s_significandf s_sin s_sinf \
s_tan s_tanf s_tanh s_tanhf w_acos w_acosf w_acosh \
w_acoshf w_asin w_asinf w_atan2 w_atan2f w_atanh \
w_atanhf w_cabs w_cabsf w_cosh w_coshf w_drem \
w_dremf w_exp w_expf w_fmod w_fmodf w_gamma \
w_gamma_r w_gammaf w_gammaf_r w_hypot w_hypotf w_j0 \
w_j0f w_j1 w_j1f w_jn w_jnf w_lgamma w_lgamma_r \
w_lgammaf w_lgammaf_r w_log w_log10 w_log10f w_logf \
w_pow w_powf w_remainder w_remainderf w_scalb \
w_scalbf w_sinh w_sinhf w_sqrt w_sqrtf
# These functions are in libc instead of libm because __printf_fp
# calls them, so any program using printf will need them linked in,
# and we don't want to have to link every program with -lm.
routines := s_isinf s_isinff s_isnan s_isnanf isinfl isnanl
include ../Rules
$(objpfx)libm.a: $(dep-dummy-lib); $(make-dummy-lib)
lib: $(objpfx)libm.a
# This file defines the default _LIB_VERSION variable that controls
# the error return conventions for the math functions.
CPPFLAGS-s_lib_version.c := -D_POSIX_MODE
# The fdlibm code generates a lot of these warnings but is otherwise clean.
override CFLAGS += -Wno-uninitialized -Wno-write-strings

View File

@ -1,31 +0,0 @@
/* Copyright (C) 1991, 1992, 1995 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA. */
#include <ansidecl.h>
#include <math.h>
#undef __finite
/* Return nonzero if VALUE is finite and not NaN. */
int
DEFUN(__finite, (value), double value)
{
return !__isinf (value) && !__isnan (value);
}
weak_alias (__finite, finite)

10
math/machine/asm.h Normal file
View File

@ -0,0 +1,10 @@
/* The libm assembly code wants to include <machine/asm.h> to define the
ENTRY macro. We define assembly-related macros in sysdep.h and
asm-syntax.h. */
#include <sysdep.h>
#include <asm-syntax.h>
/* The libm assembly code uses this macro for RCSid strings.
We don't put RCSid strings into object files. */
#define RCSID(id) /* ignore them */

4
math/machine/endian.h Normal file
View File

@ -0,0 +1,4 @@
/* math_private.h wants to include <machine/endian.h>; we provide this
file so it can, leaving math_private.h unmodified from the original. */
#include <endian.h>

View File

@ -1,4 +1,5 @@
/* Copyright (C) 1991, 1992, 1993, 1995 Free Software Foundation, Inc.
/* Declarations for math functions.
Copyright (C) 1991, 92, 93, 95, 96 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
@ -30,7 +31,8 @@ __BEGIN_DECLS
#define __need_Emath
#include <errno.h>
/* Get machine-dependent HUGE_VAL value (returned on overflow). */
/* Get machine-dependent HUGE_VAL value (returned on overflow).
On all IEEE754 machines, this is +Infinity. */
#include <huge_val.h>
/* Get machine-dependent NAN value (returned for some domain errors). */
@ -39,260 +41,84 @@ __BEGIN_DECLS
#endif
/* Trigonometric functions. */
/* The file <mathcalls.h> contains the prototypes for all the actual
math functions. These macros are used for those prototypes, so
we can easily declare each function as both `name' and `__name',
and can declare the float versions `namef' and `__namef'. */
/* Arc cosine of X. */
extern double acos __P ((double __x)) __attribute__ ((__const__));
/* Arc sine of X. */
extern double asin __P ((double __x)) __attribute__ ((__const__));
/* Arc tangent of X. */
extern double atan __P ((double __x)) __attribute__ ((__const__));
/* Arc tangent of Y/X. */
extern double atan2 __P ((double __y, double __x)) __attribute__ ((__const__));
#define __MATHCALL(function,suffix, args) \
__MATHDECL (_Mdouble_, function,suffix, args)
#define __MATHDECL(type, function,suffix, args) \
__MATHDECL_1(type, function,suffix, args); \
__MATHDECL_1(type, __##function,suffix, args)
#define __MATHDECL_1(type, function,suffix, args) \
extern type __MATH_PRECNAME(function,suffix) args
/* Cosine of X. */
extern double cos __P ((double __x)) __attribute__ ((__const__));
/* Sine of X. */
extern double sin __P ((double __x)) __attribute__ ((__const__));
/* Tangent of X. */
extern double tan __P ((double __x)) __attribute__ ((__const__));
/* Hyperbolic functions. */
/* Hyperbolic cosine of X. */
extern double cosh __P ((double __x)) __attribute__ ((__const__));
/* Hyperbolic sine of X. */
extern double sinh __P ((double __x)) __attribute__ ((__const__));
/* Hyperbolic tangent of X. */
extern double tanh __P ((double __x)) __attribute__ ((__const__));
#define _Mdouble_ double
#define __MATH_PRECNAME(name,r) name##r
#include <mathcalls.h>
#undef _Mdouble_
#undef __MATH_PRECNAME
#ifdef __USE_MISC
/* Hyperbolic arc cosine of X. */
extern double acosh __P ((double __x)) __attribute__ ((__const__));
/* Hyperbolic arc sine of X. */
extern double asinh __P ((double __x)) __attribute__ ((__const__));
/* Hyperbolic arc tangent of X. */
extern double atanh __P ((double __x)) __attribute__ ((__const__));
/* Include the file of declarations again, this type using `float'
instead of `double' and appending f to each function name. */
#define _Mdouble_ float
#define __MATH_PRECNAME(name,r) name##f##r
#include <mathcalls.h>
#undef _Mdouble_
#undef __MATH_PRECNAME
#endif
/* Exponential and logarithmic functions. */
/* Exponentional function of X. */
extern double exp __P ((double __x)) __attribute__ ((__const__));
/* Break VALUE into a normalized fraction and an integral power of 2. */
extern double frexp __P ((double __value, int *__exp));
/* X times (two to the EXP power). */
extern double ldexp __P ((double __x, int __exp)) __attribute__ ((__const__));
/* Natural logarithm of X. */
extern double log __P ((double __x)) __attribute__ ((__const__));
/* Base-ten logarithm of X. */
extern double log10 __P ((double __x)) __attribute__ ((__const__));
#ifdef __USE_MISC
/* Return exp(X) - 1. */
extern double __expm1 __P ((double __x)) __attribute__ ((__const__));
extern double expm1 __P ((double __x)) __attribute__ ((__const__));
/* Support for various different standard error handling behaviors. */
/* Return log(1 + X). */
extern double log1p __P ((double __x)) __attribute__ ((__const__));
#endif
typedef enum { _IEEE_ = -1, _SVID_, _XOPEN_, _POSIX_ } _LIB_VERSION_TYPE;
/* Break VALUE into integral and fractional parts. */
extern double modf __P ((double __value, double *__iptr));
/* Power functions. */
/* Return X to the Y power. */
extern double pow __P ((double __x, double __y)) __attribute__ ((__const__));
/* Return the square root of X. */
extern double sqrt __P ((double __x)) __attribute__ ((__const__));
#ifdef __USE_MISC
/* Return the cube root of X. */
extern double cbrt __P ((double __x)) __attribute__ ((__const__));
/* This variable can be changed at run-time to any of the values above to
affect floating point error handling behavior (it may also be necessary
to change the hardware FPU exception settings). */
extern _LIB_VERSION_TYPE _LIB_VERSION;
#endif
/* Nearest integer, absolute value, and remainder functions. */
/* Smallest integral value not less than X. */
extern double ceil __P ((double __x)) __attribute__ ((__const__));
/* Absolute value of X. */
extern double fabs __P ((double __x)) __attribute__ ((__const__));
/* Largest integer not greater than X. */
extern double floor __P ((double __x)) __attribute__ ((__const__));
/* Floating-point modulo remainder of X/Y. */
extern double fmod __P ((double __x, double __y)) __attribute__ ((__const__));
/* Return 0 if VALUE is finite or NaN, +1 if it
is +Infinity, -1 if it is -Infinity. */
extern int __isinf __P ((double __value)) __attribute__ ((__const__));
/* Return nonzero if VALUE is not a number. */
extern int __isnan __P ((double __value)) __attribute__ ((__const__));
/* Return nonzero if VALUE is finite and not NaN. */
extern int __finite __P ((double __value)) __attribute__ ((__const__));
#ifdef __OPTIMIZE__
#define __finite(value) (!__isinf(value))
#endif
/* Deal with an infinite or NaN result.
If ERROR is ERANGE, result is +Inf;
if ERROR is - ERANGE, result is -Inf;
otherwise result is NaN.
This will set `errno' to either ERANGE or EDOM,
and may return an infinity or NaN, or may do something else. */
extern double __infnan __P ((int __error));
/* Return X with its signed changed to Y's. */
extern double __copysign __P ((double __x, double __y))
__attribute__ ((__const__));
/* Return X times (2 to the Nth power). */
extern double __scalb __P ((double __x, int __n))
__attribute__ ((__const__));
#ifdef __OPTIMIZE__
#define __scalb(x, n) ldexp ((x), (n))
#endif
/* Return the remainder of X/Y. */
extern double __drem __P ((double __x, double __y))
__attribute__ ((__const__));
/* Return the base 2 signed integral exponent of X. */
extern double __logb __P ((double __x)) __attribute__ ((__const__));
#ifdef __USE_MISC
/* Return the integer nearest X in the direction of the
prevailing rounding mode. */
extern double __rint __P ((double __x)) __attribute__ ((__const__));
extern double rint __P ((double __x)) __attribute__ ((__const__));
/* Return `sqrt(X*X + Y*Y)'. */
extern double hypot __P ((double __x, double __y)) __attribute__ ((__const__));
struct __cabs_complex
#ifdef __USE_SVID
/* In SVID error handling, `matherr' is called with this description
of the exceptional condition. */
struct exception
{
double __x, __y;
int type;
char *name;
double arg1;
double arg2;
double retval;
};
/* Return `sqrt(X*X + Y*Y)'. */
extern double cabs __P ((struct __cabs_complex)) __attribute__ ((__const__));
extern int matherr __P ((struct exception *));
extern int isinf __P ((double __value)) __attribute__ ((__const__));
extern int isnan __P ((double __value)) __attribute__ ((__const__));
extern int finite __P ((double __value)) __attribute__ ((__const__));
extern double infnan __P ((int __error)) __attribute__ ((__const__));
extern double copysign __P ((double __x, double __y))
__attribute__ ((__const__));
extern double scalb __P ((double __x, int __n)) __attribute__ ((__const__));
extern double drem __P ((double __x, double __y)) __attribute__ ((__const__));
extern double logb __P ((double __x)) __attribute__ ((__const__));
#define X_TLOSS 1.41484755040568800000e+16
#ifdef __OPTIMIZE__
#define isinf(value) __isinf(value)
#define isnan(value) __isnan(value)
#define infnan(error) __infnan(error)
#define finite(value) __finite(value)
#define copysign(x, y) __copysign((x), (y))
#define scalb(x, n) __scalb((x), (n))
#define drem(x, y) __drem((x), (y))
#define logb(x) __logb(x)
#endif /* Optimizing. */
/* Types of exceptions in the `type' field. */
#define DOMAIN 1
#define SING 2
#define OVERFLOW 3
#define UNDERFLOW 4
#define TLOSS 5
#define PLOSS 6
#endif /* Use misc. */
/* SVID mode specifies returning this large value instead of infinity. */
#define HUGE FLT_MAX
#include <float.h> /* Defines FLT_MAX. */
#endif
#if 0
/* The "Future Library Directions" section of the
ANSI Standard reserves these as `float' and
`long double' versions of the above functions. */
extern float acosf __P ((float __x)) __attribute__ ((__const__));
extern float asinf __P ((float __x)) __attribute__ ((__const__));
extern float atanf __P ((float __x)) __attribute__ ((__const__));
extern float atan2f __P ((float __y, float __x)) __attribute__ ((__const__));
extern float cosf __P ((float __x)) __attribute__ ((__const__));
extern float sinf __P ((float __x)) __attribute__ ((__const__));
extern float tanf __P ((float __x)) __attribute__ ((__const__));
extern float coshf __P ((float __x)) __attribute__ ((__const__));
extern float sinhf __P ((float __x)) __attribute__ ((__const__));
extern float tanhf __P ((float __x)) __attribute__ ((__const__));
extern float expf __P ((float __x)) __attribute__ ((__const__));
extern float frexpf __P ((float __value, int *__exp));
extern float ldexpf __P ((float __x, int __exp)) __attribute__ ((__const__));
extern float logf __P ((float __x)) __attribute__ ((__const__));
extern float log10f __P ((float __x)) __attribute__ ((__const__));
extern float modff __P ((float __value, float *__iptr));
extern float powf __P ((float __x, float __y)) __attribute__ ((__const__));
extern float sqrtf __P ((float __x)) __attribute__ ((__const__));
extern float ceilf __P ((float __x)) __attribute__ ((__const__));
extern float fabsf __P ((float __x)) __attribute__ ((__const__));
extern float floorf __P ((float __x)) __attribute__ ((__const__));
extern float fmodf __P ((float __x, float __y)) __attribute__ ((__const__));
extern __long_double_t acosl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t asinl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t atanl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t atan2l __P ((__long_double_t __y, __long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t cosl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t sinl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t tanl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t coshl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t sinhl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t tanhl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t expl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t frexpl __P ((__long_double_t __value, int *__exp));
extern __long_double_t ldexpl __P ((__long_double_t __x, int __exp))
__attribute__ ((__const__));
extern __long_double_t logl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t log10l __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t modfl __P ((__long_double_t __value,
__long_double_t *__ip));
extern __long_double_t powl __P ((__long_double_t __x, __long_double_t __y))
__attribute__ ((__const__));
extern __long_double_t sqrtl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t ceill __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t fabsl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t floorl __P ((__long_double_t __x))
__attribute__ ((__const__));
extern __long_double_t fmodl __P ((__long_double_t __x, __long_double_t __y))
__attribute__ ((__const__));
#endif /* 0 */
/* Get machine-dependent inline versions (if there are any). */
#include <__math.h>
__END_DECLS

222
math/math_private.h Normal file
View File

@ -0,0 +1,222 @@
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* from: @(#)fdlibm.h 5.1 93/09/24
* $Id$
*/
#ifndef _MATH_PRIVATE_H_
#define _MATH_PRIVATE_H_
#include <machine/endian.h>
#include <sys/types.h>
/* The original fdlibm code used statements like:
n0 = ((*(int*)&one)>>29)^1; * index of high word *
ix0 = *(n0+(int*)&x); * high word of x *
ix1 = *((1-n0)+(int*)&x); * low word of x *
to dig two 32 bit words out of the 64 bit IEEE floating point
value. That is non-ANSI, and, moreover, the gcc instruction
scheduler gets it wrong. We instead use the following macros.
Unlike the original code, we determine the endianness at compile
time, not at run time; I don't see much benefit to selecting
endianness at run time. */
/* A union which permits us to convert between a double and two 32 bit
ints. */
#if BYTE_ORDER == BIG_ENDIAN
typedef union
{
double value;
struct
{
u_int32_t msw;
u_int32_t lsw;
} parts;
} ieee_double_shape_type;
#endif
#if BYTE_ORDER == LITTLE_ENDIAN
typedef union
{
double value;
struct
{
u_int32_t lsw;
u_int32_t msw;
} parts;
} ieee_double_shape_type;
#endif
/* Get two 32 bit ints from a double. */
#define EXTRACT_WORDS(ix0,ix1,d) \
do { \
ieee_double_shape_type ew_u; \
ew_u.value = (d); \
(ix0) = ew_u.parts.msw; \
(ix1) = ew_u.parts.lsw; \
} while (0)
/* Get the more significant 32 bit int from a double. */
#define GET_HIGH_WORD(i,d) \
do { \
ieee_double_shape_type gh_u; \
gh_u.value = (d); \
(i) = gh_u.parts.msw; \
} while (0)
/* Get the less significant 32 bit int from a double. */
#define GET_LOW_WORD(i,d) \
do { \
ieee_double_shape_type gl_u; \
gl_u.value = (d); \
(i) = gl_u.parts.lsw; \
} while (0)
/* Set a double from two 32 bit ints. */
#define INSERT_WORDS(d,ix0,ix1) \
do { \
ieee_double_shape_type iw_u; \
iw_u.parts.msw = (ix0); \
iw_u.parts.lsw = (ix1); \
(d) = iw_u.value; \
} while (0)
/* Set the more significant 32 bits of a double from an int. */
#define SET_HIGH_WORD(d,v) \
do { \
ieee_double_shape_type sh_u; \
sh_u.value = (d); \
sh_u.parts.msw = (v); \
(d) = sh_u.value; \
} while (0)
/* Set the less significant 32 bits of a double from an int. */
#define SET_LOW_WORD(d,v) \
do { \
ieee_double_shape_type sl_u; \
sl_u.value = (d); \
sl_u.parts.lsw = (v); \
(d) = sl_u.value; \
} while (0)
/* A union which permits us to convert between a float and a 32 bit
int. */
typedef union
{
float value;
u_int32_t word;
} ieee_float_shape_type;
/* Get a 32 bit int from a float. */
#define GET_FLOAT_WORD(i,d) \
do { \
ieee_float_shape_type gf_u; \
gf_u.value = (d); \
(i) = gf_u.word; \
} while (0)
/* Set a float from a 32 bit int. */
#define SET_FLOAT_WORD(d,i) \
do { \
ieee_float_shape_type sf_u; \
sf_u.word = (i); \
(d) = sf_u.value; \
} while (0)
/* ieee style elementary functions */
extern double __ieee754_sqrt __P((double));
extern double __ieee754_acos __P((double));
extern double __ieee754_acosh __P((double));
extern double __ieee754_log __P((double));
extern double __ieee754_atanh __P((double));
extern double __ieee754_asin __P((double));
extern double __ieee754_atan2 __P((double,double));
extern double __ieee754_exp __P((double));
extern double __ieee754_cosh __P((double));
extern double __ieee754_fmod __P((double,double));
extern double __ieee754_pow __P((double,double));
extern double __ieee754_lgamma_r __P((double,int *));
extern double __ieee754_gamma_r __P((double,int *));
extern double __ieee754_lgamma __P((double));
extern double __ieee754_gamma __P((double));
extern double __ieee754_log10 __P((double));
extern double __ieee754_sinh __P((double));
extern double __ieee754_hypot __P((double,double));
extern double __ieee754_j0 __P((double));
extern double __ieee754_j1 __P((double));
extern double __ieee754_y0 __P((double));
extern double __ieee754_y1 __P((double));
extern double __ieee754_jn __P((int,double));
extern double __ieee754_yn __P((int,double));
extern double __ieee754_remainder __P((double,double));
extern int __ieee754_rem_pio2 __P((double,double*));
extern double __ieee754_scalb __P((double,double));
/* fdlibm kernel function */
extern double __kernel_standard __P((double,double,int));
extern double __kernel_sin __P((double,double,int));
extern double __kernel_cos __P((double,double));
extern double __kernel_tan __P((double,double,int));
extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const int*));
/* ieee style elementary float functions */
extern float __ieee754_sqrtf __P((float));
extern float __ieee754_acosf __P((float));
extern float __ieee754_acoshf __P((float));
extern float __ieee754_logf __P((float));
extern float __ieee754_atanhf __P((float));
extern float __ieee754_asinf __P((float));
extern float __ieee754_atan2f __P((float,float));
extern float __ieee754_expf __P((float));
extern float __ieee754_coshf __P((float));
extern float __ieee754_fmodf __P((float,float));
extern float __ieee754_powf __P((float,float));
extern float __ieee754_lgammaf_r __P((float,int *));
extern float __ieee754_gammaf_r __P((float,int *));
extern float __ieee754_lgammaf __P((float));
extern float __ieee754_gammaf __P((float));
extern float __ieee754_log10f __P((float));
extern float __ieee754_sinhf __P((float));
extern float __ieee754_hypotf __P((float,float));
extern float __ieee754_j0f __P((float));
extern float __ieee754_j1f __P((float));
extern float __ieee754_y0f __P((float));
extern float __ieee754_y1f __P((float));
extern float __ieee754_jnf __P((int,float));
extern float __ieee754_ynf __P((int,float));
extern float __ieee754_remainderf __P((float,float));
extern int __ieee754_rem_pio2f __P((float,float*));
extern float __ieee754_scalbf __P((float,float));
/* float versions of fdlibm kernel functions */
extern float __kernel_sinf __P((float,float,int));
extern float __kernel_cosf __P((float,float));
extern float __kernel_tanf __P((float,float,int));
extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const int*));
#endif /* _MATH_PRIVATE_H_ */

232
math/mathcalls.h Normal file
View File

@ -0,0 +1,232 @@
/* Prototype declarations for math functions; helper file for <math.h>.
Copyright (C) 1996 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA. */
/* NOTE: Because of the special way this file is used by <math.h>, this
file must NOT be protected from multiple inclusion as header files
usually are.
This file provides prototype declarations for the math functions.
Most functions are declared using the macro:
__MATHCALL (NAME,[_r], (ARGS...));
This means there is a function `NAME' returning `double' and a function
`NAMEf' returning `float'. Each place `_Mdouble_' appears in the
prototype, that is actually `double' in the prototype for `NAME' and
`float' in the prototype for `NAMEf'. Reentrant variant functions are
called `NAME_r' and `NAMEf_r'.
Functions returning other types like `int' are declared using the macro:
__MATHDECL (TYPE, NAME,[_r], (ARGS...));
This is just like __MATHCALL but for a function returning `TYPE'
instead of `_Mdouble_'. In all of these cases, there is still
both a `NAME' and a `NAMEf' that takes `float' arguments. */
#ifndef _MATH_H
#error "Never include mathcalls.h directly; include <math.h> instead."
#endif
/* Trigonometric functions. */
/* Arc cosine of X. */
__MATHCALL (acos,, (_Mdouble_ __x));
/* Arc sine of X. */
__MATHCALL (asin,, (_Mdouble_ __x));
/* Arc tangent of X. */
__MATHCALL (atan,, (_Mdouble_ __x));
/* Arc tangent of Y/X. */
__MATHCALL (atan2,, (_Mdouble_ __y, _Mdouble_ __x));
/* Cosine of X. */
__MATHCALL (cos,, (_Mdouble_ __x));
/* Sine of X. */
__MATHCALL (sin,, (_Mdouble_ __x));
/* Tangent of X. */
__MATHCALL (tan,, (_Mdouble_ __x));
/* Hyperbolic functions. */
/* Hyperbolic cosine of X. */
__MATHCALL (cosh,, (_Mdouble_ __x));
/* Hyperbolic sine of X. */
__MATHCALL (sinh,, (_Mdouble_ __x));
/* Hyperbolic tangent of X. */
__MATHCALL (tanh,, (_Mdouble_ __x));
#ifdef __USE_MISC
/* Hyperbolic arc cosine of X. */
__MATHCALL (acosh,, (_Mdouble_ __x));
/* Hyperbolic arc sine of X. */
__MATHCALL (asinh,, (_Mdouble_ __x));
/* Hyperbolic arc tangent of X. */
__MATHCALL (atanh,, (_Mdouble_ __x));
#endif
/* Exponential and logarithmic functions. */
/* Exponentional function of X. */
__MATHCALL (exp,, (_Mdouble_ __x));
/* Break VALUE into a normalized fraction and an integral power of 2. */
__MATHCALL (frexp,, (_Mdouble_ __value, int *__exp));
/* X times (two to the EXP power). */
__MATHCALL (ldexp,, (_Mdouble_ __x, int __exp));
/* Natural logarithm of X. */
__MATHCALL (log,, (_Mdouble_ __x));
/* Base-ten logarithm of X. */
__MATHCALL (log10,, (_Mdouble_ __x));
#ifdef __USE_MISC
/* Return exp(X) - 1. */
__MATHCALL (expm1,, (_Mdouble_ __x));
/* Return log(1 + X). */
__MATHCALL (log1p,, (_Mdouble_ __x));
#endif
/* Break VALUE into integral and fractional parts. */
__MATHCALL (modf,, (_Mdouble_ __value, _Mdouble_ *__iptr));
/* Power functions. */
/* Return X to the Y power. */
__MATHCALL (pow,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return the square root of X. */
__MATHCALL (sqrt,, (_Mdouble_ __x));
#ifdef __USE_MISC
/* Return the cube root of X. */
__MATHCALL (cbrt,, (_Mdouble_ __x));
#endif
/* Nearest integer, absolute value, and remainder functions. */
/* Smallest integral value not less than X. */
__MATHCALL (ceil,, (_Mdouble_ __x));
/* Absolute value of X. */
__MATHCALL (fabs,, (_Mdouble_ __x));
/* Largest integer not greater than X. */
__MATHCALL (floor,, (_Mdouble_ __x));
/* Floating-point modulo remainder of X/Y. */
__MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y));
#ifdef __USE_MISC
/* Return 0 if VALUE is finite or NaN, +1 if it
is +Infinity, -1 if it is -Infinity. */
__MATHDECL (int, isinf,, (_Mdouble_ __value));
/* Return nonzero if VALUE is not a number. */
__MATHDECL (int, isnan,, (_Mdouble_ __value));
/* Return nonzero if VALUE is finite and not NaN. */
__MATHDECL (int, finite,, (_Mdouble_ __value));
/* Deal with an infinite or NaN result.
If ERROR is ERANGE, result is +Inf;
if ERROR is - ERANGE, result is -Inf;
otherwise result is NaN.
This will set `errno' to either ERANGE or EDOM,
and may return an infinity or NaN, or may do something else. */
__MATHCALL (infnan,, (int __error));
/* Return X with its signed changed to Y's. */
__MATHCALL (copysign,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return X times (2 to the Nth power). */
__MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n));
/* Return X times (2 to the Nth power). */
__MATHCALL (scalbn,, (_Mdouble_ __x, int __n));
/* Return the remainder of X/Y. */
__MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return the base 2 signed integral exponent of X. */
__MATHCALL (logb,, (_Mdouble_ __x));
/* Return the integer nearest X in the direction of the
prevailing rounding mode. */
__MATHCALL (rint,, (_Mdouble_ __x));
/* Return `sqrt(X*X + Y*Y)'. */
__MATHCALL (hypot,, (_Mdouble_ __x, _Mdouble_ __y));
struct __MATH_PRECNAME(__cabs_complex,)
{
_Mdouble_ x, y;
};
/* Return `sqrt(X*X + Y*Y)'. */
__MATHCALL (cabs,, (struct __MATH_PRECNAME(__cabs_complex,)));
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
__MATHCALL (nextafter,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return the remainder of integer divison X / Y with infinite precision. */
__MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return the binary exponent of X, which must be nonzero. */
__MATHDECL (int, ilogb,, (_Mdouble_ __x));
/* Return the fractional part of X after dividing out `ilogb (X)'. */
__MATHCALL (significand,, (_Mdouble_ __x));
/* Error, gamma, and Bessel functions. */
__MATHCALL (erf,, (_Mdouble_));
__MATHCALL (erfc,, (_Mdouble_));
__MATHCALL (gamma,, (_Mdouble_));
__MATHCALL (j0,, (_Mdouble_));
__MATHCALL (j1,, (_Mdouble_));
__MATHCALL (jn,, (int, _Mdouble_));
__MATHCALL (lgamma,, (_Mdouble_));
__MATHCALL (y0,, (_Mdouble_));
__MATHCALL (y1,, (_Mdouble_));
__MATHCALL (yn,, (int, _Mdouble_));
/* This variable is used by `gamma' and `lgamma'. */
extern int signgam;
#ifdef __USE_REENTRANT
/* Reentrant versions of gamma and lgamma. Those functions use the global
variable `signgam'. The reentrant versions instead take a pointer and
store the value through it. */
__MATHCALL (gamma,_r, (_Mdouble_, int *));
__MATHCALL (lgamma,_r, (_Mdouble_, int *));
#endif
#endif /* Use misc. */

