Convert remaining complex function to generated files

Convert cpow, clog, clog10, cexp, csqrt, and cproj functions
into generated templates.  Note, ldbl-opt still retains
s_clog10l.c as the aliasing rules are non-trivial.
This commit is contained in:
Paul E. Murphy 2016-06-28 14:28:04 -05:00
parent 1dbc54f61e
commit feb62ddacb
47 changed files with 332 additions and 2206 deletions

View File

@ -1,3 +1,61 @@
2016-08-29 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
* math/Makefile (libm-gen-calls): Add cpow, clog, clog10, cexp, cproj.
(libm-calls): Remove the above.
* math/s_cexp_template.c: Update using type-generic macros.
* math/s_clog10_template.c: Likewise.
* math/s_cpow_template.c: Likewise.
* math/s_clog_template.c: Likewise.
* math/s_cproj_template.c: Likewise.
* math/s_csqrt_template.c: Likewise.
* math/s_cexp.c: Removed.
* math/s_cexpf.c: Removed.
* math/s_cexpl.c: Removed.
* math/s_clog10.c: Removed.
* math/s_clog10f.c: Removed.
* math/s_clog10l.c: Removed.
* math/s_cpow.c: Removed.
* math/s_cpowf.c: Removed.
* math/s_cpowl.c: Removed.
* math/s_clog.c: Removed.
* math/s_clogf.c: Removed.
* math/s_clogl.c: Removed.
* math/s_cproj.c: Removed.
* math/s_cprojf.c: Removed.
* math/s_cprojl.c: Removed.
* math/s_csqrt.c: Removed.
* math/s_csqrtf.c: Removed.
* math/s_csqrtl.c: Removed.
* sysdeps/alpha/fpu/s_cexpf.c: Update using templated version.
* sysdeps/alpha/fpu/s_clog10f.c: Update using templated version.
* sysdeps/alpha/fpu/s_clogf.c: Update using templated version.
* sysdeps/alpha/fpu/s_cpowf.c: Update using templated version.
* sysdeps/alpha/fpu/s_cprojf.c: Update using templated version.
* sysdeps/alpha/fpu/s_csqrtf.c: Update using templated version.
* sysdeps/ieee754/ldbl-opt/s_cexp.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_cexpl.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_clog.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_clog10.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_clog10l.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_cpow.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_cpowl.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_cproj.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_cprojl.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_csqrt.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_csqrtl.c: Removed.
* sysdeps/ieee754/ldbl-opt/s_clogl.c: Update using templated
version.
* sysdeps/m68k/m680x0/fpu/s_cexp.c: Refactor into.
* sysdeps/m68k/m680x0/fpu/s_cexp_template.c: New file.
* sysdeps/m68k/m680x0/fpu/s_cexpf.c: Removed.
* sysdeps/m68k/m680x0/fpu/s_cexpl.c: Removed.
2016-08-29 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
* s_cexp_template.c: Copy of s_cexp.c.

View File

@ -48,7 +48,8 @@ libm-support = s_lib_version s_matherr s_signgam \
gen-libm-calls = cargF conjF cimagF crealF cabsF s_cacosF \
s_cacoshF s_ccosF s_ccoshF s_casinF s_csinF s_casinhF \
k_casinhF s_csinhF k_casinhF s_csinhF s_catanhF s_catanF \
s_ctanF s_ctanhF
s_ctanF s_ctanhF s_cexpF s_clogF s_cprojF s_csqrtF \
s_cpowF s_clog10F
libm-calls = \
e_acosF e_acoshF e_asinF e_atan2F e_atanhF e_coshF e_expF e_fmodF \
@ -66,8 +67,6 @@ libm-calls = \
w_ilogbF \
s_fpclassifyF s_fmaxF s_fminF s_fdimF s_nanF s_truncF \
s_remquoF e_log2F e_exp2F s_roundF s_nearbyintF s_sincosF \
s_cexpF s_clogF \
s_csqrtF s_cpowF s_cprojF s_clog10F \
s_fmaF s_lrintF s_llrintF s_lroundF s_llroundF e_exp10F w_log2F \
s_issignalingF $(calls:s_%=m_%) x2y2m1F \
gamma_productF lgamma_negF lgamma_productF \

View File

@ -1,157 +0,0 @@
/* Return value of complex exponential function for double complex value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__cexp (__complex__ double x)
{
__complex__ double retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
double sinix, cosix;
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
if (__real__ x > t)
{
double exp_t = __ieee754_exp (t);
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
if (__real__ x > t)
{
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
}
}
if (__real__ x > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = DBL_MAX * cosix;
__imag__ retval = DBL_MAX * sinix;
}
else
{
double exp_val = __ieee754_exp (__real__ x);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
/* If the imaginary part is +-inf or NaN and the real part
is not +-inf the result is NaN + iNaN. */
__real__ retval = __nan ("");
__imag__ retval = __nan ("");
feraiseexcept (FE_INVALID);
}
}
else if (__glibc_likely (rcls == FP_INFINITE))
{
/* Real part is infinite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
double value = signbit (__real__ x) ? 0.0 : HUGE_VAL;
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = value;
__imag__ retval = __imag__ x;
}
else
{
double sinix, cosix;
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
__real__ retval = __copysign (value, cosix);
__imag__ retval = __copysign (value, sinix);
}
}
else if (signbit (__real__ x) == 0)
{
__real__ retval = HUGE_VAL;
__imag__ retval = __nan ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = 0.0;
__imag__ retval = __copysign (0.0, __imag__ x);
}
}
else
{
/* If the real part is NaN the result is NaN + iNaN unless the
imaginary part is zero. */
__real__ retval = __nan ("");
if (icls == FP_ZERO)
__imag__ retval = __imag__ x;
else
{
__imag__ retval = __nan ("");
if (rcls != FP_NAN || icls != FP_NAN)
feraiseexcept (FE_INVALID);
}
}
return retval;
}
weak_alias (__cexp, cexp)
#ifdef NO_LONG_DOUBLE
strong_alias (__cexp, __cexpl)
weak_alias (__cexp, cexpl)
#endif