1
mathcalls.h Normal file
View File

@ -0,0 +1 @@
#include <math/mathcalls.h>

View File

@ -16,18 +16,6 @@
# not, write to the Free Software Foundation, Inc., 675 Mass Ave,
# Cambridge, MA 02139, USA.
ifeq ($(subdir),math)
ifndef math-twiddled
sysdep_routines += sincos asincos exp__E log__L
elided-routines += acos asin cos sin
math-twiddled := t
override +gccwarn := -w
endif
endif
ifeq (,$(filter-out $(sysdep_dir)/stub/ $(common-objpfx),\
$(dir $(firstword $(wildcard $(+sysdep_dirs:%=%/bytesex.h))))))

2
sysdeps/i386/fpu/Implies Normal file
View File

@ -0,0 +1,2 @@
# For x86 machines with FPU, use the i387 port of libm by JT Conklin.
libm-i387

2
sysdeps/ieee754/Implies Normal file
View File

@ -0,0 +1,2 @@
# For all IEEE machines, use Sun's fdlibm code.
libm-ieee754

View File

@ -0,0 +1,20 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_acos.S,v 1.4 1995/05/08 23:44:37 jtc Exp $")
/* acos = atan (sqrt(1 - x^2) / x) */
ENTRY(__ieee754_acos)
fldl 4(%esp) /* x */
fst %st(1)
fmul %st(0) /* x^2 */
fld1
fsubp /* 1 - x^2 */
fsqrt /* sqrt (1 - x^2) */
fxch %st(1)
fpatan
ret

View File

@ -0,0 +1,19 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_asin.S,v 1.4 1995/05/08 23:45:40 jtc Exp $")
/* asin = atan (x / sqrt(1 - x^2)) */
ENTRY(__ieee754_asin)
fldl 4(%esp) /* x */
fst %st(1)
fmul %st(0) /* x^2 */
fld1
fsubp /* 1 - x^2 */
fsqrt /* sqrt (1 - x^2) */
fpatan
ret

View File

@ -0,0 +1,14 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_atan2.S,v 1.4 1995/05/08 23:46:28 jtc Exp $")
ENTRY(__ieee754_atan2)
fldl 4(%esp)
fldl 12(%esp)
fpatan
ret

View File

@ -0,0 +1,14 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_atan2f.S,v 1.1 1995/05/08 23:35:10 jtc Exp $")
ENTRY(__ieee754_atan2f)
flds 4(%esp)
flds 8(%esp)
fpatan
ret

23
sysdeps/libm-i387/e_exp.S Normal file
View File

@ -0,0 +1,23 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_exp.S,v 1.4 1995/05/08 23:47:04 jtc Exp $")
/* e^x = 2^(x * log2(e)) */
ENTRY(__ieee754_exp)
fldl 4(%esp)
fldl2e
fmulp /* x * log2(e) */
fstl %st(1)
frndint /* int(x * log2(e)) */
fstl %st(2)
fsubrp /* fract(x * log2(e)) */
f2xm1 /* 2^(fract(x * log2(e))) - 1 */
fld1
faddp /* 2^(fract(x * log2(e))) */
fscale /* e^x */
ret

View File

@ -0,0 +1,18 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_fmod.S,v 1.4 1995/05/08 23:47:56 jtc Exp $")
ENTRY(__ieee754_fmod)
fldl 12(%esp)
fldl 4(%esp)
1: fprem
fstsw %ax
sahf
jp 1b
fstpl %st(1)
ret

14
sysdeps/libm-i387/e_log.S Normal file
View File

@ -0,0 +1,14 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_log.S,v 1.4 1995/05/08 23:48:39 jtc Exp $")
ENTRY(__ieee754_log)
fldln2
fldl 4(%esp)
fyl2x
ret

View File

@ -0,0 +1,14 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_log10.S,v 1.4 1995/05/08 23:49:24 jtc Exp $")
ENTRY(__ieee754_log10)
fldlg2
fldl 4(%esp)
fyl2x
ret

View File

@ -0,0 +1,18 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_remainder.S,v 1.4 1995/05/08 23:49:37 jtc Exp $")
ENTRY(__ieee754_remainder)
fldl 12(%esp)
fldl 4(%esp)
1: fprem1
fstsw %ax
sahf
jp 1b
fstpl %st(1)
ret

View File

@ -0,0 +1,18 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_remainderf.S,v 1.2 1995/05/08 23:49:47 jtc Exp $")
ENTRY(__ieee754_remainderf)
flds 8(%esp)
flds 4(%esp)
1: fprem1
fstsw %ax
sahf
jp 1b
fstpl %st(1)
ret

View File

@ -0,0 +1,14 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_scalb.S,v 1.4 1995/05/08 23:49:52 jtc Exp $")
ENTRY(__ieee754_scalb)
fldl 12(%esp)
fldl 4(%esp)
fscale
ret

View File

@ -0,0 +1,13 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_sqrt.S,v 1.4 1995/05/08 23:49:57 jtc Exp $")
ENTRY(__ieee754_sqrt)
fldl 4(%esp)
fsqrt
ret

View File

@ -0,0 +1,13 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: e_sqrtf.S,v 1.2 1995/05/08 23:50:14 jtc Exp $")
ENTRY(__ieee754_sqrtf)
flds 4(%esp)
fsqrt
ret

View File

@ -0,0 +1,15 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_atan.S,v 1.4 1995/05/08 23:50:41 jtc Exp $")
ENTRY(__atan)
fldl 4(%esp)
fld1
fpatan
ret
weak_alias (__atan, atan)

View File

@ -0,0 +1,15 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_atanf.S,v 1.3 1995/05/08 23:51:33 jtc Exp $")
ENTRY(__atanf)
flds 4(%esp)
fld1
fpatan
ret
weak_alias (__atanf, atanf)

View File

@ -0,0 +1,29 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_ceil.S,v 1.4 1995/05/08 23:52:13 jtc Exp $")
ENTRY(__ceil)
pushl %ebp
movl %esp,%ebp
subl $8,%esp
fstcw -12(%ebp) /* store fpu control word */
movw -12(%ebp),%dx
orw $0x0800,%dx /* round towards +oo */
andw $0xfbff,%dx
movw %dx,-16(%ebp)
fldcw -16(%ebp) /* load modfied control word */
fldl 8(%ebp); /* round */
frndint
fldcw -12(%ebp) /* restore original control word */
leave
ret
weak_alias (__ceil, ceil)

View File

@ -0,0 +1,29 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_ceilf.S,v 1.3 1995/05/08 23:52:44 jtc Exp $")
ENTRY(__ceilf)
pushl %ebp
movl %esp,%ebp
subl $8,%esp
fstcw -12(%ebp) /* store fpu control word */
movw -12(%ebp),%dx
orw $0x0800,%dx /* round towards +oo */
andw $0xfbff,%dx
movw %dx,-16(%ebp)
fldcw -16(%ebp) /* load modfied control word */
flds 8(%ebp); /* round */
frndint
fldcw -12(%ebp) /* restore original control word */
leave
ret
weak_alias (__ceilf, ceilf)

View File

@ -0,0 +1,19 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_copysign.S,v 1.4 1995/05/08 23:53:02 jtc Exp $")
ENTRY(__copysign)
movl 16(%esp),%edx
andl $0x80000000,%edx
movl 8(%esp),%eax
andl $0x7fffffff,%eax
orl %edx,%eax
movl %eax,8(%esp)
fldl 4(%esp)
ret
weak_alias (__copysign, copysign)

View File

@ -0,0 +1,19 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_copysignf.S,v 1.3 1995/05/08 23:53:25 jtc Exp $")
ENTRY(__copysignf)
movl 8(%esp),%edx
andl $0x80000000,%edx
movl 4(%esp),%eax
andl $0x7fffffff,%eax
orl %edx,%eax
movl %eax,4(%esp)
flds 4(%esp)
ret
weak_alias (__copysignf, copysignf)

27
sysdeps/libm-i387/s_cos.S Normal file
View File

@ -0,0 +1,27 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_cos.S,v 1.5 1995/05/08 23:54:00 jtc Exp $")
ENTRY(__cos)
fldl 4(%esp)
fcos
fnstsw %ax
andw $0x400,%ax
jnz 1f
ret
1: fldpi
fadd %st(0)
fxch %st(1)
2: fprem1
fnstsw %ax
andw $0x400,%ax
jnz 2b
fstp %st(1)
fcos
ret
weak_alias (__cos, cos)

View File

@ -0,0 +1,15 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_cosf.S,v 1.3 1995/05/08 23:55:16 jtc Exp $")
/* A float's domain isn't large enough to require argument reduction. */
ENTRY(__cosf)
flds 4(%esp)
fcos
ret
weak_alias (__cosf, cosf)

View File

@ -0,0 +1,17 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_finite.S,v 1.4 1995/05/08 23:57:41 jtc Exp $")
ENTRY(__finite)
movl 8(%esp),%eax
andl $0x7ff00000, %eax
cmpl $0x7ff00000, %eax
setnel %al
andl $0x000000ff, %eax
ret
weak_alias (__finite, finite)

View File

@ -0,0 +1,17 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_finitef.S,v 1.3 1995/05/09 00:00:02 jtc Exp $")
ENTRY(__finitef)
movl 4(%esp),%eax
andl $0x7ff00000, %eax
cmpl $0x7ff00000, %eax
setnel %al
andl $0x000000ff, %eax
ret
weak_alias (__finitef, finitef)

View File

@ -0,0 +1,29 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_floor.S,v 1.4 1995/05/09 00:01:59 jtc Exp $")
ENTRY(__floor)
pushl %ebp
movl %esp,%ebp
subl $8,%esp
fstcw -12(%ebp) /* store fpu control word */
movw -12(%ebp),%dx
orw $0x0400,%dx /* round towards -oo */
andw $0xf7ff,%dx
movw %dx,-16(%ebp)
fldcw -16(%ebp) /* load modfied control word */
fldl 8(%ebp); /* round */
frndint
fldcw -12(%ebp) /* restore original control word */
leave
ret
weak_alias (__floor, floor)

View File

@ -0,0 +1,29 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_floorf.S,v 1.3 1995/05/09 00:04:32 jtc Exp $")
ENTRY(__floorf)
pushl %ebp
movl %esp,%ebp
subl $8,%esp
fstcw -12(%ebp) /* store fpu control word */
movw -12(%ebp),%dx
orw $0x0400,%dx /* round towards -oo */
andw $0xf7ff,%dx
movw %dx,-16(%ebp)
fldcw -16(%ebp) /* load modfied control word */
flds 8(%ebp); /* round */
frndint
fldcw -12(%ebp) /* restore original control word */
leave
ret
weak_alias (__floorf, floorf)

View File

@ -0,0 +1,24 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_ilogb.S,v 1.5 1995/10/12 15:53:09 jtc Exp $")
ENTRY(__ilogb)
pushl %ebp
movl %esp,%ebp
subl $4,%esp
fldl 8(%ebp)
fxtract
fstpl %st
fistpl -4(%ebp)
movl -4(%ebp),%eax
leave
ret
weak_alias (__ilogb, ilogb)

View File

@ -0,0 +1,24 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_ilogbf.S,v 1.4 1995/10/22 20:32:43 pk Exp $")
ENTRY(__ilogbf)
pushl %ebp
movl %esp,%ebp
subl $4,%esp
flds 8(%ebp)
fxtract
fstpl %st
fistpl -4(%ebp)
movl -4(%ebp),%eax
leave
ret
weak_alias (__ilogbf, ilogbf)

View File

@ -0,0 +1,23 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_log1p.S,v 1.7 1995/05/09 00:10:58 jtc Exp $")
/*
* Since the fyl2xp1 instruction has such a limited range:
* -(1 - (sqrt(2) / 2)) <= x <= sqrt(2) - 1
* it's not worth trying to use it.
*/
ENTRY(__log1p)
fldln2
fldl 4(%esp)
fld1
faddp
fyl2x
ret
weak_alias (__log1p, log1p)

View File

@ -0,0 +1,23 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_log1pf.S,v 1.4 1995/05/09 00:13:05 jtc Exp $")
/*
* Since the fyl2xp1 instruction has such a limited range:
* -(1 - (sqrt(2) / 2)) <= x <= sqrt(2) - 1
* it's not worth trying to use it.
*/
ENTRY(__log1pf)
fldln2
flds 4(%esp)
fld1
faddp
fyl2x
ret
weak_alias (__log1pf, log1pf)

View File

@ -0,0 +1,15 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_logb.S,v 1.4 1995/05/09 00:14:30 jtc Exp $")
ENTRY(__logb)
fldl 4(%esp)
fxtract
fstpl %st
ret
weak_alias (__logb, logb)

View File

@ -0,0 +1,15 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_logbf.S,v 1.3 1995/05/09 00:15:12 jtc Exp $")
ENTRY(__logbf)
flds 4(%esp)
fxtract
fstpl %st
ret
weak_alias (__logbf, logbf)

View File

@ -0,0 +1,14 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_rint.S,v 1.4 1995/05/09 00:16:08 jtc Exp $")
ENTRY(__rint)
fldl 4(%esp)
frndint
ret
weak_alias (__rint, rint)

View File

@ -0,0 +1,14 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_rintf.S,v 1.3 1995/05/09 00:17:22 jtc Exp $")
ENTRY(__rintf)
flds 4(%esp)
frndint
ret
weak_alias (__rintf, rintf)

View File

@ -0,0 +1,15 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_scalbn.S,v 1.4 1995/05/09 00:19:06 jtc Exp $")
ENTRY(__scalbn)
fildl 12(%esp)
fldl 4(%esp)
fscale
ret
weak_alias (__scalbn, scalbn)

View File

@ -0,0 +1,15 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_scalbnf.S,v 1.3 1995/05/09 00:19:59 jtc Exp $")
ENTRY(__scalbnf)
fildl 8(%esp)
flds 4(%esp)
fscale
ret
weak_alias (__scalbnf, scalbnf)

View File

@ -0,0 +1,15 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_significand.S,v 1.4 1995/05/09 00:21:47 jtc Exp $")
ENTRY(__significand)
fldl 4(%esp)
fxtract
fstpl %st(1)
ret
weak_alias (__significand, significand)

View File

@ -0,0 +1,15 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_significandf.S,v 1.3 1995/05/09 00:24:07 jtc Exp $")
ENTRY(__significandf)
flds 4(%esp)
fxtract
fstpl %st(1)
ret
weak_alias (__significandf, significandf)

27
sysdeps/libm-i387/s_sin.S Normal file
View File

@ -0,0 +1,27 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_sin.S,v 1.5 1995/05/09 00:25:54 jtc Exp $")
ENTRY(__sin)
fldl 4(%esp)
fsin
fnstsw %ax
andw $0x400,%ax
jnz 1f
ret
1: fldpi
fadd %st(0)
fxch %st(1)
2: fprem1
fnstsw %ax
andw $0x400,%ax
jnz 2b
fstp %st(1)
fsin
ret
weak_alias (__sin, sin)

View File

@ -0,0 +1,15 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_sinf.S,v 1.3 1995/05/09 00:27:53 jtc Exp $")
/* A float's domain isn't large enough to require argument reduction. */
ENTRY(__sinf)
flds 4(%esp)
fsin
ret
weak_alias (__sinf, sinf)

29
sysdeps/libm-i387/s_tan.S Normal file
View File

@ -0,0 +1,29 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_tan.S,v 1.5 1995/05/09 00:30:00 jtc Exp $")
ENTRY(__tan)
fldl 4(%esp)
fptan
fnstsw %ax
andw $0x400,%ax
jnz 1f
fstp %st(0)
ret
1: fldpi
fadd %st(0)
fxch %st(1)
2: fprem1
fstsw %ax
andw $0x400,%ax
jnz 2b
fstp %st(1)
fptan
fstp %st(0)
ret
weak_alias (__tan, tan)

View File

@ -0,0 +1,16 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <machine/asm.h>
RCSID("$NetBSD: s_tanf.S,v 1.3 1995/05/09 00:31:09 jtc Exp $")
/* A float's domain isn't large enough to require argument reduction. */
ENTRY(__tanf)
flds 4(%esp)
fptan
fstp %st(0)
ret
weak_alias (__tanf, tanf)

View File

@ -0,0 +1,111 @@
/* @(#)e_acos.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_acos.c,v 1.9 1995/05/12 04:57:13 jtc Exp $";
#endif
/* __ieee754_acos(x)
* Method :
* acos(x) = pi/2 - asin(x)
* acos(-x) = pi/2 + asin(x)
* For |x|<=0.5
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
* For x>0.5
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
* = 2asin(sqrt((1-x)/2))
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
* = 2f + (2c + 2s*z*R(z))
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
* for f so that f+c ~ sqrt(z).
* For x<-0.5
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
* Function needed: __ieee754_sqrt
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
#ifdef __STDC__
double __ieee754_acos(double x)
#else
double __ieee754_acos(x)
double x;
#endif
{
double z,p,q,r,w,s,c,df;
int32_t hx,ix;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x3ff00000) { /* |x| >= 1 */
u_int32_t lx;
GET_LOW_WORD(lx,x);
if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
if(hx>0) return 0.0; /* acos(1) = 0 */
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
}
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
}
if(ix<0x3fe00000) { /* |x| < 0.5 */
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
z = x*x;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
return pio2_hi - (x - (pio2_lo-x*r));
} else if (hx<0) { /* x < -0.5 */
z = (one+x)*0.5;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
s = __ieee754_sqrt(z);
r = p/q;
w = r*s-pio2_lo;
return pi - 2.0*(s+w);
} else { /* x > 0.5 */
z = (one-x)*0.5;
s = __ieee754_sqrt(z);
df = s;
SET_LOW_WORD(df,0);
c = (z-df*df)/(s+df);
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
w = r*s+c;
return 2.0*(df+w);
}
}

View File

@ -0,0 +1,89 @@
/* e_acosf.c -- float version of e_acos.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_acosf.c,v 1.5 1995/05/12 04:57:16 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float
#else
static float
#endif
one = 1.0000000000e+00, /* 0x3F800000 */
pi = 3.1415925026e+00, /* 0x40490fda */
pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
pS0 = 1.6666667163e-01, /* 0x3e2aaaab */
pS1 = -3.2556581497e-01, /* 0xbea6b090 */
pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */
pS3 = -4.0055535734e-02, /* 0xbd241146 */
pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */
pS5 = 3.4793309169e-05, /* 0x3811ef08 */
qS1 = -2.4033949375e+00, /* 0xc019d139 */
qS2 = 2.0209457874e+00, /* 0x4001572d */
qS3 = -6.8828397989e-01, /* 0xbf303361 */
qS4 = 7.7038154006e-02; /* 0x3d9dc62e */
#ifdef __STDC__
float __ieee754_acosf(float x)
#else
float __ieee754_acosf(x)
float x;
#endif
{
float z,p,q,r,w,s,c,df;
int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix==0x3f800000) { /* |x|==1 */
if(hx>0) return 0.0; /* acos(1) = 0 */
else return pi+(float)2.0*pio2_lo; /* acos(-1)= pi */
} else if(ix>0x3f800000) { /* |x| >= 1 */
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
}
if(ix<0x3f000000) { /* |x| < 0.5 */
if(ix<=0x23000000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
z = x*x;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
return pio2_hi - (x - (pio2_lo-x*r));
} else if (hx<0) { /* x < -0.5 */
z = (one+x)*(float)0.5;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
s = __ieee754_sqrtf(z);
r = p/q;
w = r*s-pio2_lo;
return pi - (float)2.0*(s+w);
} else { /* x > 0.5 */
int32_t idf;
z = (one-x)*(float)0.5;
s = __ieee754_sqrtf(z);
df = s;
GET_FLOAT_WORD(idf,df);
SET_FLOAT_WORD(df,idf&0xfffff000);
c = (z-df*df)/(s+df);
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
w = r*s+c;
return (float)2.0*(df+w);
}
}

View File

@ -0,0 +1,69 @@
/* @(#)e_acosh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_acosh.c,v 1.9 1995/05/12 04:57:18 jtc Exp $";
#endif
/* __ieee754_acosh(x)
* Method :
* Based on
* acosh(x) = log [ x + sqrt(x*x-1) ]
* we have
* acosh(x) := log(x)+ln2, if x is large; else
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
*
* Special cases:
* acosh(x) is NaN with signal if x<1.
* acosh(NaN) is NaN without signal.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.0,
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
#ifdef __STDC__
double __ieee754_acosh(double x)
#else
double __ieee754_acosh(x)
double x;
#endif
{
double t;
int32_t hx;
u_int32_t lx;
EXTRACT_WORDS(hx,lx,x);
if(hx<0x3ff00000) { /* x < 1 */
return (x-x)/(x-x);
} else if(hx >=0x41b00000) { /* x > 2**28 */
if(hx >=0x7ff00000) { /* x is inf of NaN */
return x+x;
} else
return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */
} else if(((hx-0x3ff00000)|lx)==0) {
return 0.0; /* acosh(1) = 0 */
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
t=x*x;
return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one)));
} else { /* 1<x<2 */
t = x-one;
return __log1p(t+__sqrt(2.0*t+t*t));
}
}

View File

@ -0,0 +1,57 @@
/* e_acoshf.c -- float version of e_acosh.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_acoshf.c,v 1.5 1995/05/12 04:57:20 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float
#else
static float
#endif
one = 1.0,
ln2 = 6.9314718246e-01; /* 0x3f317218 */
#ifdef __STDC__
float __ieee754_acoshf(float x)
#else
float __ieee754_acoshf(x)
float x;
#endif
{
float t;
int32_t hx;
GET_FLOAT_WORD(hx,x);
if(hx<0x3f800000) { /* x < 1 */
return (x-x)/(x-x);
} else if(hx >=0x4d800000) { /* x > 2**28 */
if(hx >=0x7f800000) { /* x is inf of NaN */
return x+x;
} else
return __ieee754_logf(x)+ln2; /* acosh(huge)=log(2x) */
} else if (hx==0x3f800000) {
return 0.0; /* acosh(1) = 0 */
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
t=x*x;
return __ieee754_logf((float)2.0*x-one/(x+__ieee754_sqrtf(t-one)));
} else { /* 1<x<2 */
t = x-one;
return __log1pf(t+__sqrtf((float)2.0*t+t*t));
}
}

View File

@ -0,0 +1,120 @@
/* @(#)e_asin.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_asin.c,v 1.9 1995/05/12 04:57:22 jtc Exp $";
#endif
/* __ieee754_asin(x)
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
* where
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
* and its remez error is bounded by
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
*
* For x in [0.5,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
huge = 1.000e+300,
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
/* coefficient for R(x^2) */
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
#ifdef __STDC__
double __ieee754_asin(double x)
#else
double __ieee754_asin(x)
double x;
#endif
{
double t,w,p,q,c,r,s;
int32_t hx,ix;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>= 0x3ff00000) { /* |x|>= 1 */
u_int32_t lx;
GET_LOW_WORD(lx,x);
if(((ix-0x3ff00000)|lx)==0)
/* asin(1)=+-pi/2 with inexact */
return x*pio2_hi+x*pio2_lo;
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
} else if (ix<0x3fe00000) { /* |x|<0.5 */
if(ix<0x3e400000) { /* if |x| < 2**-27 */
if(huge+x>one) return x;/* return x with inexact if x!=0*/
} else
t = x*x;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
w = p/q;
return x+x*w;
}
/* 1> |x|>= 0.5 */
w = one-fabs(x);
t = w*0.5;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
s = __ieee754_sqrt(t);
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
w = p/q;
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
} else {
w = s;
SET_LOW_WORD(w,0);
c = (t-w*w)/(s+w);
r = p/q;
p = 2.0*s*r-(pio2_lo-2.0*c);
q = pio4_hi-2.0*w;
t = pio4_hi-(p-q);
}
if(hx>0) return t; else return -t;
}

View File

@ -0,0 +1,92 @@
/* e_asinf.c -- float version of e_asin.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_asinf.c,v 1.5 1995/05/12 04:57:25 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float
#else
static float
#endif
one = 1.0000000000e+00, /* 0x3F800000 */
huge = 1.000e+30,
pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
pio4_hi = 7.8539818525e-01, /* 0x3f490fdb */
/* coefficient for R(x^2) */
pS0 = 1.6666667163e-01, /* 0x3e2aaaab */
pS1 = -3.2556581497e-01, /* 0xbea6b090 */
pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */
pS3 = -4.0055535734e-02, /* 0xbd241146 */
pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */
pS5 = 3.4793309169e-05, /* 0x3811ef08 */
qS1 = -2.4033949375e+00, /* 0xc019d139 */
qS2 = 2.0209457874e+00, /* 0x4001572d */
qS3 = -6.8828397989e-01, /* 0xbf303361 */
qS4 = 7.7038154006e-02; /* 0x3d9dc62e */
#ifdef __STDC__
float __ieee754_asinf(float x)
#else
float __ieee754_asinf(x)
float x;
#endif
{
float t,w,p,q,c,r,s;
int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix==0x3f800000) {
/* asin(1)=+-pi/2 with inexact */
return x*pio2_hi+x*pio2_lo;
} else if(ix> 0x3f800000) { /* |x|>= 1 */
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
} else if (ix<0x3f000000) { /* |x|<0.5 */
if(ix<0x32000000) { /* if |x| < 2**-27 */
if(huge+x>one) return x;/* return x with inexact if x!=0*/
} else
t = x*x;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
w = p/q;
return x+x*w;
}
/* 1> |x|>= 0.5 */
w = one-fabsf(x);
t = w*(float)0.5;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
s = __ieee754_sqrtf(t);
if(ix>=0x3F79999A) { /* if |x| > 0.975 */
w = p/q;
t = pio2_hi-((float)2.0*(s+s*w)-pio2_lo);
} else {
int32_t iw;
w = s;
GET_FLOAT_WORD(iw,w);
SET_FLOAT_WORD(w,iw&0xfffff000);
c = (t-w*w)/(s+w);
r = p/q;
p = (float)2.0*s*r-(pio2_lo-(float)2.0*c);
q = pio4_hi-(float)2.0*w;
t = pio4_hi-(p-q);
}
if(hx>0) return t; else return -t;
}

View File

@ -0,0 +1,130 @@
/* @(#)e_atan2.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_atan2.c,v 1.8 1995/05/10 20:44:51 jtc Exp $";
#endif
/* __ieee754_atan2(y,x)
* Method :
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
* 2. Reduce x to positive by (if x and y are unexceptional):
* ARG (x+iy) = arctan(y/x) ... if x > 0,
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
*
* Special cases:
*
* ATAN2((anything), NaN ) is NaN;
* ATAN2(NAN , (anything) ) is NaN;
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
* ATAN2(+-INF,+INF ) is +-pi/4 ;
* ATAN2(+-INF,-INF ) is +-3pi/4;
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
tiny = 1.0e-300,
zero = 0.0,
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
#ifdef __STDC__
double __ieee754_atan2(double y, double x)
#else
double __ieee754_atan2(y,x)
double y,x;
#endif
{
double z;
int32_t k,m,hx,hy,ix,iy;
u_int32_t lx,ly;
EXTRACT_WORDS(hx,lx,x);
ix = hx&0x7fffffff;
EXTRACT_WORDS(hy,ly,y);
iy = hy&0x7fffffff;
if(((ix|((lx|-lx)>>31))>0x7ff00000)||
((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
return x+y;
if((hx-0x3ff00000|lx)==0) return atan(y); /* x=1.0 */
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
/* when y = 0 */
if((iy|ly)==0) {
switch(m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
}
}
/* when x = 0 */
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* when x is INF */
if(ix==0x7ff00000) {
if(iy==0x7ff00000) {
switch(m) {
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
}
} else {
switch(m) {
case 0: return zero ; /* atan(+...,+INF) */
case 1: return -zero ; /* atan(-...,+INF) */
case 2: return pi+tiny ; /* atan(+...,-INF) */
case 3: return -pi-tiny ; /* atan(-...,-INF) */
}
}
}
/* when y is INF */
if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* compute y/x */
k = (iy-ix)>>20;
if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
else z=atan(fabs(y/x)); /* safe to do y/x */
switch (m) {
case 0: return z ; /* atan(+,+) */
case 1: {
u_int32_t zh;
GET_HIGH_WORD(zh,z);
SET_HIGH_WORD(z,zh ^ 0x80000000);
}
return z ; /* atan(-,+) */
case 2: return pi-(z-pi_lo);/* atan(+,-) */
default: /* case 3 */
return (z-pi_lo)-pi;/* atan(-,-) */
}
}

View File

@ -0,0 +1,105 @@
/* e_atan2f.c -- float version of e_atan2.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_atan2f.c,v 1.4 1995/05/10 20:44:53 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float
#else
static float
#endif
tiny = 1.0e-30,
zero = 0.0,
pi_o_4 = 7.8539818525e-01, /* 0x3f490fdb */
pi_o_2 = 1.5707963705e+00, /* 0x3fc90fdb */
pi = 3.1415925026e+00, /* 0x40490fda */
pi_lo = 1.5099578832e-07; /* 0x34222168 */
#ifdef __STDC__
float __ieee754_atan2f(float y, float x)
#else
float __ieee754_atan2f(y,x)
float y,x;
#endif
{
float z;
int32_t k,m,hx,hy,ix,iy;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
GET_FLOAT_WORD(hy,y);
iy = hy&0x7fffffff;
if((ix>0x7f800000)||
(iy>0x7f800000)) /* x or y is NaN */
return x+y;
if(hx==0x3f800000) return atanf(y); /* x=1.0 */
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
/* when y = 0 */
if(iy==0) {
switch(m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
}
}
/* when x = 0 */
if(ix==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* when x is INF */
if(ix==0x7f800000) {
if(iy==0x7f800000) {
switch(m) {
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
case 2: return (float)3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
case 3: return (float)-3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
}
} else {
switch(m) {
case 0: return zero ; /* atan(+...,+INF) */
case 1: return -zero ; /* atan(-...,+INF) */
case 2: return pi+tiny ; /* atan(+...,-INF) */
case 3: return -pi-tiny ; /* atan(-...,-INF) */
}
}
}
/* when y is INF */
if(iy==0x7f800000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* compute y/x */
k = (iy-ix)>>23;
if(k > 60) z=pi_o_2+(float)0.5*pi_lo; /* |y/x| > 2**60 */
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
else z=atanf(fabsf(y/x)); /* safe to do y/x */
switch (m) {
case 0: return z ; /* atan(+,+) */
case 1: {
u_int32_t zh;
GET_FLOAT_WORD(zh,z);
SET_FLOAT_WORD(z,zh ^ 0x80000000);
}
return z ; /* atan(-,+) */
case 2: return pi-(z-pi_lo);/* atan(+,-) */
default: /* case 3 */
return (z-pi_lo)-pi;/* atan(-,-) */
}
}

View File

@ -0,0 +1,74 @@
/* @(#)e_atanh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_atanh.c,v 1.8 1995/05/10 20:44:55 jtc Exp $";
#endif
/* __ieee754_atanh(x)
* Method :
* 1.Reduced x to positive by atanh(-x) = -atanh(x)
* 2.For x>=0.5
* 1 2x x
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
* 2 1 - x 1 - x
*
* For x<0.5
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
*
* Special cases:
* atanh(x) is NaN if |x| > 1 with signal;
* atanh(NaN) is that NaN with no signal;
* atanh(+-1) is +-INF with signal.
*
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double one = 1.0, huge = 1e300;
#else
static double one = 1.0, huge = 1e300;
#endif
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_atanh(double x)
#else
double __ieee754_atanh(x)
double x;
#endif
{
double t;
int32_t hx,ix;
u_int32_t lx;
EXTRACT_WORDS(hx,lx,x);
ix = hx&0x7fffffff;
if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */
return (x-x)/(x-x);
if(ix==0x3ff00000)
return x/zero;
if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */
SET_HIGH_WORD(x,ix);
if(ix<0x3fe00000) { /* x < 0.5 */
t = x+x;
t = 0.5*__log1p(t+t*x/(one-x));
} else
t = 0.5*__log1p((x+x)/(one-x));
if(hx>=0) return t; else return -t;
}

View File

@ -0,0 +1,58 @@
/* e_atanhf.c -- float version of e_atanh.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_atanhf.c,v 1.4 1995/05/10 20:44:56 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float one = 1.0, huge = 1e30;
#else
static float one = 1.0, huge = 1e30;
#endif
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_atanhf(float x)
#else
float __ieee754_atanhf(x)
float x;
#endif
{
float t;
int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if (ix>0x3f800000) /* |x|>1 */
return (x-x)/(x-x);
if(ix==0x3f800000)
return x/zero;
if(ix<0x31800000&&(huge+x)>zero) return x; /* x<2**-28 */
SET_FLOAT_WORD(x,ix);
if(ix<0x3f000000) { /* x < 0.5 */
t = x+x;
t = (float)0.5*__log1pf(t+t*x/(one-x));
} else
t = (float)0.5*__log1pf((x+x)/(one-x));
if(hx>=0) return t; else return -t;
}

View File

@ -0,0 +1,93 @@
/* @(#)e_cosh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_cosh.c,v 1.7 1995/05/10 20:44:58 jtc Exp $";
#endif
/* __ieee754_cosh(x)
* Method :
* mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
* 1. Replace x by |x| (cosh(x) = cosh(-x)).
* 2.
* [ exp(x) - 1 ]^2
* 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
* 2*exp(x)
*
* exp(x) + 1/exp(x)
* ln2/2 <= x <= 22 : cosh(x) := -------------------
* 2
* 22 <= x <= lnovft : cosh(x) := exp(x)/2
* lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
* ln2ovft < x : cosh(x) := huge*huge (overflow)
*
* Special cases:
* cosh(x) is |x| if x is +INF, -INF, or NaN.
* only cosh(0)=1 is exact for finite x.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double one = 1.0, half=0.5, huge = 1.0e300;
#else
static double one = 1.0, half=0.5, huge = 1.0e300;
#endif
#ifdef __STDC__
double __ieee754_cosh(double x)
#else
double __ieee754_cosh(x)
double x;
#endif
{
double t,w;
int32_t ix;
u_int32_t lx;
/* High word of |x|. */
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7ff00000) return x*x;
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
if(ix<0x3fd62e43) {
t = __expm1(fabs(x));
w = one+t;
if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */
return one+(t*t)/(w+w);
}
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
if (ix < 0x40360000) {
t = __ieee754_exp(fabs(x));
return half*t+half/t;
}
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
if (ix < 0x40862E42) return half*__ieee754_exp(fabs(x));
/* |x| in [log(maxdouble), overflowthresold] */
GET_LOW_WORD(lx,x);
if (ix<0x408633CE ||
(ix==0x408633ce)&&(lx<=(u_int32_t)0x8fb9f87d)) {
w = __ieee754_exp(half*fabs(x));
t = half*w;
return t*w;
}
/* |x| > overflowthresold, cosh(x) overflow */
return huge*huge;
}

View File

@ -0,0 +1,72 @@
/* e_coshf.c -- float version of e_cosh.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_coshf.c,v 1.5 1995/05/10 20:45:01 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const volatile float huge = 1.0e30;
static const float one = 1.0, half=0.5;
#else
static float one = 1.0, half=0.5, huge = 1.0e30;
#endif
#ifdef __STDC__
float __ieee754_coshf(float x)
#else
float __ieee754_coshf(x)
float x;
#endif
{
float t,w;
int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7f800000) return x*x;
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
if(ix<0x3eb17218) {
t = __expm1f(fabsf(x));
w = one+t;
if (ix<0x24000000) return w; /* cosh(tiny) = 1 */
return one+(t*t)/(w+w);
}
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
if (ix < 0x41b00000) {
t = __ieee754_expf(fabsf(x));
return half*t+half/t;
}
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
if (ix < 0x42b17180) return half*__ieee754_expf(fabsf(x));
/* |x| in [log(maxdouble), overflowthresold] */
if (ix<=0x42b2d4fc) {
w = __ieee754_expf(half*fabsf(x));
t = half*w;
return t*w;
}
/* |x| > overflowthresold, cosh(x) overflow */
return huge*huge;
}

View File

@ -0,0 +1,167 @@
/* @(#)e_exp.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_exp.c,v 1.8 1995/05/10 20:45:03 jtc Exp $";
#endif
/* __ieee754_exp(x)
* Returns the exponential of x.
*
* Method
* 1. Argument reduction:
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2.
*
* Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
* We use a special Reme algorithm on [0,0.34658] to generate
* a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
* r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
* 2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
*
* 3. Scale back to obtain exp(x):
* From step 1, we have
* exp(x) = 2^k * exp(r)
*
* Special cases:
* exp(INF) is INF, exp(NaN) is NaN;
* exp(-INF) is 0, and
* for finite argument, only exp(0)=1 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then exp(x) overflow
* if x < -7.45133219101941108420e+02 then exp(x) underflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.0,
halF[2] = {0.5,-0.5,},
huge = 1.0e+300,
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
#ifdef __STDC__
double __ieee754_exp(double x) /* default IEEE double exp */
#else
double __ieee754_exp(x) /* default IEEE double exp */
double x;
#endif
{
double y,hi,lo,c,t;
int32_t k,xsb;
u_int32_t hx;
GET_HIGH_WORD(hx,x);
xsb = (hx>>31)&1; /* sign bit of x */
hx &= 0x7fffffff; /* high word of |x| */
/* filter out non-finite argument */
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
if(hx>=0x7ff00000) {
u_int32_t lx;
GET_LOW_WORD(lx,x);
if(((hx&0xfffff)|lx)!=0)
return x+x; /* NaN */
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
}
if(x > o_threshold) return huge*huge; /* overflow */
if(x < u_threshold) return twom1000*twom1000; /* underflow */
}
/* argument reduction */
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
} else {
k = invln2*x+halF[xsb];
t = k;
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
lo = t*ln2LO[0];
}
x = hi - lo;
}
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
if(huge+x>one) return one+x;/* trigger inexact */
}
else k = 0;
/* x is now in primary range */
t = x*x;
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
if(k==0) return one-((x*c)/(c-2.0)-x);
else y = one-((lo-(x*c)/(2.0-c))-hi);
if(k >= -1021) {
u_int32_t hy;
GET_HIGH_WORD(hy,y);
SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
return y;
} else {
u_int32_t hy;
GET_HIGH_WORD(hy,y);
SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
return y*twom1000;
}
}

View File

@ -0,0 +1,104 @@
/* e_expf.c -- float version of e_exp.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_expf.c,v 1.5 1995/05/10 20:45:05 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
static const volatile float huge = 1.0e+30;
#ifdef __STDC__
static const float
#else
static float
#endif
one = 1.0,
halF[2] = {0.5,-0.5,},
twom100 = 7.8886090522e-31, /* 2**-100=0x0d800000 */
o_threshold= 8.8721679688e+01, /* 0x42b17180 */
u_threshold= -1.0397208405e+02, /* 0xc2cff1b5 */
ln2HI[2] ={ 6.9313812256e-01, /* 0x3f317180 */
-6.9313812256e-01,}, /* 0xbf317180 */
ln2LO[2] ={ 9.0580006145e-06, /* 0x3717f7d1 */
-9.0580006145e-06,}, /* 0xb717f7d1 */
invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */
P1 = 1.6666667163e-01, /* 0x3e2aaaab */
P2 = -2.7777778450e-03, /* 0xbb360b61 */
P3 = 6.6137559770e-05, /* 0x388ab355 */
P4 = -1.6533901999e-06, /* 0xb5ddea0e */
P5 = 4.1381369442e-08; /* 0x3331bb4c */
#ifdef __STDC__
float __ieee754_expf(float x) /* default IEEE double exp */
#else
float __ieee754_expf(x) /* default IEEE double exp */
float x;
#endif
{
float y,hi,lo,c,t;
int32_t k,xsb;
u_int32_t hx;
GET_FLOAT_WORD(hx,x);
xsb = (hx>>31)&1; /* sign bit of x */
hx &= 0x7fffffff; /* high word of |x| */
/* filter out non-finite argument */
if(hx >= 0x42b17218) { /* if |x|>=88.721... */
if(hx>0x7f800000)
return x+x; /* NaN */
if(hx==0x7f800000)
return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
if(x > o_threshold) return huge*huge; /* overflow */
if(x < u_threshold) return twom100*twom100; /* underflow */
}
/* argument reduction */
if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
} else {
k = invln2*x+halF[xsb];
t = k;
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
lo = t*ln2LO[0];
}
x = hi - lo;
}
else if(hx < 0x31800000) { /* when |x|<2**-28 */
if(huge+x>one) return one+x;/* trigger inexact */
}
else k = 0;
/* x is now in primary range */
t = x*x;
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
if(k==0) return one-((x*c)/(c-(float)2.0)-x);
else y = one-((lo-(x*c)/((float)2.0-c))-hi);
if(k >= -125) {
u_int32_t hy;
GET_FLOAT_WORD(hy,y);
SET_FLOAT_WORD(y,hy+(k<<23)); /* add k to y's exponent */
return y;
} else {
u_int32_t hy;
GET_FLOAT_WORD(hy,y);
SET_FLOAT_WORD(y,hy+((k+100)<<23)); /* add k to y's exponent */
return y*twom100;
}
}

View File

@ -0,0 +1,140 @@
/* @(#)e_fmod.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_fmod.c,v 1.8 1995/05/10 20:45:07 jtc Exp $";
#endif
/*
* __ieee754_fmod(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double one = 1.0, Zero[] = {0.0, -0.0,};
#else
static double one = 1.0, Zero[] = {0.0, -0.0,};
#endif
#ifdef __STDC__
double __ieee754_fmod(double x, double y)
#else
double __ieee754_fmod(x,y)
double x,y ;
#endif
{
int32_t n,hx,hy,hz,ix,iy,sx,i;
u_int32_t lx,ly,lz;
EXTRACT_WORDS(hx,lx,x);
EXTRACT_WORDS(hy,ly,y);
sx = hx&0x80000000; /* sign of x */
hx ^=sx; /* |x| */
hy &= 0x7fffffff; /* |y| */
/* purge off exception values */
if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */
return (x*y)/(x*y);
if(hx<=hy) {
if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
if(lx==ly)
return Zero[(u_int32_t)sx>>31]; /* |x|=|y| return x*0*/
}
/* determine ix = ilogb(x) */
if(hx<0x00100000) { /* subnormal x */
if(hx==0) {
for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
} else {
for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
}
} else ix = (hx>>20)-1023;
/* determine iy = ilogb(y) */
if(hy<0x00100000) { /* subnormal y */
if(hy==0) {
for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
} else {
for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
}
} else iy = (hy>>20)-1023;
/* set up {hx,lx}, {hy,ly} and align y to x */
if(ix >= -1022)
hx = 0x00100000|(0x000fffff&hx);
else { /* subnormal x, shift x to normal */
n = -1022-ix;
if(n<=31) {
hx = (hx<<n)|(lx>>(32-n));
lx <<= n;
} else {
hx = lx<<(n-32);
lx = 0;
}
}
if(iy >= -1022)
hy = 0x00100000|(0x000fffff&hy);
else { /* subnormal y, shift y to normal */
n = -1022-iy;
if(n<=31) {
hy = (hy<<n)|(ly>>(32-n));
ly <<= n;
} else {
hy = ly<<(n-32);
ly = 0;
}
}
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
else {
if((hz|lz)==0) /* return sign(x)*0 */
return Zero[(u_int32_t)sx>>31];
hx = hz+hz+(lz>>31); lx = lz+lz;
}
}
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz>=0) {hx=hz;lx=lz;}
/* convert back to floating value and restore the sign */
if((hx|lx)==0) /* return sign(x)*0 */
return Zero[(u_int32_t)sx>>31];
while(hx<0x00100000) { /* normalize x */
hx = hx+hx+(lx>>31); lx = lx+lx;
iy -= 1;
}
if(iy>= -1022) { /* normalize output */
hx = ((hx-0x00100000)|((iy+1023)<<20));
INSERT_WORDS(x,hx|sx,lx);
} else { /* subnormal output */
n = -1022 - iy;
if(n<=20) {
lx = (lx>>n)|((u_int32_t)hx<<(32-n));
hx >>= n;
} else if (n<=31) {
lx = (hx<<(32-n))|(lx>>n); hx = sx;
} else {
lx = hx>>(n-32); hx = sx;
}
INSERT_WORDS(x,hx|sx,lx);
x *= one; /* create necessary signal */
}
return x; /* exact output */
}

View File

@ -0,0 +1,113 @@
/* e_fmodf.c -- float version of e_fmod.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_fmodf.c,v 1.4 1995/05/10 20:45:10 jtc Exp $";
#endif
/*
* __ieee754_fmodf(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float one = 1.0, Zero[] = {0.0, -0.0,};
#else
static float one = 1.0, Zero[] = {0.0, -0.0,};
#endif
#ifdef __STDC__
float __ieee754_fmodf(float x, float y)
#else
float __ieee754_fmodf(x,y)
float x,y ;
#endif
{
int32_t n,hx,hy,hz,ix,iy,sx,i;
GET_FLOAT_WORD(hx,x);
GET_FLOAT_WORD(hy,y);
sx = hx&0x80000000; /* sign of x */
hx ^=sx; /* |x| */
hy &= 0x7fffffff; /* |y| */
/* purge off exception values */
if(hy==0||(hx>=0x7f800000)|| /* y=0,or x not finite */
(hy>0x7f800000)) /* or y is NaN */
return (x*y)/(x*y);
if(hx<hy) return x; /* |x|<|y| return x */
if(hx==hy)
return Zero[(u_int32_t)sx>>31]; /* |x|=|y| return x*0*/
/* determine ix = ilogb(x) */
if(hx<0x00800000) { /* subnormal x */
for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
} else ix = (hx>>23)-127;
/* determine iy = ilogb(y) */
if(hy<0x00800000) { /* subnormal y */
for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1;
} else iy = (hy>>23)-127;
/* set up {hx,lx}, {hy,ly} and align y to x */
if(ix >= -126)
hx = 0x00800000|(0x007fffff&hx);
else { /* subnormal x, shift x to normal */
n = -126-ix;
hx = hx<<n;
}
if(iy >= -126)
hy = 0x00800000|(0x007fffff&hy);
else { /* subnormal y, shift y to normal */
n = -126-iy;
hy = hy<<n;
}
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;
if(hz<0){hx = hx+hx;}
else {
if(hz==0) /* return sign(x)*0 */
return Zero[(u_int32_t)sx>>31];
hx = hz+hz;
}
}
hz=hx-hy;
if(hz>=0) {hx=hz;}
/* convert back to floating value and restore the sign */
if(hx==0) /* return sign(x)*0 */
return Zero[(u_int32_t)sx>>31];
while(hx<0x00800000) { /* normalize x */
hx = hx+hx;
iy -= 1;
}
if(iy>= -126) { /* normalize output */
hx = ((hx-0x00800000)|((iy+127)<<23));
SET_FLOAT_WORD(x,hx|sx);
} else { /* subnormal output */
n = -126 - iy;
hx >>= n;
SET_FLOAT_WORD(x,hx|sx);
x *= one; /* create necessary signal */
}
return x; /* exact output */
}