View File

@ -1,4 +1,4 @@
/* Return value of complex exponential function for double complex value.
/* Return value of complex exponential function for a float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@ -23,10 +23,10 @@
#include <math_private.h>
#include <float.h>
__complex__ double
__cexp (__complex__ double x)
CFLOAT
M_DECL_FUNC (__cexp) (CFLOAT x)
{
__complex__ double retval;
CFLOAT retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
@ -36,22 +36,22 @@ __cexp (__complex__ double x)
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
double sinix, cosix;
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
FLOAT sinix, cosix;
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
cosix = 1;
}
if (__real__ x > t)
{
double exp_t = __ieee754_exp (t);
FLOAT exp_t = M_EXP (t);
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
@ -65,12 +65,12 @@ __cexp (__complex__ double x)
if (__real__ x > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = DBL_MAX * cosix;
__imag__ retval = DBL_MAX * sinix;
__real__ retval = M_MAX * cosix;
__imag__ retval = M_MAX * sinix;
}
else
{
double exp_val = __ieee754_exp (__real__ x);
FLOAT exp_val = M_EXP (__real__ x);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
@ -80,8 +80,8 @@ __cexp (__complex__ double x)
{
/* If the imaginary part is +-inf or NaN and the real part
is not +-inf the result is NaN + iNaN. */
__real__ retval = __nan ("");
__imag__ retval = __nan ("");
__real__ retval = M_NAN;
__imag__ retval = M_NAN;
feraiseexcept (FE_INVALID);
}
@ -92,7 +92,7 @@ __cexp (__complex__ double x)
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
double value = signbit (__real__ x) ? 0.0 : HUGE_VAL;
FLOAT value = signbit (__real__ x) ? 0 : M_HUGE_VAL;
if (icls == FP_ZERO)
{
@ -102,46 +102,46 @@ __cexp (__complex__ double x)
}
else
{
double sinix, cosix;
FLOAT sinix, cosix;
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
cosix = 1;
}
__real__ retval = __copysign (value, cosix);
__imag__ retval = __copysign (value, sinix);
__real__ retval = M_COPYSIGN (value, cosix);
__imag__ retval = M_COPYSIGN (value, sinix);
}
}
else if (signbit (__real__ x) == 0)
{
__real__ retval = HUGE_VAL;
__imag__ retval = __nan ("");
__real__ retval = M_HUGE_VAL;
__imag__ retval = M_NAN;
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = 0.0;
__imag__ retval = __copysign (0.0, __imag__ x);
__real__ retval = 0;
__imag__ retval = M_COPYSIGN (0, __imag__ x);
}
}
else
{
/* If the real part is NaN the result is NaN + iNaN unless the
imaginary part is zero. */
__real__ retval = __nan ("");
__real__ retval = M_NAN;
if (icls == FP_ZERO)
__imag__ retval = __imag__ x;
else
{
__imag__ retval = __nan ("");
__imag__ retval = M_NAN;
if (rcls != FP_NAN || icls != FP_NAN)
feraiseexcept (FE_INVALID);
@ -150,8 +150,8 @@ __cexp (__complex__ double x)
return retval;
}
weak_alias (__cexp, cexp)
#ifdef NO_LONG_DOUBLE
strong_alias (__cexp, __cexpl)
weak_alias (__cexp, cexpl)
declare_mgen_alias (__cexp, cexp)
#if M_LIBM_NEED_COMPAT (cexp)
declare_mgen_libm_compat (__cexp, cexp)
#endif

View File

@ -1,155 +0,0 @@
/* Return value of complex exponential function for float complex value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__cexpf (__complex__ float x)
{
__complex__ float retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2);
float sinix, cosix;
if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN))
{
__sincosf (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0f;
}
if (__real__ x > t)
{
float exp_t = __ieee754_expf (t);
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
if (__real__ x > t)
{
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
}
}
if (__real__ x > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = FLT_MAX * cosix;
__imag__ retval = FLT_MAX * sinix;
}
else
{
float exp_val = __ieee754_expf (__real__ x);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
/* If the imaginary part is +-inf or NaN and the real part
is not +-inf the result is NaN + iNaN. */
__real__ retval = __nanf ("");
__imag__ retval = __nanf ("");
feraiseexcept (FE_INVALID);
}
}
else if (__glibc_likely (rcls == FP_INFINITE))
{
/* Real part is infinite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
float value = signbit (__real__ x) ? 0.0 : HUGE_VALF;
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = value;
__imag__ retval = __imag__ x;
}
else
{
float sinix, cosix;
if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN))
{
__sincosf (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0f;
}
__real__ retval = __copysignf (value, cosix);
__imag__ retval = __copysignf (value, sinix);
}
}
else if (signbit (__real__ x) == 0)
{
__real__ retval = HUGE_VALF;
__imag__ retval = __nanf ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = 0.0;
__imag__ retval = __copysignf (0.0, __imag__ x);
}
}
else
{
/* If the real part is NaN the result is NaN + iNaN unless the
imaginary part is zero. */
__real__ retval = __nanf ("");
if (icls == FP_ZERO)
__imag__ retval = __imag__ x;
else
{
__imag__ retval = __nanf ("");
if (rcls != FP_NAN || icls != FP_NAN)
feraiseexcept (FE_INVALID);
}
}
return retval;
}
#ifndef __cexpf
weak_alias (__cexpf, cexpf)
#endif