View File

@ -0,0 +1,128 @@
/* @(#)e_hypot.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_hypot.c,v 1.9 1995/05/12 04:57:27 jtc Exp $";
#endif
/* __ieee754_hypot(x,y)
*
* Method :
* If (assume round-to-nearest) z=x*x+y*y
* has error less than sqrt(2)/2 ulp, than
* sqrt(z) has error less than 1 ulp (exercise).
*
* So, compute sqrt(x*x+y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x>y>0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else
* 2. if x <= 2y use
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
* y1= y with lower 32 bits chopped, y2 = y-y1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypot(x,y) is INF if x or y is +INF or -INF; else
* hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypot(x,y) returns sqrt(x^2+y^2) with error less
* than 1 ulps (units in the last place)
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
double __ieee754_hypot(double x, double y)
#else
double __ieee754_hypot(x,y)
double x, y;
#endif
{
double a=x,b=y,t1,t2,y1,y2,w;
int32_t j,k,ha,hb;
GET_HIGH_WORD(ha,x);
ha &= 0x7fffffff;
GET_HIGH_WORD(hb,y);
hb &= 0x7fffffff;
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
SET_HIGH_WORD(a,ha); /* a <- |a| */
SET_HIGH_WORD(b,hb); /* b <- |b| */
if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
k=0;
if(ha > 0x5f300000) { /* a>2**500 */
if(ha >= 0x7ff00000) { /* Inf or NaN */
u_int32_t low;
w = a+b; /* for sNaN */
GET_LOW_WORD(low,a);
if(((ha&0xfffff)|low)==0) w = a;
GET_LOW_WORD(low,b);
if(((hb^0x7ff00000)|low)==0) w = b;
return w;
}
/* scale a and b by 2**-600 */
ha -= 0x25800000; hb -= 0x25800000; k += 600;
SET_HIGH_WORD(a,ha);
SET_HIGH_WORD(b,hb);
}
if(hb < 0x20b00000) { /* b < 2**-500 */
if(hb <= 0x000fffff) { /* subnormal b or 0 */
u_int32_t low;
GET_LOW_WORD(low,b);
if((hb|low)==0) return a;
t1=0;
SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
b *= t1;
a *= t1;
k -= 1022;
} else { /* scale a and b by 2^600 */
ha += 0x25800000; /* a *= 2^600 */
hb += 0x25800000; /* b *= 2^600 */
k -= 600;
SET_HIGH_WORD(a,ha);
SET_HIGH_WORD(b,hb);
}
}
/* medium size a and b */
w = a-b;
if (w>b) {
t1 = 0;
SET_HIGH_WORD(t1,ha);
t2 = a-t1;
w = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
} else {
a = a+a;
y1 = 0;
SET_HIGH_WORD(y1,hb);
y2 = b - y1;
t1 = 0;
SET_HIGH_WORD(t1,ha+0x00100000);
t2 = a - t1;
w = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
u_int32_t high;
t1 = 1.0;
GET_HIGH_WORD(high,t1);
SET_HIGH_WORD(t1,high+(k<<20));
return t1*w;
} else return w;
}

View File

@ -0,0 +1,87 @@
/* e_hypotf.c -- float version of e_hypot.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_hypotf.c,v 1.5 1995/05/12 04:57:30 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
float __ieee754_hypotf(float x, float y)
#else
float __ieee754_hypot(x,y)
float x, y;
#endif
{
float a=x,b=y,t1,t2,y1,y2,w;
int32_t j,k,ha,hb;
GET_FLOAT_WORD(ha,x);
ha &= 0x7fffffff;
GET_FLOAT_WORD(hb,y);
hb &= 0x7fffffff;
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
SET_FLOAT_WORD(a,ha); /* a <- |a| */
SET_FLOAT_WORD(b,hb); /* b <- |b| */
if((ha-hb)>0xf000000) {return a+b;} /* x/y > 2**30 */
k=0;
if(ha > 0x58800000) { /* a>2**50 */
if(ha >= 0x7f800000) { /* Inf or NaN */
w = a+b; /* for sNaN */
if(ha == 0x7f800000) w = a;
if(hb == 0x7f800000) w = b;
return w;
}
/* scale a and b by 2**-60 */
ha -= 0x5d800000; hb -= 0x5d800000; k += 60;
SET_FLOAT_WORD(a,ha);
SET_FLOAT_WORD(b,hb);
}
if(hb < 0x26800000) { /* b < 2**-50 */
if(hb <= 0x007fffff) { /* subnormal b or 0 */
if(hb==0) return a;
SET_FLOAT_WORD(t1,0x3f000000); /* t1=2^126 */
b *= t1;
a *= t1;
k -= 126;
} else { /* scale a and b by 2^60 */
ha += 0x5d800000; /* a *= 2^60 */
hb += 0x5d800000; /* b *= 2^60 */
k -= 60;
SET_FLOAT_WORD(a,ha);
SET_FLOAT_WORD(b,hb);
}
}
/* medium size a and b */
w = a-b;
if (w>b) {
SET_FLOAT_WORD(t1,ha&0xfffff000);
t2 = a-t1;
w = __ieee754_sqrtf(t1*t1-(b*(-b)-t2*(a+t1)));
} else {
a = a+a;
SET_FLOAT_WORD(y1,hb&0xfffff000);
y2 = b - y1;
SET_FLOAT_WORD(t1,ha+0x00800000);
t2 = a - t1;
w = __ieee754_sqrtf(t1*y1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
SET_FLOAT_WORD(t1,0x3f800000+(k<<23));
return t1*w;
} else return w;
}

487
sysdeps/libm-ieee754/e_j0.c Normal file
View File

@ -0,0 +1,487 @@
/* @(#)e_j0.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_j0.c,v 1.8 1995/05/10 20:45:23 jtc Exp $";
#endif
/* __ieee754_j0(x), __ieee754_y0(x)
* Bessel function of the first and second kinds of order zero.
* Method -- j0(x):
* 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
* 2. Reduce x to |x| since j0(x)=j0(-x), and
* for x in (0,2)
* j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
* (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
* for x in (2,inf)
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
* as follow:
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
* = 1/sqrt(2) * (cos(x) + sin(x))
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* (To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.)
*
* 3 Special cases
* j0(nan)= nan
* j0(0) = 1
* j0(inf) = 0
*
* Method -- y0(x):
* 1. For x<2.
* Since
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
* We use the following function to approximate y0,
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
* where
* U(z) = u00 + u01*z + ... + u06*z^6
* V(z) = 1 + v01*z + ... + v04*z^4
* with absolute approximation error bounded by 2**-72.
* Note: For tiny x, U/V = u0 and j0(x)~1, hence
* y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
* 2. For x>=2.
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
* by the method mentioned above.
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static double pzero(double), qzero(double);
#else
static double pzero(), qzero();
#endif
#ifdef __STDC__
static const double
#else
static double
#endif
huge = 1e300,
one = 1.0,
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
/* R0/S0 on [0, 2.00] */
R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_j0(double x)
#else
double __ieee754_j0(x)
double x;
#endif
{
double z, s,c,ss,cc,r,u,v;
int32_t hx,ix;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) return one/(x*x);
x = fabs(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = __sin(x);
c = __cos(x);
ss = s-c;
cc = s+c;
if(ix<0x7fe00000) { /* make sure x+x not overflow */
z = -__cos(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(x);
else {
u = pzero(x); v = qzero(x);
z = invsqrtpi*(u*cc-v*ss)/__sqrt(x);
}
return z;
}
if(ix<0x3f200000) { /* |x| < 2**-13 */
if(huge+x>one) { /* raise inexact if x != 0 */
if(ix<0x3e400000) return one; /* |x|<2**-27 */
else return one - 0.25*x*x;
}
}
z = x*x;
r = z*(R02+z*(R03+z*(R04+z*R05)));
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
if(ix < 0x3FF00000) { /* |x| < 1.00 */
return one + z*(-0.25+(r/s));
} else {
u = 0.5*x;
return((one+u)*(one-u)+z*(r/s));
}
}
#ifdef __STDC__
static const double
#else
static double
#endif
u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
#ifdef __STDC__
double __ieee754_y0(double x)
#else
double __ieee754_y0(x)
double x;
#endif
{
double z, s,c,ss,cc,u,v;
int32_t hx,ix,lx;
EXTRACT_WORDS(hx,lx,x);
ix = 0x7fffffff&hx;
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
if(ix>=0x7ff00000) return one/(x+x*x);
if((ix|lx)==0) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
* where x0 = x-pi/4
* Better formula:
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
* = 1/sqrt(2) * (sin(x) + cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
s = __sin(x);
c = __cos(x);
ss = s-c;
cc = s+c;
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix<0x7fe00000) { /* make sure x+x not overflow */
z = -__cos(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
else {
u = pzero(x); v = qzero(x);
z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
}
return z;
}
if(ix<=0x3e400000) { /* x < 2**-27 */
return(u00 + tpi*__ieee754_log(x));
}
z = x*x;
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
}
/* The asymptotic expansions of pzero is
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
* For x >= 2, We approximate pzero by
* pzero(x) = 1 + (R/S)
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
* S = 1 + pS0*s^2 + ... + pS4*s^10
* and
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
*/
#ifdef __STDC__
static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
-8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
-2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
-2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
-5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
};
#ifdef __STDC__
static const double pS8[5] = {
#else
static double pS8[5] = {
#endif
1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
};
#ifdef __STDC__
static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
-1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
-7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
-4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
-6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
-3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
-3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
};
#ifdef __STDC__
static const double pS5[5] = {
#else
static double pS5[5] = {
#endif
6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
};
#ifdef __STDC__
static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#else
static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
-2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
-7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
-2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
-2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
-5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
-3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
};
#ifdef __STDC__
static const double pS3[5] = {
#else
static double pS3[5] = {
#endif
3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
};
#ifdef __STDC__
static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
-8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
-7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
-1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
-7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
-1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
-3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
};
#ifdef __STDC__
static const double pS2[5] = {
#else
static double pS2[5] = {
#endif
2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
};
#ifdef __STDC__
static double pzero(double x)
#else
static double pzero(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double z,r,s;
int32_t ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x40200000) {p = pR8; q= pS8;}
else if(ix>=0x40122E8B){p = pR5; q= pS5;}
else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
else if(ix>=0x40000000){p = pR2; q= pS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qzero is
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
* We approximate pzero by
* qzero(x) = s*(-1.25 + (R/S))
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
* S = 1 + qS0*s^2 + ... + qS5*s^12
* and
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
*/
#ifdef __STDC__
static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
};
#ifdef __STDC__
static const double qS8[6] = {
#else
static double qS8[6] = {
#endif
1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
-3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
};
#ifdef __STDC__
static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
};
#ifdef __STDC__
static const double qS5[6] = {
#else
static double qS5[6] = {
#endif
8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
-5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
};
#ifdef __STDC__
static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#else
static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
};
#ifdef __STDC__
static const double qS3[6] = {
#else
static double qS3[6] = {
#endif
4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
-1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
};
#ifdef __STDC__
static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
};
#ifdef __STDC__
static const double qS2[6] = {
#else
static double qS2[6] = {
#endif
3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
-5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
};
#ifdef __STDC__
static double qzero(double x)
#else
static double qzero(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double s,r,z;
int32_t ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x40200000) {p = qR8; q= qS8;}
else if(ix>=0x40122E8B){p = qR5; q= qS5;}
else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
else if(ix>=0x40000000){p = qR2; q= qS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return (-.125 + r/s)/x;
}

View File

@ -0,0 +1,444 @@
/* e_j0f.c -- float version of e_j0.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_j0f.c,v 1.4 1995/05/10 20:45:25 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static float pzerof(float), qzerof(float);
#else
static float pzerof(), qzerof();
#endif
#ifdef __STDC__
static const float
#else
static float
#endif
huge = 1e30,
one = 1.0,
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
tpi = 6.3661974669e-01, /* 0x3f22f983 */
/* R0/S0 on [0, 2.00] */
R02 = 1.5625000000e-02, /* 0x3c800000 */
R03 = -1.8997929874e-04, /* 0xb947352e */
R04 = 1.8295404516e-06, /* 0x35f58e88 */
R05 = -4.6183270541e-09, /* 0xb19eaf3c */
S01 = 1.5619102865e-02, /* 0x3c7fe744 */
S02 = 1.1692678527e-04, /* 0x38f53697 */
S03 = 5.1354652442e-07, /* 0x3509daa6 */
S04 = 1.1661400734e-09; /* 0x30a045e8 */
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_j0f(float x)
#else
float __ieee754_j0f(x)
float x;
#endif
{
float z, s,c,ss,cc,r,u,v;
int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x7f800000) return one/(x*x);
x = fabsf(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = __sinf(x);
c = __cosf(x);
ss = s-c;
cc = s+c;
if(ix<0x7f000000) { /* make sure x+x not overflow */
z = -__cosf(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix>0x80000000) z = (invsqrtpi*cc)/__sqrtf(x);
else {
u = pzerof(x); v = qzerof(x);
z = invsqrtpi*(u*cc-v*ss)/__sqrtf(x);
}
return z;
}
if(ix<0x39000000) { /* |x| < 2**-13 */
if(huge+x>one) { /* raise inexact if x != 0 */
if(ix<0x32000000) return one; /* |x|<2**-27 */
else return one - (float)0.25*x*x;
}
}
z = x*x;
r = z*(R02+z*(R03+z*(R04+z*R05)));
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
if(ix < 0x3F800000) { /* |x| < 1.00 */
return one + z*((float)-0.25+(r/s));
} else {
u = (float)0.5*x;
return((one+u)*(one-u)+z*(r/s));
}
}
#ifdef __STDC__
static const float
#else
static float
#endif
u00 = -7.3804296553e-02, /* 0xbd9726b5 */
u01 = 1.7666645348e-01, /* 0x3e34e80d */
u02 = -1.3818567619e-02, /* 0xbc626746 */
u03 = 3.4745343146e-04, /* 0x39b62a69 */
u04 = -3.8140706238e-06, /* 0xb67ff53c */
u05 = 1.9559013964e-08, /* 0x32a802ba */
u06 = -3.9820518410e-11, /* 0xae2f21eb */
v01 = 1.2730483897e-02, /* 0x3c509385 */
v02 = 7.6006865129e-05, /* 0x389f65e0 */
v03 = 2.5915085189e-07, /* 0x348b216c */
v04 = 4.4111031494e-10; /* 0x2ff280c2 */
#ifdef __STDC__
float __ieee754_y0f(float x)
#else
float __ieee754_y0f(x)
float x;
#endif
{
float z, s,c,ss,cc,u,v;
int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
if(ix>=0x7f800000) return one/(x+x*x);
if(ix==0) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
* where x0 = x-pi/4
* Better formula:
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
* = 1/sqrt(2) * (sin(x) + cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
s = __sinf(x);
c = __cosf(x);
ss = s-c;
cc = s+c;
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix<0x7f000000) { /* make sure x+x not overflow */
z = -__cosf(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
if(ix>0x80000000) z = (invsqrtpi*ss)/__sqrtf(x);
else {
u = pzerof(x); v = qzerof(x);
z = invsqrtpi*(u*ss+v*cc)/__sqrtf(x);
}
return z;
}
if(ix<=0x32000000) { /* x < 2**-27 */
return(u00 + tpi*__ieee754_logf(x));
}
z = x*x;
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
}
/* The asymptotic expansions of pzero is
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
* For x >= 2, We approximate pzero by
* pzero(x) = 1 + (R/S)
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
* S = 1 + pS0*s^2 + ... + pS4*s^10
* and
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
*/
#ifdef __STDC__
static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.0000000000e+00, /* 0x00000000 */
-7.0312500000e-02, /* 0xbd900000 */
-8.0816707611e+00, /* 0xc1014e86 */
-2.5706311035e+02, /* 0xc3808814 */
-2.4852163086e+03, /* 0xc51b5376 */
-5.2530439453e+03, /* 0xc5a4285a */
};
#ifdef __STDC__
static const float pS8[5] = {
#else
static float pS8[5] = {
#endif
1.1653436279e+02, /* 0x42e91198 */
3.8337448730e+03, /* 0x456f9beb */
4.0597855469e+04, /* 0x471e95db */
1.1675296875e+05, /* 0x47e4087c */
4.7627726562e+04, /* 0x473a0bba */
};
#ifdef __STDC__
static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
-1.1412546255e-11, /* 0xad48c58a */
-7.0312492549e-02, /* 0xbd8fffff */
-4.1596107483e+00, /* 0xc0851b88 */
-6.7674766541e+01, /* 0xc287597b */
-3.3123129272e+02, /* 0xc3a59d9b */
-3.4643338013e+02, /* 0xc3ad3779 */
};
#ifdef __STDC__
static const float pS5[5] = {
#else
static float pS5[5] = {
#endif
6.0753936768e+01, /* 0x42730408 */
1.0512523193e+03, /* 0x44836813 */
5.9789707031e+03, /* 0x45bad7c4 */
9.6254453125e+03, /* 0x461665c8 */
2.4060581055e+03, /* 0x451660ee */
};
#ifdef __STDC__
static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#else
static float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
-2.5470459075e-09, /* 0xb12f081b */
-7.0311963558e-02, /* 0xbd8fffb8 */
-2.4090321064e+00, /* 0xc01a2d95 */
-2.1965976715e+01, /* 0xc1afba52 */
-5.8079170227e+01, /* 0xc2685112 */
-3.1447946548e+01, /* 0xc1fb9565 */
};
#ifdef __STDC__
static const float pS3[5] = {
#else
static float pS3[5] = {
#endif
3.5856033325e+01, /* 0x420f6c94 */
3.6151397705e+02, /* 0x43b4c1ca */
1.1936077881e+03, /* 0x44953373 */
1.1279968262e+03, /* 0x448cffe6 */
1.7358093262e+02, /* 0x432d94b8 */
};
#ifdef __STDC__
static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
-8.8753431271e-08, /* 0xb3be98b7 */
-7.0303097367e-02, /* 0xbd8ffb12 */
-1.4507384300e+00, /* 0xbfb9b1cc */
-7.6356959343e+00, /* 0xc0f4579f */
-1.1193166733e+01, /* 0xc1331736 */
-3.2336456776e+00, /* 0xc04ef40d */
};
#ifdef __STDC__
static const float pS2[5] = {
#else
static float pS2[5] = {
#endif
2.2220300674e+01, /* 0x41b1c32d */
1.3620678711e+02, /* 0x430834f0 */
2.7047027588e+02, /* 0x43873c32 */
1.5387539673e+02, /* 0x4319e01a */
1.4657617569e+01, /* 0x416a859a */
};
#ifdef __STDC__
static float pzerof(float x)
#else
static float pzerof(x)
float x;
#endif
{
#ifdef __STDC__
const float *p,*q;
#else
float *p,*q;
#endif
float z,r,s;
int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x41000000) {p = pR8; q= pS8;}
else if(ix>=0x40f71c58){p = pR5; q= pS5;}
else if(ix>=0x4036db68){p = pR3; q= pS3;}
else if(ix>=0x40000000){p = pR2; q= pS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qzero is
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
* We approximate pzero by
* qzero(x) = s*(-1.25 + (R/S))
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
* S = 1 + qS0*s^2 + ... + qS5*s^12
* and
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
*/
#ifdef __STDC__
static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.0000000000e+00, /* 0x00000000 */
7.3242187500e-02, /* 0x3d960000 */
1.1768206596e+01, /* 0x413c4a93 */
5.5767340088e+02, /* 0x440b6b19 */
8.8591972656e+03, /* 0x460a6cca */
3.7014625000e+04, /* 0x471096a0 */
};
#ifdef __STDC__
static const float qS8[6] = {
#else
static float qS8[6] = {
#endif
1.6377603149e+02, /* 0x4323c6aa */
8.0983447266e+03, /* 0x45fd12c2 */
1.4253829688e+05, /* 0x480b3293 */
8.0330925000e+05, /* 0x49441ed4 */
8.4050156250e+05, /* 0x494d3359 */
-3.4389928125e+05, /* 0xc8a7eb69 */
};
#ifdef __STDC__
static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
1.8408595828e-11, /* 0x2da1ec79 */
7.3242180049e-02, /* 0x3d95ffff */
5.8356351852e+00, /* 0x40babd86 */
1.3511157227e+02, /* 0x43071c90 */
1.0272437744e+03, /* 0x448067cd */
1.9899779053e+03, /* 0x44f8bf4b */
};
#ifdef __STDC__
static const float qS5[6] = {
#else
static float qS5[6] = {
#endif
8.2776611328e+01, /* 0x42a58da0 */
2.0778142090e+03, /* 0x4501dd07 */
1.8847289062e+04, /* 0x46933e94 */
5.6751113281e+04, /* 0x475daf1d */
3.5976753906e+04, /* 0x470c88c1 */
-5.3543427734e+03, /* 0xc5a752be */
};
#ifdef __STDC__
static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#else
static float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
4.3774099900e-09, /* 0x3196681b */
7.3241114616e-02, /* 0x3d95ff70 */
3.3442313671e+00, /* 0x405607e3 */
4.2621845245e+01, /* 0x422a7cc5 */
1.7080809021e+02, /* 0x432acedf */
1.6673394775e+02, /* 0x4326bbe4 */
};
#ifdef __STDC__
static const float qS3[6] = {
#else
static float qS3[6] = {
#endif
4.8758872986e+01, /* 0x42430916 */
7.0968920898e+02, /* 0x44316c1c */
3.7041481934e+03, /* 0x4567825f */
6.4604252930e+03, /* 0x45c9e367 */
2.5163337402e+03, /* 0x451d4557 */
-1.4924745178e+02, /* 0xc3153f59 */
};
#ifdef __STDC__
static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
1.5044444979e-07, /* 0x342189db */
7.3223426938e-02, /* 0x3d95f62a */
1.9981917143e+00, /* 0x3fffc4bf */
1.4495602608e+01, /* 0x4167edfd */
3.1666231155e+01, /* 0x41fd5471 */
1.6252708435e+01, /* 0x4182058c */
};
#ifdef __STDC__
static const float qS2[6] = {
#else
static float qS2[6] = {
#endif
3.0365585327e+01, /* 0x41f2ecb8 */
2.6934811401e+02, /* 0x4386ac8f */
8.4478375244e+02, /* 0x44533229 */
8.8293585205e+02, /* 0x445cbbe5 */
2.1266638184e+02, /* 0x4354aa98 */
-5.3109550476e+00, /* 0xc0a9f358 */
};
#ifdef __STDC__
static float qzerof(float x)
#else
static float qzerof(x)
float x;
#endif
{
#ifdef __STDC__
const float *p,*q;
#else
float *p,*q;
#endif
float s,r,z;
int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x41000000) {p = qR8; q= qS8;}
else if(ix>=0x40f71c58){p = qR5; q= qS5;}
else if(ix>=0x4036db68){p = qR3; q= qS3;}
else if(ix>=0x40000000){p = qR2; q= qS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return (-(float).125 + r/s)/x;
}

486
sysdeps/libm-ieee754/e_j1.c Normal file
View File

@ -0,0 +1,486 @@
/* @(#)e_j1.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_j1.c,v 1.8 1995/05/10 20:45:27 jtc Exp $";
#endif
/* __ieee754_j1(x), __ieee754_y1(x)
* Bessel function of the first and second kinds of order zero.
* Method -- j1(x):
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
* for x in (0,2)
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
* for x in (2,inf)
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* as follow:
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (sin(x) + cos(x))
* (To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.)
*
* 3 Special cases
* j1(nan)= nan
* j1(0) = 0
* j1(inf) = 0
*
* Method -- y1(x):
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
* 2. For x<2.
* Since
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
* We use the following function to approximate y1,
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
* where for x in [0,2] (abs err less than 2**-65.89)
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
* Note: For tiny x, 1/x dominate y1 and hence
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
* 3. For x>=2.
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* by method mentioned above.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static double pone(double), qone(double);
#else
static double pone(), qone();
#endif
#ifdef __STDC__
static const double
#else
static double
#endif
huge = 1e300,
one = 1.0,
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
/* R0/S0 on [0,2] */
r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_j1(double x)
#else
double __ieee754_j1(x)
double x;
#endif
{
double z, s,c,ss,cc,r,u,v,y;
int32_t hx,ix;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) return one/x;
y = fabs(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = __sin(y);
c = __cos(y);
ss = -s-c;
cc = s-c;
if(ix<0x7fe00000) { /* make sure y+y not overflow */
z = __cos(y+y);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/*
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
*/
if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(y);
else {
u = pone(y); v = qone(y);
z = invsqrtpi*(u*cc-v*ss)/__sqrt(y);
}
if(hx<0) return -z;
else return z;
}
if(ix<0x3e400000) { /* |x|<2**-27 */
if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
}
z = x*x;
r = z*(r00+z*(r01+z*(r02+z*r03)));
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
r *= x;
return(x*0.5+r/s);
}
#ifdef __STDC__
static const double U0[5] = {
#else
static double U0[5] = {
#endif
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
};
#ifdef __STDC__
static const double V0[5] = {
#else
static double V0[5] = {
#endif
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
};
#ifdef __STDC__
double __ieee754_y1(double x)
#else
double __ieee754_y1(x)
double x;
#endif
{
double z, s,c,ss,cc,u,v;
int32_t hx,ix,lx;
EXTRACT_WORDS(hx,lx,x);
ix = 0x7fffffff&hx;
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
if(ix>=0x7ff00000) return one/(x+x*x);
if((ix|lx)==0) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = __sin(x);
c = __cos(x);
ss = -s-c;
cc = s-c;
if(ix<0x7fe00000) { /* make sure x+x not overflow */
z = __cos(x+x);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
* where x0 = x-3pi/4
* Better formula:
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (cos(x) + sin(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
else {
u = pone(x); v = qone(x);
z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
}
return z;
}
if(ix<=0x3c900000) { /* x < 2**-54 */
return(-tpi/x);
}
z = x*x;
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
}
/* For x >= 8, the asymptotic expansions of pone is
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
* We approximate pone by
* pone(x) = 1 + (R/S)
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
* S = 1 + ps0*s^2 + ... + ps4*s^10
* and
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
*/
#ifdef __STDC__
static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
};
#ifdef __STDC__
static const double ps8[5] = {
#else
static double ps8[5] = {
#endif
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
};
#ifdef __STDC__
static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
};
#ifdef __STDC__
static const double ps5[5] = {
#else
static double ps5[5] = {
#endif
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
};
#ifdef __STDC__
static const double pr3[6] = {
#else
static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
};
#ifdef __STDC__
static const double ps3[5] = {
#else
static double ps3[5] = {
#endif
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
};
#ifdef __STDC__
static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
};
#ifdef __STDC__
static const double ps2[5] = {
#else
static double ps2[5] = {
#endif
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
};
#ifdef __STDC__
static double pone(double x)
#else
static double pone(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double z,r,s;
int32_t ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x40200000) {p = pr8; q= ps8;}
else if(ix>=0x40122E8B){p = pr5; q= ps5;}
else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
else if(ix>=0x40000000){p = pr2; q= ps2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qone is
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
* We approximate pone by
* qone(x) = s*(0.375 + (R/S))
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
* S = 1 + qs1*s^2 + ... + qs6*s^12
* and
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
*/
#ifdef __STDC__
static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
};
#ifdef __STDC__
static const double qs8[6] = {
#else
static double qs8[6] = {
#endif
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
};
#ifdef __STDC__
static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
};
#ifdef __STDC__
static const double qs5[6] = {
#else
static double qs5[6] = {
#endif
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
};
#ifdef __STDC__
static const double qr3[6] = {
#else
static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
};
#ifdef __STDC__
static const double qs3[6] = {
#else
static double qs3[6] = {
#endif
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
};
#ifdef __STDC__
static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
};
#ifdef __STDC__
static const double qs2[6] = {
#else
static double qs2[6] = {
#endif
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
};
#ifdef __STDC__
static double qone(double x)
#else
static double qone(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double s,r,z;
int32_t ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x40200000) {p = qr8; q= qs8;}
else if(ix>=0x40122E8B){p = qr5; q= qs5;}
else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
else if(ix>=0x40000000){p = qr2; q= qs2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return (.375 + r/s)/x;
}

View File

@ -0,0 +1,444 @@
/* e_j1f.c -- float version of e_j1.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_j1f.c,v 1.4 1995/05/10 20:45:31 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static float ponef(float), qonef(float);
#else
static float ponef(), qonef();
#endif
#ifdef __STDC__
static const float
#else
static float
#endif
huge = 1e30,
one = 1.0,
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
tpi = 6.3661974669e-01, /* 0x3f22f983 */
/* R0/S0 on [0,2] */
r00 = -6.2500000000e-02, /* 0xbd800000 */
r01 = 1.4070566976e-03, /* 0x3ab86cfd */
r02 = -1.5995563444e-05, /* 0xb7862e36 */
r03 = 4.9672799207e-08, /* 0x335557d2 */
s01 = 1.9153760746e-02, /* 0x3c9ce859 */
s02 = 1.8594678841e-04, /* 0x3942fab6 */
s03 = 1.1771846857e-06, /* 0x359dffc2 */
s04 = 5.0463624390e-09, /* 0x31ad6446 */
s05 = 1.2354227016e-11; /* 0x2d59567e */
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_j1f(float x)
#else
float __ieee754_j1f(x)
float x;
#endif
{
float z, s,c,ss,cc,r,u,v,y;
int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x7f800000) return one/x;
y = fabsf(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = __sinf(y);
c = __cosf(y);
ss = -s-c;
cc = s-c;
if(ix<0x7f000000) { /* make sure y+y not overflow */
z = __cosf(y+y);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/*
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
*/
if(ix>0x80000000) z = (invsqrtpi*cc)/__sqrtf(y);
else {
u = ponef(y); v = qonef(y);
z = invsqrtpi*(u*cc-v*ss)/__sqrtf(y);
}
if(hx<0) return -z;
else return z;
}
if(ix<0x32000000) { /* |x|<2**-27 */
if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
}
z = x*x;
r = z*(r00+z*(r01+z*(r02+z*r03)));
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
r *= x;
return(x*(float)0.5+r/s);
}
#ifdef __STDC__
static const float U0[5] = {
#else
static float U0[5] = {
#endif
-1.9605709612e-01, /* 0xbe48c331 */
5.0443872809e-02, /* 0x3d4e9e3c */
-1.9125689287e-03, /* 0xbafaaf2a */
2.3525259166e-05, /* 0x37c5581c */
-9.1909917899e-08, /* 0xb3c56003 */
};
#ifdef __STDC__
static const float V0[5] = {
#else
static float V0[5] = {
#endif
1.9916731864e-02, /* 0x3ca3286a */
2.0255257550e-04, /* 0x3954644b */
1.3560879779e-06, /* 0x35b602d4 */
6.2274145840e-09, /* 0x31d5f8eb */
1.6655924903e-11, /* 0x2d9281cf */
};
#ifdef __STDC__
float __ieee754_y1f(float x)
#else
float __ieee754_y1f(x)
float x;
#endif
{
float z, s,c,ss,cc,u,v;
int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
if(ix>=0x7f800000) return one/(x+x*x);
if(ix==0) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = __sinf(x);
c = __cosf(x);
ss = -s-c;
cc = s-c;
if(ix<0x7f000000) { /* make sure x+x not overflow */
z = __cosf(x+x);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
* where x0 = x-3pi/4
* Better formula:
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (cos(x) + sin(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrtf(x);
else {
u = ponef(x); v = qonef(x);
z = invsqrtpi*(u*ss+v*cc)/__sqrtf(x);
}
return z;
}
if(ix<=0x24800000) { /* x < 2**-54 */
return(-tpi/x);
}
z = x*x;
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
}
/* For x >= 8, the asymptotic expansions of pone is
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
* We approximate pone by
* pone(x) = 1 + (R/S)
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
* S = 1 + ps0*s^2 + ... + ps4*s^10
* and
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
*/
#ifdef __STDC__
static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.0000000000e+00, /* 0x00000000 */
1.1718750000e-01, /* 0x3df00000 */
1.3239480972e+01, /* 0x4153d4ea */
4.1205184937e+02, /* 0x43ce06a3 */
3.8747453613e+03, /* 0x45722bed */
7.9144794922e+03, /* 0x45f753d6 */
};
#ifdef __STDC__
static const float ps8[5] = {
#else
static float ps8[5] = {
#endif
1.1420736694e+02, /* 0x42e46a2c */
3.6509309082e+03, /* 0x45642ee5 */
3.6956207031e+04, /* 0x47105c35 */
9.7602796875e+04, /* 0x47bea166 */
3.0804271484e+04, /* 0x46f0a88b */
};
#ifdef __STDC__
static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
1.3199052094e-11, /* 0x2d68333f */
1.1718749255e-01, /* 0x3defffff */
6.8027510643e+00, /* 0x40d9b023 */
1.0830818176e+02, /* 0x42d89dca */
5.1763616943e+02, /* 0x440168b7 */
5.2871520996e+02, /* 0x44042dc6 */
};
#ifdef __STDC__
static const float ps5[5] = {
#else
static float ps5[5] = {
#endif
5.9280597687e+01, /* 0x426d1f55 */
9.9140142822e+02, /* 0x4477d9b1 */
5.3532670898e+03, /* 0x45a74a23 */
7.8446904297e+03, /* 0x45f52586 */
1.5040468750e+03, /* 0x44bc0180 */
};
#ifdef __STDC__
static const float pr3[6] = {
#else
static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
3.0250391081e-09, /* 0x314fe10d */
1.1718686670e-01, /* 0x3defffab */
3.9329774380e+00, /* 0x407bb5e7 */
3.5119403839e+01, /* 0x420c7a45 */
9.1055007935e+01, /* 0x42b61c2a */
4.8559066772e+01, /* 0x42423c7c */
};
#ifdef __STDC__
static const float ps3[5] = {
#else
static float ps3[5] = {
#endif
3.4791309357e+01, /* 0x420b2a4d */
3.3676245117e+02, /* 0x43a86198 */
1.0468714600e+03, /* 0x4482dbe3 */
8.9081134033e+02, /* 0x445eb3ed */
1.0378793335e+02, /* 0x42cf936c */
};
#ifdef __STDC__
static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
1.0771083225e-07, /* 0x33e74ea8 */
1.1717621982e-01, /* 0x3deffa16 */
2.3685150146e+00, /* 0x401795c0 */
1.2242610931e+01, /* 0x4143e1bc */
1.7693971634e+01, /* 0x418d8d41 */
5.0735230446e+00, /* 0x40a25a4d */
};
#ifdef __STDC__
static const float ps2[5] = {
#else
static float ps2[5] = {
#endif
2.1436485291e+01, /* 0x41ab7dec */
1.2529022980e+02, /* 0x42fa9499 */
2.3227647400e+02, /* 0x436846c7 */
1.1767937469e+02, /* 0x42eb5bd7 */
8.3646392822e+00, /* 0x4105d590 */
};
#ifdef __STDC__
static float ponef(float x)
#else
static float ponef(x)
float x;
#endif
{
#ifdef __STDC__
const float *p,*q;
#else
float *p,*q;
#endif
float z,r,s;
int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x41000000) {p = pr8; q= ps8;}
else if(ix>=0x40f71c58){p = pr5; q= ps5;}
else if(ix>=0x4036db68){p = pr3; q= ps3;}
else if(ix>=0x40000000){p = pr2; q= ps2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qone is
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
* We approximate pone by
* qone(x) = s*(0.375 + (R/S))
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
* S = 1 + qs1*s^2 + ... + qs6*s^12
* and
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
*/
#ifdef __STDC__
static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.0000000000e+00, /* 0x00000000 */
-1.0253906250e-01, /* 0xbdd20000 */
-1.6271753311e+01, /* 0xc1822c8d */
-7.5960174561e+02, /* 0xc43de683 */
-1.1849806641e+04, /* 0xc639273a */
-4.8438511719e+04, /* 0xc73d3683 */
};
#ifdef __STDC__
static const float qs8[6] = {
#else
static float qs8[6] = {
#endif
1.6139537048e+02, /* 0x43216537 */
7.8253862305e+03, /* 0x45f48b17 */
1.3387534375e+05, /* 0x4802bcd6 */
7.1965775000e+05, /* 0x492fb29c */
6.6660125000e+05, /* 0x4922be94 */
-2.9449025000e+05, /* 0xc88fcb48 */
};
#ifdef __STDC__
static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
-2.0897993405e-11, /* 0xadb7d219 */
-1.0253904760e-01, /* 0xbdd1fffe */
-8.0564479828e+00, /* 0xc100e736 */
-1.8366960144e+02, /* 0xc337ab6b */
-1.3731937256e+03, /* 0xc4aba633 */
-2.6124443359e+03, /* 0xc523471c */
};
#ifdef __STDC__
static const float qs5[6] = {
#else
static float qs5[6] = {
#endif
8.1276550293e+01, /* 0x42a28d98 */
1.9917987061e+03, /* 0x44f8f98f */
1.7468484375e+04, /* 0x468878f8 */
4.9851425781e+04, /* 0x4742bb6d */
2.7948074219e+04, /* 0x46da5826 */
-4.7191835938e+03, /* 0xc5937978 */
};
#ifdef __STDC__
static const float qr3[6] = {
#else
static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
-5.0783124372e-09, /* 0xb1ae7d4f */
-1.0253783315e-01, /* 0xbdd1ff5b */
-4.6101160049e+00, /* 0xc0938612 */
-5.7847221375e+01, /* 0xc267638e */
-2.2824453735e+02, /* 0xc3643e9a */
-2.1921012878e+02, /* 0xc35b35cb */
};
#ifdef __STDC__
static const float qs3[6] = {
#else
static float qs3[6] = {
#endif
4.7665153503e+01, /* 0x423ea91e */
6.7386511230e+02, /* 0x4428775e */
3.3801528320e+03, /* 0x45534272 */
5.5477290039e+03, /* 0x45ad5dd5 */
1.9031191406e+03, /* 0x44ede3d0 */
-1.3520118713e+02, /* 0xc3073381 */
};
#ifdef __STDC__
static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
-1.7838172539e-07, /* 0xb43f8932 */
-1.0251704603e-01, /* 0xbdd1f475 */
-2.7522056103e+00, /* 0xc0302423 */
-1.9663616180e+01, /* 0xc19d4f16 */
-4.2325313568e+01, /* 0xc2294d1f */
-2.1371921539e+01, /* 0xc1aaf9b2 */
};
#ifdef __STDC__
static const float qs2[6] = {
#else
static float qs2[6] = {
#endif
2.9533363342e+01, /* 0x41ec4454 */
2.5298155212e+02, /* 0x437cfb47 */
7.5750280762e+02, /* 0x443d602e */
7.3939318848e+02, /* 0x4438d92a */
1.5594900513e+02, /* 0x431bf2f2 */
-4.9594988823e+00, /* 0xc09eb437 */
};
#ifdef __STDC__
static float qonef(float x)
#else
static float qonef(x)
float x;
#endif
{
#ifdef __STDC__
const float *p,*q;
#else
float *p,*q;
#endif
float s,r,z;
int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x40200000) {p = qr8; q= qs8;}
else if(ix>=0x40f71c58){p = qr5; q= qs5;}
else if(ix>=0x4036db68){p = qr3; q= qs3;}
else if(ix>=0x40000000){p = qr2; q= qs2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return ((float).375 + r/s)/x;
}

281
sysdeps/libm-ieee754/e_jn.c Normal file
View File

@ -0,0 +1,281 @@
/* @(#)e_jn.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
#endif
/*
* __ieee754_jn(n, x), __ieee754_yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<x, forward recursion us used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
#ifdef __STDC__
static const double zero = 0.00000000000000000000e+00;
#else
static double zero = 0.00000000000000000000e+00;
#endif
#ifdef __STDC__
double __ieee754_jn(int n, double x)
#else
double __ieee754_jn(n,x)
int n; double x;
#endif
{
int32_t i,hx,ix,lx, sgn;
double a, b, temp, di;
double z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
EXTRACT_WORDS(hx,lx,x);
ix = 0x7fffffff&hx;
/* if J(n,NaN) is NaN */
if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
if(n<0){
n = -n;
x = -x;
hx ^= 0x80000000;
}
if(n==0) return(__ieee754_j0(x));
if(n==1) return(__ieee754_j1(x));
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
x = fabs(x);
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
b = zero;
else if((double)n<=x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if(ix>=0x52D00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(n&3) {
case 0: temp = __cos(x)+__sin(x); break;
case 1: temp = -__cos(x)+__sin(x); break;
case 2: temp = -__cos(x)-__sin(x); break;
case 3: temp = __cos(x)-__sin(x); break;
}
b = invsqrtpi*temp/__sqrt(x);
} else {
a = __ieee754_j0(x);
b = __ieee754_j1(x);
for(i=1;i<n;i++){
temp = b;
b = b*((double)(i+i)/x) - a; /* avoid underflow */
a = temp;
}
}
} else {
if(ix<0x3e100000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if(n>33) /* underflow */
b = zero;
else {
temp = x*0.5; b = temp;
for (a=one,i=2;i<=n;i++) {
a *= (double)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
double t,v;
double q0,q1,h,tmp; int32_t k,m;
w = (n+n)/(double)x; h = 2.0/(double)x;
q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
while(q1<1.0e9) {
k += 1; z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n+n;
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
a = t;
b = one;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
v = two/x;
tmp = tmp*__ieee754_log(fabs(v*tmp));
if(tmp<7.09782712893383973096e+02) {
for(i=n-1,di=(double)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
}
} else {
for(i=n-1,di=(double)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
/* scale b to avoid spurious overflow */
if(b>1e100) {
a /= b;
t /= b;
b = one;
}
}
}
b = (t*__ieee754_j0(x)/b);
}
}
if(sgn==1) return -b; else return b;
}
#ifdef __STDC__
double __ieee754_yn(int n, double x)
#else
double __ieee754_yn(n,x)
int n; double x;
#endif
{
int32_t i,hx,ix,lx;
int32_t sign;
double a, b, temp;
EXTRACT_WORDS(hx,lx,x);
ix = 0x7fffffff&hx;
/* if Y(n,NaN) is NaN */
if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
if((ix|lx)==0) return -one/zero;
if(hx<0) return zero/zero;
sign = 1;
if(n<0){
n = -n;
sign = 1 - ((n&1)<<1);
}
if(n==0) return(__ieee754_y0(x));
if(n==1) return(sign*__ieee754_y1(x));
if(ix==0x7ff00000) return zero;
if(ix>=0x52D00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(n&3) {
case 0: temp = __sin(x)-__cos(x); break;
case 1: temp = -__sin(x)-__cos(x); break;
case 2: temp = -__sin(x)+__cos(x); break;
case 3: temp = __sin(x)+__cos(x); break;
}
b = invsqrtpi*temp/__sqrt(x);
} else {
u_int32_t high;
a = __ieee754_y0(x);
b = __ieee754_y1(x);
/* quit if b is -inf */
GET_HIGH_WORD(high,b);
for(i=1;i<n&&high!=0xfff00000;i++){
temp = b;
b = ((double)(i+i)/x)*b - a;
GET_HIGH_WORD(high,b);
a = temp;
}
}
if(sign>0) return b; else return -b;
}

View File

@ -0,0 +1,212 @@
/* e_jnf.c -- float version of e_jn.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_jnf.c,v 1.5 1995/05/10 20:45:37 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float
#else
static float
#endif
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
two = 2.0000000000e+00, /* 0x40000000 */
one = 1.0000000000e+00; /* 0x3F800000 */
#ifdef __STDC__
static const float zero = 0.0000000000e+00;
#else
static float zero = 0.0000000000e+00;
#endif
#ifdef __STDC__
float __ieee754_jnf(int n, float x)
#else
float __ieee754_jnf(n,x)
int n; float x;
#endif
{
int32_t i,hx,ix, sgn;
float a, b, temp, di;
float z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* if J(n,NaN) is NaN */
if(ix>0x7f800000) return x+x;
if(n<0){
n = -n;
x = -x;
hx ^= 0x80000000;
}
if(n==0) return(__ieee754_j0f(x));
if(n==1) return(__ieee754_j1f(x));
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
x = fabsf(x);
if(ix==0||ix>=0x7f800000) /* if x is 0 or inf */
b = zero;
else if((float)n<=x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
a = __ieee754_j0f(x);
b = __ieee754_j1f(x);
for(i=1;i<n;i++){
temp = b;
b = b*((float)(i+i)/x) - a; /* avoid underflow */
a = temp;
}
} else {
if(ix<0x30800000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if(n>33) /* underflow */
b = zero;
else {
temp = x*(float)0.5; b = temp;
for (a=one,i=2;i<=n;i++) {
a *= (float)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
float t,v;
float q0,q1,h,tmp; int32_t k,m;
w = (n+n)/(float)x; h = (float)2.0/(float)x;
q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1;
while(q1<(float)1.0e9) {
k += 1; z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n+n;
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
a = t;
b = one;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
v = two/x;
tmp = tmp*__ieee754_logf(fabsf(v*tmp));
if(tmp<(float)8.8721679688e+01) {
for(i=n-1,di=(float)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
}
} else {
for(i=n-1,di=(float)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
/* scale b to avoid spurious overflow */
if(b>(float)1e10) {
a /= b;
t /= b;
b = one;
}
}
}
b = (t*__ieee754_j0f(x)/b);
}
}
if(sgn==1) return -b; else return b;
}
#ifdef __STDC__
float __ieee754_ynf(int n, float x)
#else
float __ieee754_ynf(n,x)
int n; float x;
#endif
{
int32_t i,hx,ix,ib;
int32_t sign;
float a, b, temp;
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* if Y(n,NaN) is NaN */
if(ix>0x7f800000) return x+x;
if(ix==0) return -one/zero;
if(hx<0) return zero/zero;
sign = 1;
if(n<0){
n = -n;
sign = 1 - ((n&1)<<1);
}
if(n==0) return(__ieee754_y0f(x));
if(n==1) return(sign*__ieee754_y1f(x));
if(ix==0x7f800000) return zero;
a = __ieee754_y0f(x);
b = __ieee754_y1f(x);
/* quit if b is -inf */
GET_FLOAT_WORD(ib,b);
for(i=1;i<n&&ib!=0xff800000;i++){
temp = b;
b = ((float)(i+i)/x)*b - a;
GET_FLOAT_WORD(ib,b);
a = temp;
}
if(sign>0) return b; else return -b;
}

View File

@ -0,0 +1,312 @@
/* @(#)er_lgamma.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_lgamma_r.c,v 1.7 1995/05/10 20:45:42 jtc Exp $";
#endif
/* __ieee754_lgamma_r(x, signgamp)
* Reentrant version of the logarithm of the Gamma function
* with user provide pointer for the sign of Gamma(x).
*
* Method:
* 1. Argument Reduction for 0 < x <= 8
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
* reduce x to a number in [1.5,2.5] by
* lgamma(1+s) = log(s) + lgamma(s)
* for example,
* lgamma(7.3) = log(6.3) + lgamma(6.3)
* = log(6.3*5.3) + lgamma(5.3)
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
* 2. Polynomial approximation of lgamma around its
* minimun ymin=1.461632144968362245 to maintain monotonicity.
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
* Let z = x-ymin;
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
* where
* poly(z) is a 14 degree polynomial.
* 2. Rational approximation in the primary interval [2,3]
* We use the following approximation:
* s = x-2.0;
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
* with accuracy
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
* Our algorithms are based on the following observation
*
* zeta(2)-1 2 zeta(3)-1 3
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
* 2 3
*
* where Euler = 0.5771... is the Euler constant, which is very
* close to 0.5.
*
* 3. For x>=8, we have
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
* (better formula:
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
* Let z = 1/x, then we approximation
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
* by
* 3 5 11
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
* where
* |w - f(z)| < 2**-58.74
*
* 4. For negative x, since (G is gamma function)
* -x*G(-x)*G(x) = pi/sin(pi*x),
* we have
* G(x) = pi/(sin(pi*x)*(-x)*G(-x))
* since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
* Hence, for x<0, signgam = sign(sin(pi*x)) and
* lgamma(x) = log(|Gamma(x)|)
* = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
* Note: one should avoid compute pi*(-x) directly in the
* computation of sin(pi*(-x)).
*
* 5. Special Cases
* lgamma(2+s) ~ s*(1-Euler) for tiny s
* lgamma(1)=lgamma(2)=0
* lgamma(x) ~ -log(x) for tiny x
* lgamma(0) = lgamma(inf) = inf
* lgamma(-integer) = +-inf
*
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
/* tt = -(tail of tf) */
tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
#ifdef __STDC__
static const double zero= 0.00000000000000000000e+00;
#else
static double zero= 0.00000000000000000000e+00;
#endif
#ifdef __STDC__
static double sin_pi(double x)
#else
static double sin_pi(x)
double x;
#endif
{
double y,z;
int n,ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
y = -x; /* x is assume negative */
/*
* argument reduction, make sure inexact flag not raised if input
* is an integer
*/
z = __floor(y);
if(z!=y) { /* inexact anyway */
y *= 0.5;
y = 2.0*(y - __floor(y)); /* y = |x| mod 2.0 */
n = (int) (y*4.0);
} else {
if(ix>=0x43400000) {
y = zero; n = 0; /* y must be even */
} else {
if(ix<0x43300000) z = y+two52; /* exact */
GET_LOW_WORD(n,z);
n &= 1;
y = n;
n<<= 2;
}
}
switch (n) {
case 0: y = __kernel_sin(pi*y,zero,0); break;
case 1:
case 2: y = __kernel_cos(pi*(0.5-y),zero); break;
case 3:
case 4: y = __kernel_sin(pi*(one-y),zero,0); break;
case 5:
case 6: y = -__kernel_cos(pi*(y-1.5),zero); break;
default: y = __kernel_sin(pi*(y-2.0),zero,0); break;
}
return -y;
}
#ifdef __STDC__
double __ieee754_lgamma_r(double x, int *signgamp)
#else
double __ieee754_lgamma_r(x,signgamp)
double x; int *signgamp;
#endif
{
double t,y,z,nadj,p,p1,p2,p3,q,r,w;
int i,hx,lx,ix;
EXTRACT_WORDS(hx,lx,x);
/* purge off +-inf, NaN, +-0, and negative arguments */
*signgamp = 1;
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) return x*x;
if((ix|lx)==0) return one/zero;
if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */
if(hx<0) {
*signgamp = -1;
return -__ieee754_log(-x);
} else return -__ieee754_log(x);
}
if(hx<0) {
if(ix>=0x43300000) /* |x|>=2**52, must be -integer */
return one/zero;
t = sin_pi(x);
if(t==zero) return one/zero; /* -integer */
nadj = __ieee754_log(pi/fabs(t*x));
if(t<zero) *signgamp = -1;
x = -x;
}
/* purge off 1 and 2 */
if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
/* for x < 2.0 */
else if(ix<0x40000000) {
if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
r = -__ieee754_log(x);
if(ix>=0x3FE76944) {y = one-x; i= 0;}
else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
else {y = x; i=2;}
} else {
r = zero;
if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
else {y=x-one;i=2;}
}
switch(i) {
case 0:
z = y*y;
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
p = y*p1+p2;
r += (p-0.5*y); break;
case 1:
z = y*y;
w = z*y;
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
p = z*p1-(tt-w*(p2+y*p3));
r += (tf + p); break;
case 2:
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
r += (-0.5*y + p1/p2);
}
}
else if(ix<0x40200000) { /* x < 8.0 */
i = (int)x;
t = zero;
y = x-(double)i;
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
r = half*y+p/q;
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
switch(i) {
case 7: z *= (y+6.0); /* FALLTHRU */
case 6: z *= (y+5.0); /* FALLTHRU */
case 5: z *= (y+4.0); /* FALLTHRU */
case 4: z *= (y+3.0); /* FALLTHRU */
case 3: z *= (y+2.0); /* FALLTHRU */
r += __ieee754_log(z); break;
}
/* 8.0 <= x < 2**58 */
} else if (ix < 0x43900000) {
t = __ieee754_log(x);
z = one/x;
y = z*z;
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
r = (x-half)*(t-one)+w;
} else
/* 2**58 <= x <= inf */
r = x*(__ieee754_log(x)-one);
if(hx<0) r = nadj - r;
return r;
}