View File

@ -1,153 +0,0 @@
/* Return value of complex exponential function for long double complex value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ long double
__cexpl (__complex__ long double x)
{
__complex__ long double retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l);
long double sinix, cosix;
if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN))
{
__sincosl (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
if (__real__ x > t)
{
long double exp_t = __ieee754_expl (t);
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
if (__real__ x > t)
{
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
}
}
if (__real__ x > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = LDBL_MAX * cosix;
__imag__ retval = LDBL_MAX * sinix;
}
else
{
long double exp_val = __ieee754_expl (__real__ x);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
/* If the imaginary part is +-inf or NaN and the real part
is not +-inf the result is NaN + iNaN. */
__real__ retval = __nanl ("");
__imag__ retval = __nanl ("");
feraiseexcept (FE_INVALID);
}
}
else if (__glibc_likely (rcls == FP_INFINITE))
{
/* Real part is infinite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
long double value = signbit (__real__ x) ? 0.0 : HUGE_VALL;
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = value;
__imag__ retval = __imag__ x;
}
else
{
long double sinix, cosix;
if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN))
{
__sincosl (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
__real__ retval = __copysignl (value, cosix);
__imag__ retval = __copysignl (value, sinix);
}
}
else if (signbit (__real__ x) == 0)
{
__real__ retval = HUGE_VALL;
__imag__ retval = __nanl ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = 0.0;
__imag__ retval = __copysignl (0.0, __imag__ x);
}
}
else
{
/* If the real part is NaN the result is NaN + iNaN unless the
imaginary part is zero. */
__real__ retval = __nanl ("");
if (icls == FP_ZERO)
__imag__ retval = __imag__ x;
else
{
__imag__ retval = __nanl ("");
if (rcls != FP_NAN || icls != FP_NAN)
feraiseexcept (FE_INVALID);
}
}
return retval;
}
weak_alias (__cexpl, cexpl)

View File

@ -1,118 +0,0 @@
/* Compute complex natural logarithm.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__clog (__complex__ double x)
{
__complex__ double result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI : 0.0;
__imag__ result = __copysign (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabs (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
double absx = fabs (__real__ x), absy = fabs (__imag__ x);
int scale = 0;
if (absx < absy)
{
double t = absx;
absx = absy;
absy = t;
}
if (absx > DBL_MAX / 2.0)
{
scale = -1;
absx = __scalbn (absx, scale);
absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0);
}
else if (absx < DBL_MIN && absy < DBL_MIN)
{
scale = DBL_MANT_DIG;
absx = __scalbn (absx, scale);
absy = __scalbn (absy, scale);
}
if (absx == 1.0 && scale == 0)
{
__real__ result = __log1p (absy * absy) / 2.0;
math_check_force_underflow_nonneg (__real__ result);
}
else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
if (absy >= DBL_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1p (d2m1) / 2.0;
}
else if (absx < 1.0
&& absx >= 0.5
&& absy < DBL_EPSILON / 2.0
&& scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
__real__ result = __log1p (d2m1) / 2.0;
}
else if (absx < 1.0
&& absx >= 0.5
&& scale == 0
&& absx * absx + absy * absy >= 0.5)
{
double d2m1 = __x2y2m1 (absx, absy);
__real__ result = __log1p (d2m1) / 2.0;
}
else
{
double d = __ieee754_hypot (absx, absy);
__real__ result = __ieee754_log (d) - scale * M_LN2;
}
__imag__ result = __ieee754_atan2 (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nan ("");
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VAL;
else
__real__ result = __nan ("");
}
return result;
}
weak_alias (__clog, clog)
#ifdef NO_LONG_DOUBLE
strong_alias (__clog, __clogl)
weak_alias (__clog, clogl)
#endif

View File

@ -1,124 +0,0 @@
/* Compute complex base 10 logarithm.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* log_10 (2). */
#define M_LOG10_2 0.3010299956639811952137388947244930267682
/* pi * log10 (e). */
#define M_PI_LOG10E 1.364376353841841347485783625431355770210
__complex__ double
__clog10 (__complex__ double x)
{
__complex__ double result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI_LOG10E : 0.0;
__imag__ result = __copysign (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabs (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
double absx = fabs (__real__ x), absy = fabs (__imag__ x);
int scale = 0;
if (absx < absy)
{
double t = absx;
absx = absy;
absy = t;
}
if (absx > DBL_MAX / 2.0)
{
scale = -1;
absx = __scalbn (absx, scale);
absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0);
}
else if (absx < DBL_MIN && absy < DBL_MIN)
{
scale = DBL_MANT_DIG;
absx = __scalbn (absx, scale);
absy = __scalbn (absy, scale);
}
if (absx == 1.0 && scale == 0)
{
__real__ result = __log1p (absy * absy) * (M_LOG10E / 2.0);
math_check_force_underflow_nonneg (__real__ result);
}
else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
if (absy >= DBL_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
}
else if (absx < 1.0
&& absx >= 0.5
&& absy < DBL_EPSILON / 2.0
&& scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
}
else if (absx < 1.0
&& absx >= 0.5
&& scale == 0
&& absx * absx + absy * absy >= 0.5)
{
double d2m1 = __x2y2m1 (absx, absy);
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
}
else
{
double d = __ieee754_hypot (absx, absy);
__real__ result = __ieee754_log10 (d) - scale * M_LOG10_2;
}
__imag__ result = M_LOG10E * __ieee754_atan2 (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nan ("");
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VAL;
else
__real__ result = __nan ("");
}
return result;
}
weak_alias (__clog10, clog10)
#ifdef NO_LONG_DOUBLE
strong_alias (__clog10, __clog10l)
weak_alias (__clog10, clog10l)
#endif