View File

@ -0,0 +1,248 @@
/* e_lgammaf_r.c -- float version of e_lgamma_r.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_lgammaf_r.c,v 1.3 1995/05/10 20:45:47 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float
#else
static float
#endif
two23= 8.3886080000e+06, /* 0x4b000000 */
half= 5.0000000000e-01, /* 0x3f000000 */
one = 1.0000000000e+00, /* 0x3f800000 */
pi = 3.1415927410e+00, /* 0x40490fdb */
a0 = 7.7215664089e-02, /* 0x3d9e233f */
a1 = 3.2246702909e-01, /* 0x3ea51a66 */
a2 = 6.7352302372e-02, /* 0x3d89f001 */
a3 = 2.0580807701e-02, /* 0x3ca89915 */
a4 = 7.3855509982e-03, /* 0x3bf2027e */
a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */
a6 = 1.1927076848e-03, /* 0x3a9c54a1 */
a7 = 5.1006977446e-04, /* 0x3a05b634 */
a8 = 2.2086278477e-04, /* 0x39679767 */
a9 = 1.0801156895e-04, /* 0x38e28445 */
a10 = 2.5214456400e-05, /* 0x37d383a2 */
a11 = 4.4864096708e-05, /* 0x383c2c75 */
tc = 1.4616321325e+00, /* 0x3fbb16c3 */
tf = -1.2148628384e-01, /* 0xbdf8cdcd */
/* tt = -(tail of tf) */
tt = 6.6971006518e-09, /* 0x31e61c52 */
t0 = 4.8383611441e-01, /* 0x3ef7b95e */
t1 = -1.4758771658e-01, /* 0xbe17213c */
t2 = 6.4624942839e-02, /* 0x3d845a15 */
t3 = -3.2788541168e-02, /* 0xbd064d47 */
t4 = 1.7970675603e-02, /* 0x3c93373d */
t5 = -1.0314224288e-02, /* 0xbc28fcfe */
t6 = 6.1005386524e-03, /* 0x3bc7e707 */
t7 = -3.6845202558e-03, /* 0xbb7177fe */
t8 = 2.2596477065e-03, /* 0x3b141699 */
t9 = -1.4034647029e-03, /* 0xbab7f476 */
t10 = 8.8108185446e-04, /* 0x3a66f867 */
t11 = -5.3859531181e-04, /* 0xba0d3085 */
t12 = 3.1563205994e-04, /* 0x39a57b6b */
t13 = -3.1275415677e-04, /* 0xb9a3f927 */
t14 = 3.3552918467e-04, /* 0x39afe9f7 */
u0 = -7.7215664089e-02, /* 0xbd9e233f */
u1 = 6.3282704353e-01, /* 0x3f2200f4 */
u2 = 1.4549225569e+00, /* 0x3fba3ae7 */
u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */
u4 = 2.2896373272e-01, /* 0x3e6a7578 */
u5 = 1.3381091878e-02, /* 0x3c5b3c5e */
v1 = 2.4559779167e+00, /* 0x401d2ebe */
v2 = 2.1284897327e+00, /* 0x4008392d */
v3 = 7.6928514242e-01, /* 0x3f44efdf */
v4 = 1.0422264785e-01, /* 0x3dd572af */
v5 = 3.2170924824e-03, /* 0x3b52d5db */
s0 = -7.7215664089e-02, /* 0xbd9e233f */
s1 = 2.1498242021e-01, /* 0x3e5c245a */
s2 = 3.2577878237e-01, /* 0x3ea6cc7a */
s3 = 1.4635047317e-01, /* 0x3e15dce6 */
s4 = 2.6642270386e-02, /* 0x3cda40e4 */
s5 = 1.8402845599e-03, /* 0x3af135b4 */
s6 = 3.1947532989e-05, /* 0x3805ff67 */
r1 = 1.3920053244e+00, /* 0x3fb22d3b */
r2 = 7.2193557024e-01, /* 0x3f38d0c5 */
r3 = 1.7193385959e-01, /* 0x3e300f6e */
r4 = 1.8645919859e-02, /* 0x3c98bf54 */
r5 = 7.7794247773e-04, /* 0x3a4beed6 */
r6 = 7.3266842264e-06, /* 0x36f5d7bd */
w0 = 4.1893854737e-01, /* 0x3ed67f1d */
w1 = 8.3333335817e-02, /* 0x3daaaaab */
w2 = -2.7777778450e-03, /* 0xbb360b61 */
w3 = 7.9365057172e-04, /* 0x3a500cfd */
w4 = -5.9518753551e-04, /* 0xba1c065c */
w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */
w6 = -1.6309292987e-03; /* 0xbad5c4e8 */
#ifdef __STDC__
static const float zero= 0.0000000000e+00;
#else
static float zero= 0.0000000000e+00;
#endif
#ifdef __STDC__
static float sin_pif(float x)
#else
static float sin_pif(x)
float x;
#endif
{
float y,z;
int n,ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0);
y = -x; /* x is assume negative */
/*
* argument reduction, make sure inexact flag not raised if input
* is an integer
*/
z = __floorf(y);
if(z!=y) { /* inexact anyway */
y *= (float)0.5;
y = (float)2.0*(y - __floorf(y)); /* y = |x| mod 2.0 */
n = (int) (y*(float)4.0);
} else {
if(ix>=0x4b800000) {
y = zero; n = 0; /* y must be even */
} else {
if(ix<0x4b000000) z = y+two23; /* exact */
GET_FLOAT_WORD(n,z);
n &= 1;
y = n;
n<<= 2;
}
}
switch (n) {
case 0: y = __kernel_sinf(pi*y,zero,0); break;
case 1:
case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break;
case 3:
case 4: y = __kernel_sinf(pi*(one-y),zero,0); break;
case 5:
case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break;
default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break;
}
return -y;
}
#ifdef __STDC__
float __ieee754_lgammaf_r(float x, int *signgamp)
#else
float __ieee754_lgammaf_r(x,signgamp)
float x; int *signgamp;
#endif
{
float t,y,z,nadj,p,p1,p2,p3,q,r,w;
int i,hx,ix;
GET_FLOAT_WORD(hx,x);
/* purge off +-inf, NaN, +-0, and negative arguments */
*signgamp = 1;
ix = hx&0x7fffffff;
if(ix>=0x7f800000) return x*x;
if(ix==0) return one/zero;
if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */
if(hx<0) {
*signgamp = -1;
return -__ieee754_logf(-x);
} else return -__ieee754_logf(x);
}
if(hx<0) {
if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */
return one/zero;
t = sin_pif(x);
if(t==zero) return one/zero; /* -integer */
nadj = __ieee754_logf(pi/fabsf(t*x));
if(t<zero) *signgamp = -1;
x = -x;
}
/* purge off 1 and 2 */
if (ix==0x3f800000||ix==0x40000000) r = 0;
/* for x < 2.0 */
else if(ix<0x40000000) {
if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
r = -__ieee754_logf(x);
if(ix>=0x3f3b4a20) {y = one-x; i= 0;}
else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;}
else {y = x; i=2;}
} else {
r = zero;
if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */
else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */
else {y=x-one;i=2;}
}
switch(i) {
case 0:
z = y*y;
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
p = y*p1+p2;
r += (p-(float)0.5*y); break;
case 1:
z = y*y;
w = z*y;
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
p = z*p1-(tt-w*(p2+y*p3));
r += (tf + p); break;
case 2:
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
r += (-(float)0.5*y + p1/p2);
}
}
else if(ix<0x41000000) { /* x < 8.0 */
i = (int)x;
t = zero;
y = x-(float)i;
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
r = half*y+p/q;
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
switch(i) {
case 7: z *= (y+(float)6.0); /* FALLTHRU */
case 6: z *= (y+(float)5.0); /* FALLTHRU */
case 5: z *= (y+(float)4.0); /* FALLTHRU */
case 4: z *= (y+(float)3.0); /* FALLTHRU */
case 3: z *= (y+(float)2.0); /* FALLTHRU */
r += __ieee754_logf(z); break;
}
/* 8.0 <= x < 2**58 */
} else if (ix < 0x5c800000) {
t = __ieee754_logf(x);
z = one/x;
y = z*z;
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
r = (x-half)*(t-one)+w;
} else
/* 2**58 <= x <= inf */
r = x*(__ieee754_logf(x)-one);
if(hx<0) r = nadj - r;
return r;
}

View File

@ -0,0 +1,146 @@
/* @(#)e_log.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
#endif
/* __ieee754_log(x)
* Return the logrithm of x
*
* Method :
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_log(double x)
#else
double __ieee754_log(x)
double x;
#endif
{
double hfsq,f,s,z,R,w,t1,t2,dk;
int32_t k,hx,i,j;
u_int32_t lx;
EXTRACT_WORDS(hx,lx,x);
k=0;
if (hx < 0x00100000) { /* x < 2**-1022 */
if (((hx&0x7fffffff)|lx)==0)
return -two54/zero; /* log(+-0)=-inf */
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
k -= 54; x *= two54; /* subnormal number, scale up x */
GET_HIGH_WORD(hx,x);
}
if (hx >= 0x7ff00000) return x+x;
k += (hx>>20)-1023;
hx &= 0x000fffff;
i = (hx+0x95f64)&0x100000;
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
k += (i>>20);
f = x-1.0;
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
if(f==zero) if(k==0) return zero; else {dk=(double)k;
return dk*ln2_hi+dk*ln2_lo;}
R = f*f*(0.5-0.33333333333333333*f);
if(k==0) return f-R; else {dk=(double)k;
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
}
s = f/(2.0+f);
dk = (double)k;
z = s*s;
i = hx-0x6147a;
w = z*z;
j = 0x6b851-hx;
t1= w*(Lg2+w*(Lg4+w*Lg6));
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
i |= j;
R = t2+t1;
if(i>0) {
hfsq=0.5*f*f;
if(k==0) return f-(hfsq-s*(hfsq+R)); else
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
} else {
if(k==0) return f-s*(f-R); else
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
}
}

View File

@ -0,0 +1,98 @@
/* @(#)e_log10.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_log10.c,v 1.9 1995/05/10 20:45:51 jtc Exp $";
#endif
/* __ieee754_log10(x)
* Return the base 10 logarithm of x
*
* Method :
* Let log10_2hi = leading 40 bits of log10(2) and
* log10_2lo = log10(2) - log10_2hi,
* ivln10 = 1/log(10) rounded.
* Then
* n = ilogb(x),
* if(n<0) n = n+1;
* x = scalbn(x,-n);
* log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
*
* Note 1:
* To guarantee log10(10**n)=n, where 10**n is normal, the rounding
* mode must set to Round-to-Nearest.
* Note 2:
* [1/log(10)] rounded to 53 bits has error .198 ulps;
* log10 is monotonic at all binary break points.
*
* Special cases:
* log10(x) is NaN with signal if x < 0;
* log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
* log10(NaN) is that NaN with no signal;
* log10(10**N) = N for N=0,1,...,22.
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_log10(double x)
#else
double __ieee754_log10(x)
double x;
#endif
{
double y,z;
int32_t i,k,hx;
u_int32_t lx;
EXTRACT_WORDS(hx,lx,x);
k=0;
if (hx < 0x00100000) { /* x < 2**-1022 */
if (((hx&0x7fffffff)|lx)==0)
return -two54/zero; /* log(+-0)=-inf */
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
k -= 54; x *= two54; /* subnormal number, scale up x */
GET_HIGH_WORD(hx,x);
}
if (hx >= 0x7ff00000) return x+x;
k += (hx>>20)-1023;
i = ((u_int32_t)k&0x80000000)>>31;
hx = (hx&0x000fffff)|((0x3ff-i)<<20);
y = (double)(k+i);
SET_HIGH_WORD(x,hx);
z = y*log10_2lo + ivln10*__ieee754_log(x);
return z+y*log10_2hi;
}

View File

@ -0,0 +1,67 @@
/* e_log10f.c -- float version of e_log10.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_log10f.c,v 1.5 1995/05/10 20:45:53 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float
#else
static float
#endif
two25 = 3.3554432000e+07, /* 0x4c000000 */
ivln10 = 4.3429449201e-01, /* 0x3ede5bd9 */
log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */
log10_2lo = 7.9034151668e-07; /* 0x355427db */
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_log10f(float x)
#else
float __ieee754_log10f(x)
float x;
#endif
{
float y,z;
int32_t i,k,hx;
GET_FLOAT_WORD(hx,x);
k=0;
if (hx < 0x00800000) { /* x < 2**-126 */
if ((hx&0x7fffffff)==0)
return -two25/zero; /* log(+-0)=-inf */
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
k -= 25; x *= two25; /* subnormal number, scale up x */
GET_FLOAT_WORD(hx,x);
}
if (hx >= 0x7f800000) return x+x;
k += (hx>>23)-127;
i = ((u_int32_t)k&0x80000000)>>31;
hx = (hx&0x007fffff)|((0x7f-i)<<23);
y = (float)(k+i);
SET_FLOAT_WORD(x,hx);
z = y*log10_2lo + ivln10*__ieee754_logf(x);
return z+y*log10_2hi;
}

View File

@ -0,0 +1,97 @@
/* e_logf.c -- float version of e_log.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_logf.c,v 1.4 1995/05/10 20:45:54 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float
#else
static float
#endif
ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
two25 = 3.355443200e+07, /* 0x4c000000 */
Lg1 = 6.6666668653e-01, /* 3F2AAAAB */
Lg2 = 4.0000000596e-01, /* 3ECCCCCD */
Lg3 = 2.8571429849e-01, /* 3E924925 */
Lg4 = 2.2222198546e-01, /* 3E638E29 */
Lg5 = 1.8183572590e-01, /* 3E3A3325 */
Lg6 = 1.5313838422e-01, /* 3E1CD04F */
Lg7 = 1.4798198640e-01; /* 3E178897 */
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_logf(float x)
#else
float __ieee754_logf(x)
float x;
#endif
{
float hfsq,f,s,z,R,w,t1,t2,dk;
int32_t k,ix,i,j;
GET_FLOAT_WORD(ix,x);
k=0;
if (ix < 0x00800000) { /* x < 2**-126 */
if ((ix&0x7fffffff)==0)
return -two25/zero; /* log(+-0)=-inf */
if (ix<0) return (x-x)/zero; /* log(-#) = NaN */
k -= 25; x *= two25; /* subnormal number, scale up x */
GET_FLOAT_WORD(ix,x);
}
if (ix >= 0x7f800000) return x+x;
k += (ix>>23)-127;
ix &= 0x007fffff;
i = (ix+(0x95f64<<3))&0x800000;
SET_FLOAT_WORD(x,ix|(i^0x3f800000)); /* normalize x or x/2 */
k += (i>>23);
f = x-(float)1.0;
if((0x007fffff&(15+ix))<16) { /* |f| < 2**-20 */
if(f==zero) if(k==0) return zero; else {dk=(float)k;
return dk*ln2_hi+dk*ln2_lo;}
R = f*f*((float)0.5-(float)0.33333333333333333*f);
if(k==0) return f-R; else {dk=(float)k;
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
}
s = f/((float)2.0+f);
dk = (float)k;
z = s*s;
i = ix-(0x6147a<<3);
w = z*z;
j = (0x6b851<<3)-ix;
t1= w*(Lg2+w*(Lg4+w*Lg6));
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
i |= j;
R = t2+t1;
if(i>0) {
hfsq=(float)0.5*f*f;
if(k==0) return f-(hfsq-s*(hfsq+R)); else
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
} else {
if(k==0) return f-s*(f-R); else
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
}
}

View File

@ -0,0 +1,308 @@
/* @(#)e_pow.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
#endif
/* __ieee754_pow(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
* always returns the correct integer provided it is
* representable.
*
* Constants :
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
zero = 0.0,
one = 1.0,
two = 2.0,
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
huge = 1.0e300,
tiny = 1.0e-300,
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
#ifdef __STDC__
double __ieee754_pow(double x, double y)
#else
double __ieee754_pow(x,y)
double x, y;
#endif
{
double z,ax,z_h,z_l,p_h,p_l;
double y1,t1,t2,r,s,t,u,v,w;
int32_t i,j,k,yisint,n;
int32_t hx,hy,ix,iy;
u_int32_t lx,ly;
EXTRACT_WORDS(hx,lx,x);
EXTRACT_WORDS(hy,ly,y);
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
if((iy|ly)==0) return one;
/* +-NaN return x+y */
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
return x+y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if(hx<0) {
if(iy>=0x43400000) yisint = 2; /* even integer y */
else if(iy>=0x3ff00000) {
k = (iy>>20)-0x3ff; /* exponent */
if(k>20) {
j = ly>>(52-k);
if((j<<(52-k))==ly) yisint = 2-(j&1);
} else if(ly==0) {
j = iy>>(20-k);
if((j<<(20-k))==iy) yisint = 2-(j&1);
}
}
}
/* special value of y */
if(ly==0) {
if (iy==0x7ff00000) { /* y is +-inf */
if(((ix-0x3ff00000)|lx)==0)
return y - y; /* inf**+-1 is NaN */
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
}
if(iy==0x3ff00000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3fe00000) { /* y is 0.5 */
if(hx>=0) /* x >= +0 */
return __ieee754_sqrt(x);
}
}
ax = fabs(x);
/* special value of x */
if(lx==0) {
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
z = ax; /*x is +-0,+-inf,+-1*/
if(hy<0) z = one/z; /* z = (1/|x|) */
if(hx<0) {
if(((ix-0x3ff00000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
} else if(yisint==1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
/* (x<0)**(non-int) is NaN */
if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
/* |y| is huge */
if(iy>0x41e00000) { /* if |y| > 2**31 */
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
}
/* over/underflow if x is not close to one */
if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
/* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = x-1; /* t has 20 trailing zeros */
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
v = t*ivln2_l-w*ivln2;
t1 = u+v;
SET_LOW_WORD(t1,0);
t2 = v-(t1-u);
} else {
double s2,s_h,s_l,t_h,t_l;
n = 0;
/* take care subnormal number */
if(ix<0x00100000)
{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
n += ((ix)>>20)-0x3ff;
j = ix&0x000fffff;
/* determine interval */
ix = j|0x3ff00000; /* normalize ix */
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
else {k=0;n+=1;ix -= 0x00100000;}
SET_HIGH_WORD(ax,ix);
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one/(ax+bp[k]);
s = u*v;
s_h = s;
SET_LOW_WORD(s_h,0);
/* t_h=ax+bp[k] High */
t_h = zero;
SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
t_l = ax - (t_h-bp[k]);
s_l = v*((u-s_h*t_h)-s_h*t_l);
/* compute log(ax) */
s2 = s*s;
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
r += s_l*(s_h+s);
s2 = s_h*s_h;
t_h = 3.0+s2+r;
SET_LOW_WORD(t_h,0);
t_l = r-((t_h-3.0)-s2);
/* u+v = s*(1+...) */
u = s_h*t_h;
v = s_l*t_h+t_l*s;
/* 2/(3log2)*(s+...) */
p_h = u+v;
SET_LOW_WORD(p_h,0);
p_l = v-(p_h-u);
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l*p_h+p_l*cp+dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (double)n;
t1 = (((z_h+z_l)+dp_h[k])+t);
SET_LOW_WORD(t1,0);
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
}
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
s = -one;/* (-ve)**(odd int) */
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
y1 = y;
SET_LOW_WORD(y1,0);
p_l = (y-y1)*t1+y*t2;
p_h = y1*t1;
z = p_l+p_h;
EXTRACT_WORDS(j,i,z);
if (j>=0x40900000) { /* z >= 1024 */
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
return s*huge*huge; /* overflow */
else {
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
}
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
return s*tiny*tiny; /* underflow */
else {
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
}
}
/*
* compute 2**(p_h+p_l)
*/
i = j&0x7fffffff;
k = (i>>20)-0x3ff;
n = 0;
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
n = j+(0x00100000>>(k+1));
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
t = zero;
SET_HIGH_WORD(t,n&~(0x000fffff>>k));
n = ((n&0x000fffff)|0x00100000)>>(20-k);
if(j<0) n = -n;
p_h -= t;
}
t = p_l+p_h;
SET_LOW_WORD(t,0);
u = t*lg2_h;
v = (p_l-(t-p_h))*lg2+t*lg2_l;
z = u+v;
w = v-(z-u);
t = z*z;
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
r = (z*t1)/(t1-two)-(w+z*w);
z = one-(r-z);
GET_HIGH_WORD(j,z);
j += (n<<20);
if((j>>20)<=0) z = __scalbn(z,n); /* subnormal output */
else SET_HIGH_WORD(z,j);
return s*z;
}

View File

@ -0,0 +1,253 @@
/* e_powf.c -- float version of e_pow.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_powf.c,v 1.6 1995/05/12 04:57:35 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
static const volatile float huge = 1.0e+30, tiny = 1.0e-30;
#ifdef __STDC__
static const float
#else
static float
#endif
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
zero = 0.0,
one = 1.0,
two = 2.0,
two24 = 16777216.0, /* 0x4b800000 */
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1 = 6.0000002384e-01, /* 0x3f19999a */
L2 = 4.2857143283e-01, /* 0x3edb6db7 */
L3 = 3.3333334327e-01, /* 0x3eaaaaab */
L4 = 2.7272811532e-01, /* 0x3e8ba305 */
L5 = 2.3066075146e-01, /* 0x3e6c3255 */
L6 = 2.0697501302e-01, /* 0x3e53f142 */
P1 = 1.6666667163e-01, /* 0x3e2aaaab */
P2 = -2.7777778450e-03, /* 0xbb360b61 */
P3 = 6.6137559770e-05, /* 0x388ab355 */
P4 = -1.6533901999e-06, /* 0xb5ddea0e */
P5 = 4.1381369442e-08, /* 0x3331bb4c */
lg2 = 6.9314718246e-01, /* 0x3f317218 */
lg2_h = 6.93145752e-01, /* 0x3f317200 */
lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */
cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
#ifdef __STDC__
float __ieee754_powf(float x, float y)
#else
float __ieee754_powf(x,y)
float x, y;
#endif
{
float z,ax,z_h,z_l,p_h,p_l;
float y1,t1,t2,r,s,t,u,v,w;
int32_t i,j,k,yisint,n;
int32_t hx,hy,ix,iy,is;
GET_FLOAT_WORD(hx,x);
GET_FLOAT_WORD(hy,y);
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
if(iy==0) return one;
/* +-NaN return x+y */
if(ix > 0x7f800000 ||
iy > 0x7f800000)
return x+y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if(hx<0) {
if(iy>=0x4b800000) yisint = 2; /* even integer y */
else if(iy>=0x3f800000) {
k = (iy>>23)-0x7f; /* exponent */
j = iy>>(23-k);
if((j<<(23-k))==iy) yisint = 2-(j&1);
}
}
/* special value of y */
if (iy==0x7f800000) { /* y is +-inf */
if (ix==0x3f800000)
return y - y; /* inf**+-1 is NaN */
else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
}
if(iy==0x3f800000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3f000000) { /* y is 0.5 */
if(hx>=0) /* x >= +0 */
return __ieee754_sqrtf(x);
}
ax = fabsf(x);
/* special value of x */
if(ix==0x7f800000||ix==0||ix==0x3f800000){
z = ax; /*x is +-0,+-inf,+-1*/
if(hy<0) z = one/z; /* z = (1/|x|) */
if(hx<0) {
if(((ix-0x3f800000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
} else if(yisint==1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
/* (x<0)**(non-int) is NaN */
if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
/* |y| is huge */
if(iy>0x4d000000) { /* if |y| > 2**27 */
/* over/underflow if x is not close to one */
if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny;
if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny;
/* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = x-1; /* t has 20 trailing zeros */
w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25));
u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
v = t*ivln2_l-w*ivln2;
t1 = u+v;
GET_FLOAT_WORD(is,t1);
SET_FLOAT_WORD(t1,is&0xfffff000);
t2 = v-(t1-u);
} else {
float s2,s_h,s_l,t_h,t_l;
n = 0;
/* take care subnormal number */
if(ix<0x00800000)
{ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); }
n += ((ix)>>23)-0x7f;
j = ix&0x007fffff;
/* determine interval */
ix = j|0x3f800000; /* normalize ix */
if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */
else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */
else {k=0;n+=1;ix -= 0x00800000;}
SET_FLOAT_WORD(ax,ix);
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one/(ax+bp[k]);
s = u*v;
s_h = s;
GET_FLOAT_WORD(is,s_h);
SET_FLOAT_WORD(s_h,is&0xfffff000);
/* t_h=ax+bp[k] High */
SET_FLOAT_WORD(t_h,((ix>>1)|0x20000000)+0x0040000+(k<<21));
t_l = ax - (t_h-bp[k]);
s_l = v*((u-s_h*t_h)-s_h*t_l);
/* compute log(ax) */
s2 = s*s;
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
r += s_l*(s_h+s);
s2 = s_h*s_h;
t_h = (float)3.0+s2+r;
GET_FLOAT_WORD(is,t_h);
SET_FLOAT_WORD(t_h,is&0xfffff000);
t_l = r-((t_h-(float)3.0)-s2);
/* u+v = s*(1+...) */
u = s_h*t_h;
v = s_l*t_h+t_l*s;
/* 2/(3log2)*(s+...) */
p_h = u+v;
GET_FLOAT_WORD(is,p_h);
SET_FLOAT_WORD(p_h,is&0xfffff000);
p_l = v-(p_h-u);
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l*p_h+p_l*cp+dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (float)n;
t1 = (((z_h+z_l)+dp_h[k])+t);
GET_FLOAT_WORD(is,t1);
SET_FLOAT_WORD(t1,is&0xfffff000);
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
}
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
s = -one; /* (-ve)**(odd int) */
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
GET_FLOAT_WORD(is,y);
SET_FLOAT_WORD(y1,is&0xfffff000);
p_l = (y-y1)*t1+y*t2;
p_h = y1*t1;
z = p_l+p_h;
GET_FLOAT_WORD(j,z);
if (j>0x43000000) /* if z > 128 */
return s*huge*huge; /* overflow */
else if (j==0x43000000) { /* if z == 128 */
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
}
else if ((j&0x7fffffff)>0x43160000) /* z <= -150 */
return s*tiny*tiny; /* underflow */
else if (j==0xc3160000){ /* z == -150 */
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
}
/*
* compute 2**(p_h+p_l)
*/
i = j&0x7fffffff;
k = (i>>23)-0x7f;
n = 0;
if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
n = j+(0x00800000>>(k+1));
k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */
SET_FLOAT_WORD(t,n&~(0x007fffff>>k));
n = ((n&0x007fffff)|0x00800000)>>(23-k);
if(j<0) n = -n;
p_h -= t;
}
t = p_l+p_h;
GET_FLOAT_WORD(is,t);
SET_FLOAT_WORD(t,is&0xfffff000);
u = t*lg2_h;
v = (p_l-(t-p_h))*lg2+t*lg2_l;
z = u+v;
w = v-(z-u);
t = z*z;
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
r = (z*t1)/(t1-two)-(w+z*w);
z = one-(r-z);
GET_FLOAT_WORD(j,z);
j += (n<<23);
if((j>>23)<=0) z = __scalbnf(z,n); /* subnormal output */
else SET_FLOAT_WORD(z,j);
return s*z;
}

View File

@ -0,0 +1,183 @@
/* @(#)e_rem_pio2.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_rem_pio2.c,v 1.8 1995/05/10 20:46:02 jtc Exp $";
#endif
/* __ieee754_rem_pio2(x,y)
*
* return the remainder of x rem pi/2 in y[0]+y[1]
* use __kernel_rem_pio2()
*/
#include "math.h"
#include "math_private.h"
/*
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
*/
#ifdef __STDC__
static const int32_t two_over_pi[] = {
#else
static int32_t two_over_pi[] = {
#endif
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
};
#ifdef __STDC__
static const int32_t npio2_hw[] = {
#else
static int32_t npio2_hw[] = {
#endif
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
0x404858EB, 0x404921FB,
};
/*
* invpio2: 53 bits of 2/pi
* pio2_1: first 33 bit of pi/2
* pio2_1t: pi/2 - pio2_1
* pio2_2: second 33 bit of pi/2
* pio2_2t: pi/2 - (pio2_1+pio2_2)
* pio2_3: third 33 bit of pi/2
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
*/
#ifdef __STDC__
static const double
#else
static double
#endif
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
#ifdef __STDC__
int32_t __ieee754_rem_pio2(double x, double *y)
#else
int32_t __ieee754_rem_pio2(x,y)
double x,y[];
#endif
{
double z,w,t,r,fn;
double tx[3];
int32_t e0,i,j,nx,n,ix,hx;
u_int32_t low;
GET_HIGH_WORD(hx,x); /* high word of x */
ix = hx&0x7fffffff;
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
{y[0] = x; y[1] = 0; return 0;}
if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
if(hx>0) {
z = x - pio2_1;
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
y[0] = z - pio2_1t;
y[1] = (z-y[0])-pio2_1t;
} else { /* near pi/2, use 33+33+53 bit pi */
z -= pio2_2;
y[0] = z - pio2_2t;
y[1] = (z-y[0])-pio2_2t;
}
return 1;
} else { /* negative x */
z = x + pio2_1;
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
y[0] = z + pio2_1t;
y[1] = (z-y[0])+pio2_1t;
} else { /* near pi/2, use 33+33+53 bit pi */
z += pio2_2;
y[0] = z + pio2_2t;
y[1] = (z-y[0])+pio2_2t;
}
return -1;
}
}
if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
t = fabs(x);
n = (int32_t) (t*invpio2+half);
fn = (double)n;
r = t-fn*pio2_1;
w = fn*pio2_1t; /* 1st round good to 85 bit */
if(n<32&&ix!=npio2_hw[n-1]) {
y[0] = r-w; /* quick check no cancellation */
} else {
u_int32_t high;
j = ix>>20;
y[0] = r-w;
GET_HIGH_WORD(high,y[0]);
i = j-((high>>20)&0x7ff);
if(i>16) { /* 2nd iteration needed, good to 118 */
t = r;
w = fn*pio2_2;
r = t-w;
w = fn*pio2_2t-((t-r)-w);
y[0] = r-w;
GET_HIGH_WORD(high,y[0]);
i = j-((high>>20)&0x7ff);
if(i>49) { /* 3rd iteration need, 151 bits acc */
t = r; /* will cover all possible cases */
w = fn*pio2_3;
r = t-w;
w = fn*pio2_3t-((t-r)-w);
y[0] = r-w;
}
}
}
y[1] = (r-y[0])-w;
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
else return n;
}
/*
* all other (large) arguments
*/
if(ix>=0x7ff00000) { /* x is inf or NaN */
y[0]=y[1]=x-x; return 0;
}
/* set z = scalbn(|x|,ilogb(x)-23) */
GET_LOW_WORD(low,x);
SET_LOW_WORD(z,low);
e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
SET_HIGH_WORD(z, ix - ((int32_t)(e0<<20)));
for(i=0;i<2;i++) {
tx[i] = (double)((int32_t)(z));
z = (z-tx[i])*two24;
}
tx[2] = z;
nx = 3;
while(tx[nx-1]==zero) nx--; /* skip zero term */
n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
return n;
}

View File

@ -0,0 +1,196 @@
/* e_rem_pio2f.c -- float version of e_rem_pio2.c
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_rem_pio2f.c,v 1.5 1995/05/10 20:46:03 jtc Exp $";
#endif
/* __ieee754_rem_pio2f(x,y)
*
* return the remainder of x rem pi/2 in y[0]+y[1]
* use __kernel_rem_pio2f()
*/
#include "math.h"
#include "math_private.h"
/*
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
*/
#ifdef __STDC__
static const int32_t two_over_pi[] = {
#else
static int32_t two_over_pi[] = {
#endif
0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC,
0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62,
0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63,
0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A,
0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09,
0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29,
0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44,
0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41,
0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C,
0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8,
0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11,
0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF,
0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E,
0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5,
0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92,
0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08,
0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0,
0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3,
0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85,
0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80,
0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA,
0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B,
};
/* This array is like the one in e_rem_pio2.c, but the numbers are
single precision and the last 8 bits are forced to 0. */
#ifdef __STDC__
static const int32_t npio2_hw[] = {
#else
static int32_t npio2_hw[] = {
#endif
0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00,
0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00,
0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100,
0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00,
0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00,
0x4242c700, 0x42490f00
};
/*
* invpio2: 24 bits of 2/pi
* pio2_1: first 17 bit of pi/2
* pio2_1t: pi/2 - pio2_1
* pio2_2: second 17 bit of pi/2
* pio2_2t: pi/2 - (pio2_1+pio2_2)
* pio2_3: third 17 bit of pi/2
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
*/
#ifdef __STDC__
static const float
#else
static float
#endif
zero = 0.0000000000e+00, /* 0x00000000 */
half = 5.0000000000e-01, /* 0x3f000000 */
two8 = 2.5600000000e+02, /* 0x43800000 */
invpio2 = 6.3661980629e-01, /* 0x3f22f984 */
pio2_1 = 1.5707855225e+00, /* 0x3fc90f80 */
pio2_1t = 1.0804334124e-05, /* 0x37354443 */
pio2_2 = 1.0804273188e-05, /* 0x37354400 */
pio2_2t = 6.0770999344e-11, /* 0x2e85a308 */
pio2_3 = 6.0770943833e-11, /* 0x2e85a300 */
pio2_3t = 6.1232342629e-17; /* 0x248d3132 */
#ifdef __STDC__
int32_t __ieee754_rem_pio2f(float x, float *y)
#else
int32_t __ieee754_rem_pio2f(x,y)
float x,y[];
#endif
{
float z,w,t,r,fn;
float tx[3];
int32_t e0,i,j,nx,n,ix,hx;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix<=0x3f490fd8) /* |x| ~<= pi/4 , no need for reduction */
{y[0] = x; y[1] = 0; return 0;}
if(ix<0x4016cbe4) { /* |x| < 3pi/4, special case with n=+-1 */
if(hx>0) {
z = x - pio2_1;
if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
y[0] = z - pio2_1t;
y[1] = (z-y[0])-pio2_1t;
} else { /* near pi/2, use 24+24+24 bit pi */
z -= pio2_2;
y[0] = z - pio2_2t;
y[1] = (z-y[0])-pio2_2t;
}
return 1;
} else { /* negative x */
z = x + pio2_1;
if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
y[0] = z + pio2_1t;
y[1] = (z-y[0])+pio2_1t;
} else { /* near pi/2, use 24+24+24 bit pi */
z += pio2_2;
y[0] = z + pio2_2t;
y[1] = (z-y[0])+pio2_2t;
}
return -1;
}
}
if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */
t = fabsf(x);
n = (int32_t) (t*invpio2+half);
fn = (float)n;
r = t-fn*pio2_1;
w = fn*pio2_1t; /* 1st round good to 40 bit */
if(n<32&&(ix&0xffffff00)!=npio2_hw[n-1]) {
y[0] = r-w; /* quick check no cancellation */
} else {
u_int32_t high;
j = ix>>23;
y[0] = r-w;
GET_FLOAT_WORD(high,y[0]);
i = j-((high>>23)&0xff);
if(i>8) { /* 2nd iteration needed, good to 57 */
t = r;
w = fn*pio2_2;
r = t-w;
w = fn*pio2_2t-((t-r)-w);
y[0] = r-w;
GET_FLOAT_WORD(high,y[0]);
i = j-((high>>23)&0xff);
if(i>25) { /* 3rd iteration need, 74 bits acc */
t = r; /* will cover all possible cases */
w = fn*pio2_3;
r = t-w;
w = fn*pio2_3t-((t-r)-w);
y[0] = r-w;
}
}
}
y[1] = (r-y[0])-w;
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
else return n;
}
/*
* all other (large) arguments
*/
if(ix>=0x7f800000) { /* x is inf or NaN */
y[0]=y[1]=x-x; return 0;
}
/* set z = scalbn(|x|,ilogb(x)-7) */
e0 = (ix>>23)-134; /* e0 = ilogb(z)-7; */
SET_FLOAT_WORD(z, ix - ((int32_t)(e0<<23)));
for(i=0;i<2;i++) {
tx[i] = (float)((int32_t)(z));
z = (z-tx[i])*two8;
}
tx[2] = z;
nx = 3;
while(tx[nx-1]==zero) nx--; /* skip zero term */
n = __kernel_rem_pio2f(tx,y,e0,nx,2,two_over_pi);
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
return n;
}

View File

@ -0,0 +1,80 @@
/* @(#)e_remainder.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_remainder.c,v 1.8 1995/05/10 20:46:05 jtc Exp $";
#endif
/* __ieee754_remainder(x,p)
* Return :
* returns x REM p = x - [x/p]*p as if in infinite
* precise arithmetic, where [x/p] is the (infinite bit)
* integer nearest x/p (in half way case choose the even one).
* Method :
* Based on fmod() return x-[x/p]chopped*p exactlp.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_remainder(double x, double p)
#else
double __ieee754_remainder(x,p)
double x,p;
#endif
{
int32_t hx,hp;
u_int32_t sx,lx,lp;
double p_half;
EXTRACT_WORDS(hx,lx,x);
EXTRACT_WORDS(hp,lp,p);
sx = hx&0x80000000;
hp &= 0x7fffffff;
hx &= 0x7fffffff;
/* purge off exception values */
if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */
if((hx>=0x7ff00000)|| /* x not finite */
((hp>=0x7ff00000)&& /* p is NaN */
(((hp-0x7ff00000)|lp)!=0)))
return (x*p)/(x*p);
if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */
if (((hx-hp)|(lx-lp))==0) return zero*x;
x = fabs(x);
p = fabs(p);
if (hp<0x00200000) {
if(x+x>p) {
x-=p;
if(x+x>=p) x -= p;
}
} else {
p_half = 0.5*p;
if(x>p_half) {
x-=p;
if(x>=p_half) x -= p;
}
}
GET_HIGH_WORD(hx,x);
SET_HIGH_WORD(x,hx^sx);
return x;
}

View File

@ -0,0 +1,73 @@
/* e_remainderf.c -- float version of e_remainder.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_remainderf.c,v 1.4 1995/05/10 20:46:08 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_remainderf(float x, float p)
#else
float __ieee754_remainderf(x,p)
float x,p;
#endif
{
int32_t hx,hp;
u_int32_t sx;
float p_half;
GET_FLOAT_WORD(hx,x);
GET_FLOAT_WORD(hp,p);
sx = hx&0x80000000;
hp &= 0x7fffffff;
hx &= 0x7fffffff;
/* purge off exception values */
if(hp==0) return (x*p)/(x*p); /* p = 0 */
if((hx>=0x7f800000)|| /* x not finite */
((hp>0x7f800000))) /* p is NaN */
return (x*p)/(x*p);
if (hp<=0x7effffff) x = __ieee754_fmodf(x,p+p); /* now x < 2p */
if ((hx-hp)==0) return zero*x;
x = fabsf(x);
p = fabsf(p);
if (hp<0x01000000) {
if(x+x>p) {
x-=p;
if(x+x>=p) x -= p;
}
} else {
p_half = (float)0.5*p;
if(x>p_half) {
x-=p;
if(x>=p_half) x -= p;
}
}
GET_FLOAT_WORD(hx,x);
SET_FLOAT_WORD(x,hx^sx);
return x;
}

View File

@ -0,0 +1,55 @@
/* @(#)e_scalb.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_scalb.c,v 1.6 1995/05/10 20:46:09 jtc Exp $";
#endif
/*
* __ieee754_scalb(x, fn) is provide for
* passing various standard test suite. One
* should use scalbn() instead.
*/
#include "math.h"
#include "math_private.h"
#ifdef _SCALB_INT
#ifdef __STDC__
double __ieee754_scalb(double x, int fn)
#else
double __ieee754_scalb(x,fn)
double x; int fn;
#endif
#else
#ifdef __STDC__
double __ieee754_scalb(double x, double fn)
#else
double __ieee754_scalb(x,fn)
double x, fn;
#endif
#endif
{
#ifdef _SCALB_INT
return scalbn(x,fn);
#else
if (isnan(x)||isnan(fn)) return x*fn;
if (!finite(fn)) {
if(fn>0.0) return x*fn;
else return x/(-fn);
}
if (rint(fn)!=fn) return (fn-fn)/(fn-fn);
if ( fn > 65000.0) return scalbn(x, 65000);
if (-fn > 65000.0) return scalbn(x,-65000);
return scalbn(x,(int)fn);
#endif
}

View File

@ -0,0 +1,52 @@
/* e_scalbf.c -- float version of e_scalb.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_scalbf.c,v 1.3 1995/05/10 20:46:12 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef _SCALB_INT
#ifdef __STDC__
float __ieee754_scalbf(float x, int fn)
#else
float __ieee754_scalbf(x,fn)
float x; int fn;
#endif
#else
#ifdef __STDC__
float __ieee754_scalbf(float x, float fn)
#else
float __ieee754_scalbf(x,fn)
float x, fn;
#endif
#endif
{
#ifdef _SCALB_INT
return __scalbnf(x,fn);
#else
if (__isnanf(x)||__isnanf(fn)) return x*fn;
if (!__finitef(fn)) {
if(fn>(float)0.0) return x*fn;
else return x/(-fn);
}
if (__rintf(fn)!=fn) return (fn-fn)/(fn-fn);
if ( fn > (float)65000.0) return __scalbnf(x, 65000);
if (-fn > (float)65000.0) return __scalbnf(x,-65000);
return __scalbnf(x,(int)fn);
#endif
}

View File

@ -0,0 +1,86 @@
/* @(#)e_sinh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_sinh.c,v 1.7 1995/05/10 20:46:13 jtc Exp $";
#endif
/* __ieee754_sinh(x)
* Method :
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
* 1. Replace x by |x| (sinh(-x) = -sinh(x)).
* 2.
* E + E/(E+1)
* 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
* 2
*
* 22 <= x <= lnovft : sinh(x) := exp(x)/2
* lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
* ln2ovft < x : sinh(x) := x*shuge (overflow)
*
* Special cases:
* sinh(x) is |x| if x is +INF, -INF, or NaN.
* only sinh(0)=0 is exact for finite x.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double one = 1.0, shuge = 1.0e307;
#else
static double one = 1.0, shuge = 1.0e307;
#endif
#ifdef __STDC__
double __ieee754_sinh(double x)
#else
double __ieee754_sinh(x)
double x;
#endif
{
double t,w,h;
int32_t ix,jx;
u_int32_t lx;
/* High word of |x|. */
GET_HIGH_WORD(jx,x);
ix = jx&0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7ff00000) return x+x;
h = 0.5;
if (jx<0) h = -h;
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
if (ix < 0x40360000) { /* |x|<22 */
if (ix<0x3e300000) /* |x|<2**-28 */
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
t = __expm1(fabs(x));
if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
return h*(t+t/(t+one));
}
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
if (ix < 0x40862E42) return h*__ieee754_exp(fabs(x));
/* |x| in [log(maxdouble), overflowthresold] */
GET_LOW_WORD(lx,x);
if (ix<0x408633CE || (ix==0x408633ce)&&(lx<=(u_int32_t)0x8fb9f87d)) {
w = __ieee754_exp(0.5*fabs(x));
t = h*w;
return t*w;
}
/* |x| > overflowthresold, sinh(x) overflow */
return x*shuge;
}

View File

@ -0,0 +1,68 @@
/* e_sinhf.c -- float version of e_sinh.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_sinhf.c,v 1.4 1995/05/10 20:46:15 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float one = 1.0, shuge = 1.0e37;
#else
static float one = 1.0, shuge = 1.0e37;
#endif
#ifdef __STDC__
float __ieee754_sinhf(float x)
#else
float __ieee754_sinhf(x)
float x;
#endif
{
float t,w,h;
int32_t ix,jx;
GET_FLOAT_WORD(jx,x);
ix = jx&0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7f800000) return x+x;
h = 0.5;
if (jx<0) h = -h;
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
if (ix < 0x41b00000) { /* |x|<22 */
if (ix<0x31800000) /* |x|<2**-28 */
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
t = __expm1f(fabsf(x));
if(ix<0x3f800000) return h*((float)2.0*t-t*t/(t+one));
return h*(t+t/(t+one));
}
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
if (ix < 0x42b17180) return h*__ieee754_expf(fabsf(x));
/* |x| in [log(maxdouble), overflowthresold] */
if (ix<=0x42b2d4fc) {
w = __ieee754_expf((float)0.5*fabsf(x));
t = h*w;
return t*w;
}
/* |x| > overflowthresold, sinh(x) overflow */
return x*shuge;
}