View File

@ -23,102 +23,106 @@
#include <float.h>
/* log_10 (2). */
#define M_LOG10_2 0.3010299956639811952137388947244930267682
#define LOG10_2 M_LIT (0.3010299956639811952137388947244930267682)
/* pi * log10 (e). */
#define M_PI_LOG10E 1.364376353841841347485783625431355770210
#define PI_LOG10E M_LIT (1.364376353841841347485783625431355770210)
__complex__ double
__clog10 (__complex__ double x)
CFLOAT
M_DECL_FUNC (__clog10) (CFLOAT x)
{
__complex__ double result;
CFLOAT result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI_LOG10E : 0.0;
__imag__ result = __copysign (__imag__ result, __imag__ x);
__imag__ result = signbit (__real__ x) ? PI_LOG10E : 0;
__imag__ result = M_COPYSIGN (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabs (__real__ x);
__real__ result = -1 / M_FABS (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
double absx = fabs (__real__ x), absy = fabs (__imag__ x);
FLOAT absx = M_FABS (__real__ x), absy = M_FABS (__imag__ x);
int scale = 0;
if (absx < absy)
{
double t = absx;
FLOAT t = absx;
absx = absy;
absy = t;
}
if (absx > DBL_MAX / 2.0)
if (absx > M_MAX / 2)
{
scale = -1;
absx = __scalbn (absx, scale);
absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0);
absx = M_SCALBN (absx, scale);
absy = (absy >= M_MIN * 2 ? M_SCALBN (absy, scale) : 0);
}
else if (absx < DBL_MIN && absy < DBL_MIN)
else if (absx < M_MIN && absy < M_MIN)
{
scale = DBL_MANT_DIG;
absx = __scalbn (absx, scale);
absy = __scalbn (absy, scale);
scale = M_MANT_DIG;
absx = M_SCALBN (absx, scale);
absy = M_SCALBN (absy, scale);
}
if (absx == 1.0 && scale == 0)
if (absx == 1 && scale == 0)
{
__real__ result = __log1p (absy * absy) * (M_LOG10E / 2.0);
__real__ result = (M_LOG1P (absy * absy)
* ((FLOAT) M_MLIT (M_LOG10E) / 2));
math_check_force_underflow_nonneg (__real__ result);
}
else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0)
else if (absx > 1 && absx < 2 && absy < 1 && scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
if (absy >= DBL_EPSILON)
FLOAT d2m1 = (absx - 1) * (absx + 1);
if (absy >= M_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
__real__ result = M_LOG1P (d2m1) * ((FLOAT) M_MLIT (M_LOG10E) / 2);
}
else if (absx < 1.0
&& absx >= 0.5
&& absy < DBL_EPSILON / 2.0
else if (absx < 1
&& absx >= M_LIT (0.5)
&& absy < M_EPSILON / 2
&& scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
FLOAT d2m1 = (absx - 1) * (absx + 1);
__real__ result = M_LOG1P (d2m1) * ((FLOAT) M_MLIT (M_LOG10E) / 2);
}
else if (absx < 1.0
&& absx >= 0.5
else if (absx < 1
&& absx >= M_LIT (0.5)
&& scale == 0
&& absx * absx + absy * absy >= 0.5)
&& absx * absx + absy * absy >= M_LIT (0.5))
{
double d2m1 = __x2y2m1 (absx, absy);
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
FLOAT d2m1 = M_SUF (__x2y2m1) (absx, absy);
__real__ result = M_LOG1P (d2m1) * ((FLOAT) M_MLIT (M_LOG10E) / 2);
}
else
{
double d = __ieee754_hypot (absx, absy);
__real__ result = __ieee754_log10 (d) - scale * M_LOG10_2;
FLOAT d = M_HYPOT (absx, absy);
__real__ result = M_SUF (__ieee754_log10) (d) - scale * LOG10_2;
}
__imag__ result = M_LOG10E * __ieee754_atan2 (__imag__ x, __real__ x);
__imag__ result = M_MLIT (M_LOG10E) * M_ATAN2 (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nan ("");
__imag__ result = M_NAN;
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VAL;
__real__ result = M_HUGE_VAL;
else
__real__ result = __nan ("");
__real__ result = M_NAN;
}
return result;
}
weak_alias (__clog10, clog10)
#ifdef NO_LONG_DOUBLE
strong_alias (__clog10, __clog10l)
weak_alias (__clog10, clog10l)
declare_mgen_alias (__clog10, clog10)
#if M_LIBM_NEED_COMPAT (clog10)
/* __clog10 is also a public symbol. */
declare_mgen_libm_compat (__clog10, __clog10)
declare_mgen_libm_compat (clog10, clog10)
#endif

View File

@ -1,122 +0,0 @@
/* Compute complex base 10 logarithm.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* log_10 (2). */
#define M_LOG10_2f 0.3010299956639811952137388947244930267682f
/* pi * log10 (e). */
#define M_PI_LOG10Ef 1.364376353841841347485783625431355770210f
__complex__ float
__clog10f (__complex__ float x)
{
__complex__ float result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI_LOG10Ef : 0.0;
__imag__ result = __copysignf (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabsf (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
float absx = fabsf (__real__ x), absy = fabsf (__imag__ x);
int scale = 0;
if (absx < absy)
{
float t = absx;
absx = absy;
absy = t;
}
if (absx > FLT_MAX / 2.0f)
{
scale = -1;
absx = __scalbnf (absx, scale);
absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f);
}
else if (absx < FLT_MIN && absy < FLT_MIN)
{
scale = FLT_MANT_DIG;
absx = __scalbnf (absx, scale);
absy = __scalbnf (absy, scale);
}
if (absx == 1.0f && scale == 0)
{
__real__ result = __log1pf (absy * absy) * ((float) M_LOG10E / 2.0f);
math_check_force_underflow_nonneg (__real__ result);
}
else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0)
{
float d2m1 = (absx - 1.0f) * (absx + 1.0f);
if (absy >= FLT_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
}
else if (absx < 1.0f
&& absx >= 0.5f
&& absy < FLT_EPSILON / 2.0f
&& scale == 0)
{
float d2m1 = (absx - 1.0f) * (absx + 1.0f);
__real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
}
else if (absx < 1.0f
&& absx >= 0.5f
&& scale == 0
&& absx * absx + absy * absy >= 0.5f)
{
float d2m1 = __x2y2m1f (absx, absy);
__real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
}
else
{
float d = __ieee754_hypotf (absx, absy);
__real__ result = __ieee754_log10f (d) - scale * M_LOG10_2f;
}
__imag__ result = M_LOG10E * __ieee754_atan2f (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nanf ("");
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VALF;
else
__real__ result = __nanf ("");
}
return result;
}
#ifndef __clog10f
weak_alias (__clog10f, clog10f)
#endif