View File

@ -0,0 +1,453 @@
/* @(#)e_sqrt.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_sqrt.c,v 1.8 1995/05/10 20:46:17 jtc Exp $";
#endif
/* __ieee754_sqrt(x)
* Return correctly rounded sqrt.
* ------------------------------------------
* | Use the hardware sqrt if you have one |
* ------------------------------------------
* Method:
* Bit by bit method using integer arithmetic. (Slow, but portable)
* 1. Normalization
* Scale x to y in [1,4) with even powers of 2:
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
* sqrt(x) = 2^k * sqrt(y)
* 2. Bit by bit computation
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
* i 0
* i+1 2
* s = 2*q , and y = 2 * ( y - q ). (1)
* i i i i
*
* To compute q from q , one checks whether
* i+1 i
*
* -(i+1) 2
* (q + 2 ) <= y. (2)
* i
* -(i+1)
* If (2) is false, then q = q ; otherwise q = q + 2 .
* i+1 i i+1 i
*
* With some algebric manipulation, it is not difficult to see
* that (2) is equivalent to
* -(i+1)
* s + 2 <= y (3)
* i i
*
* The advantage of (3) is that s and y can be computed by
* i i
* the following recurrence formula:
* if (3) is false
*
* s = s , y = y ; (4)
* i+1 i i+1 i
*
* otherwise,
* -i -(i+1)
* s = s + 2 , y = y - s - 2 (5)
* i+1 i i+1 i i
*
* One may easily use induction to prove (4) and (5).
* Note. Since the left hand side of (3) contain only i+2 bits,
* it does not necessary to do a full (53-bit) comparison
* in (3).
* 3. Final rounding
* After generating the 53 bits result, we compute one more bit.
* Together with the remainder, we can decide whether the
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
* (it will never equal to 1/2ulp).
* The rounding mode can be detected by checking whether
* huge + tiny is equal to huge, and whether huge - tiny is
* equal to huge for some floating point number "huge" and "tiny".
*
* Special cases:
* sqrt(+-0) = +-0 ... exact
* sqrt(inf) = inf
* sqrt(-ve) = NaN ... with invalid signal
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
*
* Other methods : see the appended file at the end of the program below.
*---------------
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double one = 1.0, tiny=1.0e-300;
#else
static double one = 1.0, tiny=1.0e-300;
#endif
#ifdef __STDC__
double __ieee754_sqrt(double x)
#else
double __ieee754_sqrt(x)
double x;
#endif
{
double z;
int32_t sign = (int)0x80000000;
int32_t ix0,s0,q,m,t,i;
u_int32_t r,t1,s1,ix1,q1;
EXTRACT_WORDS(ix0,ix1,x);
/* take care of Inf and NaN */
if((ix0&0x7ff00000)==0x7ff00000) {
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
sqrt(-inf)=sNaN */
}
/* take care of zero */
if(ix0<=0) {
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
else if(ix0<0)
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
}
/* normalize x */
m = (ix0>>20);
if(m==0) { /* subnormal x */
while(ix0==0) {
m -= 21;
ix0 |= (ix1>>11); ix1 <<= 21;
}
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
m -= i-1;
ix0 |= (ix1>>(32-i));
ix1 <<= i;
}
m -= 1023; /* unbias exponent */
ix0 = (ix0&0x000fffff)|0x00100000;
if(m&1){ /* odd m, double x to make it even */
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
}
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
r = 0x00200000; /* r = moving bit from right to left */
while(r!=0) {
t = s0+r;
if(t<=ix0) {
s0 = t+r;
ix0 -= t;
q += r;
}
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
}
r = sign;
while(r!=0) {
t1 = s1+r;
t = s0;
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
s1 = t1+r;
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
ix0 -= t;
if (ix1 < t1) ix0 -= 1;
ix1 -= t1;
q1 += r;
}
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
}
/* use floating add to find out rounding direction */
if((ix0|ix1)!=0) {
z = one-tiny; /* trigger inexact flag */
if (z>=one) {
z = one+tiny;
if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
else if (z>one) {
if (q1==(u_int32_t)0xfffffffe) q+=1;
q1+=2;
} else
q1 += (q1&1);
}
}
ix0 = (q>>1)+0x3fe00000;
ix1 = q1>>1;
if ((q&1)==1) ix1 |= sign;
ix0 += (m <<20);
INSERT_WORDS(z,ix0,ix1);
return z;
}
/*
Other methods (use floating-point arithmetic)
-------------
(This is a copy of a drafted paper by Prof W. Kahan
and K.C. Ng, written in May, 1986)
Two algorithms are given here to implement sqrt(x)
(IEEE double precision arithmetic) in software.
Both supply sqrt(x) correctly rounded. The first algorithm (in
Section A) uses newton iterations and involves four divisions.
The second one uses reciproot iterations to avoid division, but
requires more multiplications. Both algorithms need the ability
to chop results of arithmetic operations instead of round them,
and the INEXACT flag to indicate when an arithmetic operation
is executed exactly with no roundoff error, all part of the
standard (IEEE 754-1985). The ability to perform shift, add,
subtract and logical AND operations upon 32-bit words is needed
too, though not part of the standard.
A. sqrt(x) by Newton Iteration
(1) Initial approximation
Let x0 and x1 be the leading and the trailing 32-bit words of
a floating point number x (in IEEE double format) respectively
1 11 52 ...widths
------------------------------------------------------
x: |s| e | f |
------------------------------------------------------
msb lsb msb lsb ...order
------------------------ ------------------------
x0: |s| e | f1 | x1: | f2 |
------------------------ ------------------------
By performing shifts and subtracts on x0 and x1 (both regarded
as integers), we obtain an 8-bit approximation of sqrt(x) as
follows.
k := (x0>>1) + 0x1ff80000;
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
Here k is a 32-bit integer and T1[] is an integer array containing
correction terms. Now magically the floating value of y (y's
leading 32-bit word is y0, the value of its trailing word is 0)
approximates sqrt(x) to almost 8-bit.
Value of T1:
static int T1[32]= {
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
(2) Iterative refinement
Apply Heron's rule three times to y, we have y approximates
sqrt(x) to within 1 ulp (Unit in the Last Place):
y := (y+x/y)/2 ... almost 17 sig. bits
y := (y+x/y)/2 ... almost 35 sig. bits
y := y-(y-x/y)/2 ... within 1 ulp
Remark 1.
Another way to improve y to within 1 ulp is:
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
2
(x-y )*y
y := y + 2* ---------- ...within 1 ulp
2
3y + x
This formula has one division fewer than the one above; however,
it requires more multiplications and additions. Also x must be
scaled in advance to avoid spurious overflow in evaluating the
expression 3y*y+x. Hence it is not recommended uless division
is slow. If division is very slow, then one should use the
reciproot algorithm given in section B.
(3) Final adjustment
By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
use the expression y+-ulp for the next representable floating
numbers (up and down) of y. Note that y+-ulp = either fixed
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
mode.
I := FALSE; ... reset INEXACT flag I
R := RZ; ... set rounding mode to round-toward-zero
z := x/y; ... chopped quotient, possibly inexact
If(not I) then { ... if the quotient is exact
if(z=y) {
I := i; ... restore inexact flag
R := r; ... restore rounded mode
return sqrt(x):=y.
} else {
z := z - ulp; ... special rounding
}
}
i := TRUE; ... sqrt(x) is inexact
If (r=RN) then z=z+ulp ... rounded-to-nearest
If (r=RP) then { ... round-toward-+inf
y = y+ulp; z=z+ulp;
}
y := y+z; ... chopped sum
y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
I := i; ... restore inexact flag
R := r; ... restore rounded mode
return sqrt(x):=y.
(4) Special cases
Square root of +inf, +-0, or NaN is itself;
Square root of a negative number is NaN with invalid signal.
B. sqrt(x) by Reciproot Iteration
(1) Initial approximation
Let x0 and x1 be the leading and the trailing 32-bit words of
a floating point number x (in IEEE double format) respectively
(see section A). By performing shifs and subtracts on x0 and y0,
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
k := 0x5fe80000 - (x0>>1);
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
Here k is a 32-bit integer and T2[] is an integer array
containing correction terms. Now magically the floating
value of y (y's leading 32-bit word is y0, the value of
its trailing word y1 is set to zero) approximates 1/sqrt(x)
to almost 7.8-bit.
Value of T2:
static int T2[64]= {
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
(2) Iterative refinement
Apply Reciproot iteration three times to y and multiply the
result by x to get an approximation z that matches sqrt(x)
to about 1 ulp. To be exact, we will have
-1ulp < sqrt(x)-z<1.0625ulp.
... set rounding mode to Round-to-nearest
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
... special arrangement for better accuracy
z := x*y ... 29 bits to sqrt(x), with z*y<1
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
(a) the term z*y in the final iteration is always less than 1;
(b) the error in the final result is biased upward so that
-1 ulp < sqrt(x) - z < 1.0625 ulp
instead of |sqrt(x)-z|<1.03125ulp.
(3) Final adjustment
By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
use the expression y+-ulp for the next representable floating
numbers (up and down) of y. Note that y+-ulp = either fixed
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
mode.
R := RZ; ... set rounding mode to round-toward-zero
switch(r) {
case RN: ... round-to-nearest
if(x<= z*(z-ulp)...chopped) z = z - ulp; else
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
break;
case RZ:case RM: ... round-to-zero or round-to--inf
R:=RP; ... reset rounding mod to round-to-+inf
if(x<z*z ... rounded up) z = z - ulp; else
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
break;
case RP: ... round-to-+inf
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
if(x>z*z ...chopped) z = z+ulp;
break;
}
Remark 3. The above comparisons can be done in fixed point. For
example, to compare x and w=z*z chopped, it suffices to compare
x1 and w1 (the trailing parts of x and w), regarding them as
two's complement integers.
...Is z an exact square root?
To determine whether z is an exact square root of x, let z1 be the
trailing part of z, and also let x0 and x1 be the leading and
trailing parts of x.
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
I := 1; ... Raise Inexact flag: z is not exact
else {
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
k := z1 >> 26; ... get z's 25-th and 26-th
fraction bits
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
}
R:= r ... restore rounded mode
return sqrt(x):=z.
If multiplication is cheaper then the foregoing red tape, the
Inexact flag can be evaluated by
I := i;
I := (z*z!=x) or I.
Note that z*z can overwrite I; this value must be sensed if it is
True.
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
zero.
--------------------
z1: | f2 |
--------------------
bit 31 bit 0
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
or even of logb(x) have the following relations:
-------------------------------------------------
bit 27,26 of z1 bit 1,0 of x1 logb(x)
-------------------------------------------------
00 00 odd and even
01 01 even
10 10 odd
10 00 even
11 01 even
-------------------------------------------------
(4) Special cases (see (4) of Section A).
*/

View File

@ -0,0 +1,97 @@
/* e_sqrtf.c -- float version of e_sqrt.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_sqrtf.c,v 1.4 1995/05/10 20:46:19 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float one = 1.0, tiny=1.0e-30;
#else
static float one = 1.0, tiny=1.0e-30;
#endif
#ifdef __STDC__
float __ieee754_sqrtf(float x)
#else
float __ieee754_sqrtf(x)
float x;
#endif
{
float z;
int32_t sign = (int)0x80000000;
int32_t ix,s,q,m,t,i;
u_int32_t r;
GET_FLOAT_WORD(ix,x);
/* take care of Inf and NaN */
if((ix&0x7f800000)==0x7f800000) {
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
sqrt(-inf)=sNaN */
}
/* take care of zero */
if(ix<=0) {
if((ix&(~sign))==0) return x;/* sqrt(+-0) = +-0 */
else if(ix<0)
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
}
/* normalize x */
m = (ix>>23);
if(m==0) { /* subnormal x */
for(i=0;(ix&0x00800000)==0;i++) ix<<=1;
m -= i-1;
}
m -= 127; /* unbias exponent */
ix = (ix&0x007fffff)|0x00800000;
if(m&1) /* odd m, double x to make it even */
ix += ix;
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix += ix;
q = s = 0; /* q = sqrt(x) */
r = 0x01000000; /* r = moving bit from right to left */
while(r!=0) {
t = s+r;
if(t<=ix) {
s = t+r;
ix -= t;
q += r;
}
ix += ix;
r>>=1;
}
/* use floating add to find out rounding direction */
if(ix!=0) {
z = one-tiny; /* trigger inexact flag */
if (z>=one) {
z = one+tiny;
if (z>one)
q += 2;
else
q += (q&1);
}
}
ix = (q>>1)+0x3f000000;
ix += (m <<23);
SET_FLOAT_WORD(z,ix);
return z;
}

View File

@ -0,0 +1,96 @@
/* @(#)k_cos.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: k_cos.c,v 1.8 1995/05/10 20:46:22 jtc Exp $";
#endif
/*
* __kernel_cos( x, y )
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
*
* Algorithm
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
* 3. cos(x) is approximated by a polynomial of degree 14 on
* [0,pi/4]
* 4 14
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
* where the remez error is
*
* | 2 4 6 8 10 12 14 | -58
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
* | |
*
* 4 6 8 10 12 14
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
* cos(x) = 1 - x*x/2 + r
* since cos(x+y) ~ cos(x) - sin(x)*y
* ~ cos(x) - x*y,
* a correction term is necessary in cos(x) and hence
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
* For better accuracy when x > 0.3, let qx = |x|/4 with
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
* Then
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the
* magnitude of the latter is at least a quarter of x*x/2,
* thus, reducing the rounding error in the subtraction.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
#ifdef __STDC__
double __kernel_cos(double x, double y)
#else
double __kernel_cos(x, y)
double x,y;
#endif
{
double a,hz,z,r,qx;
int32_t ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff; /* ix = |x|'s high word*/
if(ix<0x3e400000) { /* if x < 2**27 */
if(((int)x)==0) return one; /* generate inexact */
}
z = x*x;
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
if(ix < 0x3FD33333) /* if |x| < 0.3 */
return one - (0.5*z - (z*r - x*y));
else {
if(ix > 0x3fe90000) { /* x > 0.78125 */
qx = 0.28125;
} else {
INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */
}
hz = 0.5*z-qx;
a = one-qx;
return a - (hz - (z*r-x*y));
}
}

View File

@ -0,0 +1,64 @@
/* k_cosf.c -- float version of k_cos.c
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: k_cosf.c,v 1.4 1995/05/10 20:46:23 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const float
#else
static float
#endif
one = 1.0000000000e+00, /* 0x3f800000 */
C1 = 4.1666667908e-02, /* 0x3d2aaaab */
C2 = -1.3888889225e-03, /* 0xbab60b61 */
C3 = 2.4801587642e-05, /* 0x37d00d01 */
C4 = -2.7557314297e-07, /* 0xb493f27c */
C5 = 2.0875723372e-09, /* 0x310f74f6 */
C6 = -1.1359647598e-11; /* 0xad47d74e */
#ifdef __STDC__
float __kernel_cosf(float x, float y)
#else
float __kernel_cosf(x, y)
float x,y;
#endif
{
float a,hz,z,r,qx;
int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff; /* ix = |x|'s high word*/
if(ix<0x32000000) { /* if x < 2**27 */
if(((int)x)==0) return one; /* generate inexact */
}
z = x*x;
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
if(ix < 0x3e99999a) /* if |x| < 0.3 */
return one - ((float)0.5*z - (z*r - x*y));
else {
if(ix > 0x3f480000) { /* x > 0.78125 */
qx = (float)0.28125;
} else {
SET_FLOAT_WORD(qx,ix-0x01000000); /* x/4 */
}
hz = (float)0.5*z-qx;
a = one-qx;
return a - (hz - (z*r-x*y));
}
}

View File

@ -0,0 +1,320 @@
/* @(#)k_rem_pio2.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
#endif
/*
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
* double x[],y[]; int e0,nx,prec; int ipio2[];
*
* __kernel_rem_pio2 return the last three digits of N with
* y = x - N*pi/2
* so that |y| < pi/2.
*
* The method is to compute the integer (mod 8) and fraction parts of
* (2/pi)*x without doing the full multiplication. In general we
* skip the part of the product that are known to be a huge integer (
* more accurately, = 0 mod 8 ). Thus the number of operations are
* independent of the exponent of the input.
*
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
*
* Input parameters:
* x[] The input value (must be positive) is broken into nx
* pieces of 24-bit integers in double precision format.
* x[i] will be the i-th 24 bit of x. The scaled exponent
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
* match x's up to 24 bits.
*
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
* e0 = ilogb(z)-23
* z = scalbn(z,-e0)
* for i = 0,1,2
* x[i] = floor(z)
* z = (z-x[i])*2**24
*
*
* y[] ouput result in an array of double precision numbers.
* The dimension of y[] is:
* 24-bit precision 1
* 53-bit precision 2
* 64-bit precision 2
* 113-bit precision 3
* The actual value is the sum of them. Thus for 113-bit
* precison, one may have to do something like:
*
* long double t,w,r_head, r_tail;
* t = (long double)y[2] + (long double)y[1];
* w = (long double)y[0];
* r_head = t+w;
* r_tail = w - (r_head - t);
*
* e0 The exponent of x[0]
*
* nx dimension of x[]
*
* prec an integer indicating the precision:
* 0 24 bits (single)
* 1 53 bits (double)
* 2 64 bits (extended)
* 3 113 bits (quad)
*
* ipio2[]
* integer array, contains the (24*i)-th to (24*i+23)-th
* bit of 2/pi after binary point. The corresponding
* floating value is
*
* ipio2[i] * 2^(-24(i+1)).
*
* External function:
* double scalbn(), floor();
*
*
* Here is the description of some local variables:
*
* jk jk+1 is the initial number of terms of ipio2[] needed
* in the computation. The recommended value is 2,3,4,
* 6 for single, double, extended,and quad.
*
* jz local integer variable indicating the number of
* terms of ipio2[] used.
*
* jx nx - 1
*
* jv index for pointing to the suitable ipio2[] for the
* computation. In general, we want
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
* is an integer. Thus
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
* Hence jv = max(0,(e0-3)/24).
*
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
*
* q[] double array with integral value, representing the
* 24-bits chunk of the product of x and 2/pi.
*
* q0 the corresponding exponent of q[0]. Note that the
* exponent for q[i] would be q0-24*i.
*
* PIo2[] double precision array, obtained by cutting pi/2
* into 24 bits chunks.
*
* f[] ipio2[] in floating point
*
* iq[] integer array by breaking up q[] in 24-bits chunk.
*
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
*
* ih integer. If >0 it indicates q[] is >= 0.5, hence
* it also indicates the *sign* of the result.
*
*/
/*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
#else
static int init_jk[] = {2,3,4,6};
#endif
#ifdef __STDC__
static const double PIo2[] = {
#else
static double PIo2[] = {
#endif
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
};
#ifdef __STDC__
static const double
#else
static double
#endif
zero = 0.0,
one = 1.0,
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
#ifdef __STDC__
int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
#else
int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
double x[], y[]; int e0,nx,prec; int32_t ipio2[];
#endif
{
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
double z,fw,f[20],fq[20],q[20];
/* initialize jk*/
jk = init_jk[prec];
jp = jk;
/* determine jx,jv,q0, note that 3>q0 */
jx = nx-1;
jv = (e0-3)/24; if(jv<0) jv=0;
q0 = e0-24*(jv+1);
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
j = jv-jx; m = jx+jk;
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
/* compute q[0],q[1],...q[jk] */
for (i=0;i<=jk;i++) {
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
}
jz = jk;
recompute:
/* distill q[] into iq[] reversingly */
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
fw = (double)((int32_t)(twon24* z));
iq[i] = (int32_t)(z-two24*fw);
z = q[j-1]+fw;
}
/* compute n */
z = __scalbn(z,q0); /* actual value of z */
z -= 8.0*__floor(z*0.125); /* trim off integer >= 8 */
n = (int32_t) z;
z -= (double)n;
ih = 0;
if(q0>0) { /* need iq[jz-1] to determine n */
i = (iq[jz-1]>>(24-q0)); n += i;
iq[jz-1] -= i<<(24-q0);
ih = iq[jz-1]>>(23-q0);
}
else if(q0==0) ih = iq[jz-1]>>23;
else if(z>=0.5) ih=2;
if(ih>0) { /* q > 0.5 */
n += 1; carry = 0;
for(i=0;i<jz ;i++) { /* compute 1-q */
j = iq[i];
if(carry==0) {
if(j!=0) {
carry = 1; iq[i] = 0x1000000- j;
}
} else iq[i] = 0xffffff - j;
}
if(q0>0) { /* rare case: chance is 1 in 12 */
switch(q0) {
case 1:
iq[jz-1] &= 0x7fffff; break;
case 2:
iq[jz-1] &= 0x3fffff; break;
}
}
if(ih==2) {
z = one - z;
if(carry!=0) z -= __scalbn(one,q0);
}
}
/* check if recomputation is needed */
if(z==zero) {
j = 0;
for (i=jz-1;i>=jk;i--) j |= iq[i];
if(j==0) { /* need recomputation */
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
f[jx+i] = (double) ipio2[jv+i];
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
q[i] = fw;
}
jz += k;
goto recompute;
}
}
/* chop off zero terms */
if(z==0.0) {
jz -= 1; q0 -= 24;
while(iq[jz]==0) { jz--; q0-=24;}
} else { /* break z into 24-bit if necessary */
z = __scalbn(z,-q0);
if(z>=two24) {
fw = (double)((int32_t)(twon24*z));
iq[jz] = (int32_t)(z-two24*fw);
jz += 1; q0 += 24;
iq[jz] = (int32_t) fw;
} else iq[jz] = (int32_t) z ;
}
/* convert integer "bit" chunk to floating-point value */
fw = __scalbn(one,q0);
for(i=jz;i>=0;i--) {
q[i] = fw*(double)iq[i]; fw*=twon24;
}
/* compute PIo2[0,...,jp]*q[jz,...,0] */
for(i=jz;i>=0;i--) {
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
fq[jz-i] = fw;
}
/* compress fq[] into y[] */
switch(prec) {
case 0:
fw = 0.0;
for (i=jz;i>=0;i--) fw += fq[i];
y[0] = (ih==0)? fw: -fw;
break;
case 1:
case 2:
fw = 0.0;
for (i=jz;i>=0;i--) fw += fq[i];
y[0] = (ih==0)? fw: -fw;
fw = fq[0]-fw;
for (i=1;i<=jz;i++) fw += fq[i];
y[1] = (ih==0)? fw: -fw;
break;
case 3: /* painful */
for (i=jz;i>0;i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (i=jz;i>1;i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
if(ih==0) {
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
} else {
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
}
}
return n&7;
}

View File

@ -0,0 +1,213 @@
/* k_rem_pio2f.c -- float version of k_rem_pio2.c
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: k_rem_pio2f.c,v 1.4 1995/05/10 20:46:28 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
/* In the float version, the input parameter x contains 8 bit
integers, not 24 bit integers. 113 bit precision is not supported. */
#ifdef __STDC__
static const int init_jk[] = {4,7,9}; /* initial value for jk */
#else
static int init_jk[] = {4,7,9};
#endif
#ifdef __STDC__
static const float PIo2[] = {
#else
static float PIo2[] = {
#endif
1.5703125000e+00, /* 0x3fc90000 */
4.5776367188e-04, /* 0x39f00000 */
2.5987625122e-05, /* 0x37da0000 */
7.5437128544e-08, /* 0x33a20000 */
6.0026650317e-11, /* 0x2e840000 */
7.3896444519e-13, /* 0x2b500000 */
5.3845816694e-15, /* 0x27c20000 */
5.6378512969e-18, /* 0x22d00000 */
8.3009228831e-20, /* 0x1fc40000 */
3.2756352257e-22, /* 0x1bc60000 */
6.3331015649e-25, /* 0x17440000 */
};
#ifdef __STDC__
static const float
#else
static float
#endif
zero = 0.0,
one = 1.0,
two8 = 2.5600000000e+02, /* 0x43800000 */
twon8 = 3.9062500000e-03; /* 0x3b800000 */
#ifdef __STDC__
int __kernel_rem_pio2f(float *x, float *y, int e0, int nx, int prec, const int32_t *ipio2)
#else
int __kernel_rem_pio2f(x,y,e0,nx,prec,ipio2)
float x[], y[]; int e0,nx,prec; int32_t ipio2[];
#endif
{
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
float z,fw,f[20],fq[20],q[20];
/* initialize jk*/
jk = init_jk[prec];
jp = jk;
/* determine jx,jv,q0, note that 3>q0 */
jx = nx-1;
jv = (e0-3)/8; if(jv<0) jv=0;
q0 = e0-8*(jv+1);
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
j = jv-jx; m = jx+jk;
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (float) ipio2[j];
/* compute q[0],q[1],...q[jk] */
for (i=0;i<=jk;i++) {
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
}
jz = jk;
recompute:
/* distill q[] into iq[] reversingly */
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
fw = (float)((int32_t)(twon8* z));
iq[i] = (int32_t)(z-two8*fw);
z = q[j-1]+fw;
}
/* compute n */
z = __scalbnf(z,q0); /* actual value of z */
z -= (float)8.0*__floorf(z*(float)0.125); /* trim off integer >= 8 */
n = (int32_t) z;
z -= (float)n;
ih = 0;
if(q0>0) { /* need iq[jz-1] to determine n */
i = (iq[jz-1]>>(8-q0)); n += i;
iq[jz-1] -= i<<(8-q0);
ih = iq[jz-1]>>(7-q0);
}
else if(q0==0) ih = iq[jz-1]>>8;
else if(z>=(float)0.5) ih=2;
if(ih>0) { /* q > 0.5 */
n += 1; carry = 0;
for(i=0;i<jz ;i++) { /* compute 1-q */
j = iq[i];
if(carry==0) {
if(j!=0) {
carry = 1; iq[i] = 0x100- j;
}
} else iq[i] = 0xff - j;
}
if(q0>0) { /* rare case: chance is 1 in 12 */
switch(q0) {
case 1:
iq[jz-1] &= 0x7f; break;
case 2:
iq[jz-1] &= 0x3f; break;
}
}
if(ih==2) {
z = one - z;
if(carry!=0) z -= __scalbnf(one,q0);
}
}
/* check if recomputation is needed */
if(z==zero) {
j = 0;
for (i=jz-1;i>=jk;i--) j |= iq[i];
if(j==0) { /* need recomputation */
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
f[jx+i] = (float) ipio2[jv+i];
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
q[i] = fw;
}
jz += k;
goto recompute;
}
}
/* chop off zero terms */
if(z==(float)0.0) {
jz -= 1; q0 -= 8;
while(iq[jz]==0) { jz--; q0-=8;}
} else { /* break z into 8-bit if necessary */
z = __scalbnf(z,-q0);
if(z>=two8) {
fw = (float)((int32_t)(twon8*z));
iq[jz] = (int32_t)(z-two8*fw);
jz += 1; q0 += 8;
iq[jz] = (int32_t) fw;
} else iq[jz] = (int32_t) z ;
}
/* convert integer "bit" chunk to floating-point value */
fw = __scalbnf(one,q0);
for(i=jz;i>=0;i--) {
q[i] = fw*(float)iq[i]; fw*=twon8;
}
/* compute PIo2[0,...,jp]*q[jz,...,0] */
for(i=jz;i>=0;i--) {
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
fq[jz-i] = fw;
}
/* compress fq[] into y[] */
switch(prec) {
case 0:
fw = 0.0;
for (i=jz;i>=0;i--) fw += fq[i];
y[0] = (ih==0)? fw: -fw;
break;
case 1:
case 2:
fw = 0.0;
for (i=jz;i>=0;i--) fw += fq[i];
y[0] = (ih==0)? fw: -fw;
fw = fq[0]-fw;
for (i=1;i<=jz;i++) fw += fq[i];
y[1] = (ih==0)? fw: -fw;
break;
case 3: /* painful */
for (i=jz;i>0;i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (i=jz;i>1;i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
if(ih==0) {
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
} else {
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
}
}
return n&7;
}

Some files were not shown because too many files have changed in this diff Show More