View File

@ -1,127 +0,0 @@
/* Compute complex base 10 logarithm.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious underflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
/* log_10 (2). */
#define M_LOG10_2l 0.3010299956639811952137388947244930267682L
/* pi * log10 (e). */
#define M_PI_LOG10El 1.364376353841841347485783625431355770210L
__complex__ long double
__clog10l (__complex__ long double x)
{
__complex__ long double result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI_LOG10El : 0.0;
__imag__ result = __copysignl (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabsl (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
long double absx = fabsl (__real__ x), absy = fabsl (__imag__ x);
int scale = 0;
if (absx < absy)
{
long double t = absx;
absx = absy;
absy = t;
}
if (absx > LDBL_MAX / 2.0L)
{
scale = -1;
absx = __scalbnl (absx, scale);
absy = (absy >= LDBL_MIN * 2.0L ? __scalbnl (absy, scale) : 0.0L);
}
else if (absx < LDBL_MIN && absy < LDBL_MIN)
{
scale = LDBL_MANT_DIG;
absx = __scalbnl (absx, scale);
absy = __scalbnl (absy, scale);
}
if (absx == 1.0L && scale == 0)
{
__real__ result = __log1pl (absy * absy) * (M_LOG10El / 2.0L);
math_check_force_underflow_nonneg (__real__ result);
}
else if (absx > 1.0L && absx < 2.0L && absy < 1.0L && scale == 0)
{
long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
if (absy >= LDBL_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
}
else if (absx < 1.0L
&& absx >= 0.5L
&& absy < LDBL_EPSILON / 2.0L
&& scale == 0)
{
long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
__real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
}
else if (absx < 1.0L
&& absx >= 0.5L
&& scale == 0
&& absx * absx + absy * absy >= 0.5L)
{
long double d2m1 = __x2y2m1l (absx, absy);
__real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
}
else
{
long double d = __ieee754_hypotl (absx, absy);
__real__ result = __ieee754_log10l (d) - scale * M_LOG10_2l;
}
__imag__ result = M_LOG10El * __ieee754_atan2l (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nanl ("");
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VALL;
else
__real__ result = __nanl ("");
}
return result;
}
weak_alias (__clog10l, clog10l)

View File

@ -22,97 +22,98 @@
#include <math_private.h>
#include <float.h>
__complex__ double
__clog (__complex__ double x)
CFLOAT
M_DECL_FUNC (__clog) (CFLOAT x)
{
__complex__ double result;
CFLOAT result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI : 0.0;
__imag__ result = __copysign (__imag__ result, __imag__ x);
__imag__ result = signbit (__real__ x) ? (FLOAT) M_MLIT (M_PI) : 0;
__imag__ result = M_COPYSIGN (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabs (__real__ x);
__real__ result = -1 / M_FABS (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
double absx = fabs (__real__ x), absy = fabs (__imag__ x);
FLOAT absx = M_FABS (__real__ x), absy = M_FABS (__imag__ x);
int scale = 0;
if (absx < absy)
{
double t = absx;
FLOAT t = absx;
absx = absy;
absy = t;
}
if (absx > DBL_MAX / 2.0)
if (absx > M_MAX / 2)
{
scale = -1;
absx = __scalbn (absx, scale);
absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0);
absx = M_SCALBN (absx, scale);
absy = (absy >= M_MIN * 2 ? M_SCALBN (absy, scale) : 0);
}
else if (absx < DBL_MIN && absy < DBL_MIN)
else if (absx < M_MIN && absy < M_MIN)
{
scale = DBL_MANT_DIG;
absx = __scalbn (absx, scale);
absy = __scalbn (absy, scale);
scale = M_MANT_DIG;
absx = M_SCALBN (absx, scale);
absy = M_SCALBN (absy, scale);
}
if (absx == 1.0 && scale == 0)
if (absx == 1 && scale == 0)
{
__real__ result = __log1p (absy * absy) / 2.0;
__real__ result = M_LOG1P (absy * absy) / 2;
math_check_force_underflow_nonneg (__real__ result);
}
else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0)
else if (absx > 1 && absx < 2 && absy < 1 && scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
if (absy >= DBL_EPSILON)
FLOAT d2m1 = (absx - 1) * (absx + 1);
if (absy >= M_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1p (d2m1) / 2.0;
__real__ result = M_LOG1P (d2m1) / 2;
}
else if (absx < 1.0
&& absx >= 0.5
&& absy < DBL_EPSILON / 2.0
else if (absx < 1
&& absx >= M_LIT (0.5)
&& absy < M_EPSILON / 2
&& scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
__real__ result = __log1p (d2m1) / 2.0;
FLOAT d2m1 = (absx - 1) * (absx + 1);
__real__ result = M_LOG1P (d2m1) / 2;
}
else if (absx < 1.0
&& absx >= 0.5
else if (absx < 1
&& absx >= M_LIT (0.5)
&& scale == 0
&& absx * absx + absy * absy >= 0.5)
&& absx * absx + absy * absy >= M_LIT (0.5))
{
double d2m1 = __x2y2m1 (absx, absy);
__real__ result = __log1p (d2m1) / 2.0;
FLOAT d2m1 = M_SUF (__x2y2m1) (absx, absy);
__real__ result = M_LOG1P (d2m1) / 2;
}
else
{
double d = __ieee754_hypot (absx, absy);
__real__ result = __ieee754_log (d) - scale * M_LN2;
FLOAT d = M_HYPOT (absx, absy);
__real__ result = M_LOG (d) - scale * (FLOAT) M_MLIT (M_LN2);
}
__imag__ result = __ieee754_atan2 (__imag__ x, __real__ x);
__imag__ result = M_ATAN2 (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nan ("");
__imag__ result = M_NAN;
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VAL;
__real__ result = M_HUGE_VAL;
else
__real__ result = __nan ("");
__real__ result = M_NAN;
}
return result;
}
weak_alias (__clog, clog)
#ifdef NO_LONG_DOUBLE
strong_alias (__clog, __clogl)
weak_alias (__clog, clogl)
declare_mgen_alias (__clog, clog)
#if M_LIBM_NEED_COMPAT (clog)
declare_mgen_libm_compat (__clog, clog)
#endif

View File

@ -1,116 +0,0 @@
/* Compute complex natural logarithm.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__clogf (__complex__ float x)
{
__complex__ float result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI : 0.0;
__imag__ result = __copysignf (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabsf (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
float absx = fabsf (__real__ x), absy = fabsf (__imag__ x);
int scale = 0;
if (absx < absy)
{
float t = absx;
absx = absy;
absy = t;
}
if (absx > FLT_MAX / 2.0f)
{
scale = -1;
absx = __scalbnf (absx, scale);
absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f);
}
else if (absx < FLT_MIN && absy < FLT_MIN)
{
scale = FLT_MANT_DIG;
absx = __scalbnf (absx, scale);
absy = __scalbnf (absy, scale);
}
if (absx == 1.0f && scale == 0)
{
__real__ result = __log1pf (absy * absy) / 2.0f;
math_check_force_underflow_nonneg (__real__ result);
}
else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0)
{
float d2m1 = (absx - 1.0f) * (absx + 1.0f);
if (absy >= FLT_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1pf (d2m1) / 2.0f;
}
else if (absx < 1.0f
&& absx >= 0.5f
&& absy < FLT_EPSILON / 2.0f
&& scale == 0)
{
float d2m1 = (absx - 1.0f) * (absx + 1.0f);
__real__ result = __log1pf (d2m1) / 2.0f;
}
else if (absx < 1.0f
&& absx >= 0.5f
&& scale == 0
&& absx * absx + absy * absy >= 0.5f)
{
float d2m1 = __x2y2m1f (absx, absy);
__real__ result = __log1pf (d2m1) / 2.0f;
}
else
{
float d = __ieee754_hypotf (absx, absy);
__real__ result = __ieee754_logf (d) - scale * (float) M_LN2;
}
__imag__ result = __ieee754_atan2f (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nanf ("");
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VALF;
else
__real__ result = __nanf ("");
}
return result;
}
#ifndef __clogf
weak_alias (__clogf, clogf)
#endif

View File

@ -1,121 +0,0 @@
/* Compute complex natural logarithm.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious underflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
__complex__ long double
__clogl (__complex__ long double x)
{
__complex__ long double result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PIl : 0.0;
__imag__ result = __copysignl (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabsl (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
long double absx = fabsl (__real__ x), absy = fabsl (__imag__ x);
int scale = 0;
if (absx < absy)
{
long double t = absx;
absx = absy;
absy = t;
}
if (absx > LDBL_MAX / 2.0L)
{
scale = -1;
absx = __scalbnl (absx, scale);
absy = (absy >= LDBL_MIN * 2.0L ? __scalbnl (absy, scale) : 0.0L);
}
else if (absx < LDBL_MIN && absy < LDBL_MIN)
{
scale = LDBL_MANT_DIG;
absx = __scalbnl (absx, scale);
absy = __scalbnl (absy, scale);
}
if (absx == 1.0L && scale == 0)
{
__real__ result = __log1pl (absy * absy) / 2.0L;
math_check_force_underflow_nonneg (__real__ result);
}
else if (absx > 1.0L && absx < 2.0L && absy < 1.0L && scale == 0)
{
long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
if (absy >= LDBL_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1pl (d2m1) / 2.0L;
}
else if (absx < 1.0L
&& absx >= 0.5L
&& absy < LDBL_EPSILON / 2.0L
&& scale == 0)
{
long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
__real__ result = __log1pl (d2m1) / 2.0L;
}
else if (absx < 1.0L
&& absx >= 0.5L
&& scale == 0
&& absx * absx + absy * absy >= 0.5L)
{
long double d2m1 = __x2y2m1l (absx, absy);
__real__ result = __log1pl (d2m1) / 2.0L;
}
else
{
long double d = __ieee754_hypotl (absx, absy);
__real__ result = __ieee754_logl (d) - scale * M_LN2l;
}
__imag__ result = __ieee754_atan2l (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nanl ("");
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VALL;
else
__real__ result = __nanl ("");
}
return result;
}
weak_alias (__clogl, clogl)

View File

@ -1,33 +0,0 @@
/* Complex power of double values.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
__complex__ double
__cpow (__complex__ double x, __complex__ double c)
{
return __cexp (c * __clog (x));
}
weak_alias (__cpow, cpow)
#ifdef NO_LONG_DOUBLE
strong_alias (__cpow, __cpowl)
weak_alias (__cpow, cpowl)
#endif

View File

@ -1,4 +1,4 @@
/* Complex power of double values.
/* Complex power of float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@ -20,14 +20,14 @@
#include <complex.h>
#include <math.h>
__complex__ double
__cpow (__complex__ double x, __complex__ double c)
CFLOAT
M_DECL_FUNC (__cpow) (CFLOAT x, CFLOAT c)
{
return __cexp (c * __clog (x));
return M_SUF (__cexp) (c * M_SUF (__clog) (x));
}
weak_alias (__cpow, cpow)
#ifdef NO_LONG_DOUBLE
strong_alias (__cpow, __cpowl)
weak_alias (__cpow, cpowl)
declare_mgen_alias (__cpow, cpow)
#if M_LIBM_NEED_COMPAT (cpow)
declare_mgen_libm_compat (__cpow, cpow)
#endif

View File

@ -1,31 +0,0 @@
/* Complex power of float values.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
__complex__ float
__cpowf (__complex__ float x, __complex__ float c)
{
return __cexpf (c * __clogf (x));
}
#ifndef __cpowf
weak_alias (__cpowf, cpowf)
#endif

View File

@ -1,29 +0,0 @@
/* Complex power of long double values.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
__complex__ long double
__cpowl (__complex__ long double x, __complex__ long double c)
{
return __cexpl (c * __clogl (x));
}
weak_alias (__cpowl, cpowl)

View File

@ -1,44 +0,0 @@
/* Compute projection of complex double value to Riemann sphere.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
__complex__ double
__cproj (__complex__ double x)
{
if (isinf (__real__ x) || isinf (__imag__ x))
{
__complex__ double res;
__real__ res = INFINITY;
__imag__ res = __copysign (0.0, __imag__ x);
return res;
}
return x;
}
weak_alias (__cproj, cproj)
#ifdef NO_LONG_DOUBLE
strong_alias (__cproj, __cprojl)
weak_alias (__cproj, cprojl)
#endif

View File

@ -1,4 +1,4 @@
/* Compute projection of complex double value to Riemann sphere.
/* Compute projection of complex float type value to Riemann sphere.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@ -22,23 +22,24 @@
#include <math_private.h>
__complex__ double
__cproj (__complex__ double x)
CFLOAT
M_DECL_FUNC (__cproj) (CFLOAT x)
{
if (isinf (__real__ x) || isinf (__imag__ x))
{
__complex__ double res;
CFLOAT res;
__real__ res = INFINITY;
__imag__ res = __copysign (0.0, __imag__ x);
__imag__ res = M_COPYSIGN (0, __imag__ x);
return res;
}
return x;
}
weak_alias (__cproj, cproj)
#ifdef NO_LONG_DOUBLE
strong_alias (__cproj, __cprojl)
weak_alias (__cproj, cprojl)
declare_mgen_alias (__cproj, cproj)
#if M_LIBM_NEED_COMPAT (cproj)
declare_mgen_libm_compat (__cproj, cproj)
#endif

View File

@ -1,42 +0,0 @@
/* Compute projection of complex float value to Riemann sphere.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
__complex__ float
__cprojf (__complex__ float x)
{
if (isinf (__real__ x) || isinf (__imag__ x))
{
__complex__ float res;
__real__ res = INFINITY;
__imag__ res = __copysignf (0.0, __imag__ x);
return res;
}
return x;
}
#ifndef __cprojf
weak_alias (__cprojf, cprojf)
#endif

View File

@ -1,40 +0,0 @@
/* Compute projection of complex long double value to Riemann sphere.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
__complex__ long double
__cprojl (__complex__ long double x)
{
if (isinf (__real__ x) || isinf (__imag__ x))
{
__complex__ long double res;
__real__ res = INFINITY;
__imag__ res = __copysignl (0.0, __imag__ x);
return res;
}
return x;
}
weak_alias (__cprojl, cprojl)

View File

@ -1,165 +0,0 @@
/* Complex square root of double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__csqrt (__complex__ double x)
{
__complex__ double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (icls == FP_INFINITE)
{
__real__ res = HUGE_VAL;
__imag__ res = __imag__ x;
}
else if (rcls == FP_INFINITE)
{
if (__real__ x < 0.0)
{
__real__ res = icls == FP_NAN ? __nan ("") : 0;
__imag__ res = __copysign (HUGE_VAL, __imag__ x);
}
else
{
__real__ res = __real__ x;
__imag__ res = (icls == FP_NAN
? __nan ("") : __copysign (0.0, __imag__ x));
}
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
}
}
else
{
if (__glibc_unlikely (icls == FP_ZERO))
{
if (__real__ x < 0.0)
{
__real__ res = 0.0;
__imag__ res = __copysign (__ieee754_sqrt (-__real__ x),
__imag__ x);
}
else
{
__real__ res = fabs (__ieee754_sqrt (__real__ x));
__imag__ res = __copysign (0.0, __imag__ x);
}
}
else if (__glibc_unlikely (rcls == FP_ZERO))
{
double r;
if (fabs (__imag__ x) >= 2.0 * DBL_MIN)
r = __ieee754_sqrt (0.5 * fabs (__imag__ x));
else
r = 0.5 * __ieee754_sqrt (2.0 * fabs (__imag__ x));
__real__ res = r;
__imag__ res = __copysign (r, __imag__ x);
}
else
{
double d, r, s;
int scale = 0;
if (fabs (__real__ x) > DBL_MAX / 4.0)
{
scale = 1;
__real__ x = __scalbn (__real__ x, -2 * scale);
__imag__ x = __scalbn (__imag__ x, -2 * scale);
}
else if (fabs (__imag__ x) > DBL_MAX / 4.0)
{
scale = 1;
if (fabs (__real__ x) >= 4.0 * DBL_MIN)
__real__ x = __scalbn (__real__ x, -2 * scale);
else
__real__ x = 0.0;
__imag__ x = __scalbn (__imag__ x, -2 * scale);
}
else if (fabs (__real__ x) < 2.0 * DBL_MIN
&& fabs (__imag__ x) < 2.0 * DBL_MIN)
{
scale = -((DBL_MANT_DIG + 1) / 2);
__real__ x = __scalbn (__real__ x, -2 * scale);
__imag__ x = __scalbn (__imag__ x, -2 * scale);
}
d = __ieee754_hypot (__real__ x, __imag__ x);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (__real__ x > 0)
{
r = __ieee754_sqrt (0.5 * (d + __real__ x));
if (scale == 1 && fabs (__imag__ x) < 1.0)
{
/* Avoid possible intermediate underflow. */
s = __imag__ x / r;
r = __scalbn (r, scale);
scale = 0;
}
else
s = 0.5 * (__imag__ x / r);
}
else
{
s = __ieee754_sqrt (0.5 * (d - __real__ x));
if (scale == 1 && fabs (__imag__ x) < 1.0)
{
/* Avoid possible intermediate underflow. */
r = fabs (__imag__ x / s);
s = __scalbn (s, scale);
scale = 0;
}
else
r = fabs (0.5 * (__imag__ x / s));
}
if (scale)
{
r = __scalbn (r, scale);
s = __scalbn (s, scale);
}
math_check_force_underflow (r);
math_check_force_underflow (s);
__real__ res = r;
__imag__ res = __copysign (s, __imag__ x);
}
}
return res;
}
weak_alias (__csqrt, csqrt)
#ifdef NO_LONG_DOUBLE
strong_alias (__csqrt, __csqrtl)
weak_alias (__csqrt, csqrtl)
#endif

View File

@ -1,4 +1,4 @@
/* Complex square root of double value.
/* Complex square root of a float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
@ -23,10 +23,10 @@
#include <math_private.h>
#include <float.h>
__complex__ double
__csqrt (__complex__ double x)
CFLOAT
M_DECL_FUNC (__csqrt) (CFLOAT x)
{
__complex__ double res;
CFLOAT res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
@ -34,132 +34,131 @@ __csqrt (__complex__ double x)
{
if (icls == FP_INFINITE)
{
__real__ res = HUGE_VAL;
__real__ res = M_HUGE_VAL;
__imag__ res = __imag__ x;
}
else if (rcls == FP_INFINITE)
{
if (__real__ x < 0.0)
if (__real__ x < 0)
{
__real__ res = icls == FP_NAN ? __nan ("") : 0;
__imag__ res = __copysign (HUGE_VAL, __imag__ x);
__real__ res = icls == FP_NAN ? M_NAN : 0;
__imag__ res = M_COPYSIGN (M_HUGE_VAL, __imag__ x);
}
else
{
__real__ res = __real__ x;
__imag__ res = (icls == FP_NAN
? __nan ("") : __copysign (0.0, __imag__ x));
? M_NAN : M_COPYSIGN (0, __imag__ x));
}
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
__real__ res = M_NAN;
__imag__ res = M_NAN;
}
}
else
{
if (__glibc_unlikely (icls == FP_ZERO))
{
if (__real__ x < 0.0)
if (__real__ x < 0)
{
__real__ res = 0.0;
__imag__ res = __copysign (__ieee754_sqrt (-__real__ x),
__imag__ x);
__real__ res = 0;
__imag__ res = M_COPYSIGN (M_SQRT (-__real__ x), __imag__ x);
}
else
{
__real__ res = fabs (__ieee754_sqrt (__real__ x));
__imag__ res = __copysign (0.0, __imag__ x);
__real__ res = M_FABS (M_SQRT (__real__ x));
__imag__ res = M_COPYSIGN (0, __imag__ x);
}
}
else if (__glibc_unlikely (rcls == FP_ZERO))
{
double r;
if (fabs (__imag__ x) >= 2.0 * DBL_MIN)
r = __ieee754_sqrt (0.5 * fabs (__imag__ x));
FLOAT r;
if (M_FABS (__imag__ x) >= 2 * M_MIN)
r = M_SQRT (M_LIT (0.5) * M_FABS (__imag__ x));
else
r = 0.5 * __ieee754_sqrt (2.0 * fabs (__imag__ x));
r = M_LIT (0.5) * M_SQRT (2 * M_FABS (__imag__ x));
__real__ res = r;
__imag__ res = __copysign (r, __imag__ x);
__imag__ res = M_COPYSIGN (r, __imag__ x);
}
else
{
double d, r, s;
FLOAT d, r, s;
int scale = 0;
if (fabs (__real__ x) > DBL_MAX / 4.0)
if (M_FABS (__real__ x) > M_MAX / 4)
{
scale = 1;
__real__ x = __scalbn (__real__ x, -2 * scale);
__imag__ x = __scalbn (__imag__ x, -2 * scale);
__real__ x = M_SCALBN (__real__ x, -2 * scale);
__imag__ x = M_SCALBN (__imag__ x, -2 * scale);
}
else if (fabs (__imag__ x) > DBL_MAX / 4.0)
else if (M_FABS (__imag__ x) > M_MAX / 4)
{
scale = 1;
if (fabs (__real__ x) >= 4.0 * DBL_MIN)
__real__ x = __scalbn (__real__ x, -2 * scale);
if (M_FABS (__real__ x) >= 4 * M_MIN)
__real__ x = M_SCALBN (__real__ x, -2 * scale);
else
__real__ x = 0.0;
__imag__ x = __scalbn (__imag__ x, -2 * scale);
__real__ x = 0;
__imag__ x = M_SCALBN (__imag__ x, -2 * scale);
}
else if (fabs (__real__ x) < 2.0 * DBL_MIN
&& fabs (__imag__ x) < 2.0 * DBL_MIN)
else if (M_FABS (__real__ x) < 2 * M_MIN
&& M_FABS (__imag__ x) < 2 * M_MIN)
{
scale = -((DBL_MANT_DIG + 1) / 2);
__real__ x = __scalbn (__real__ x, -2 * scale);
__imag__ x = __scalbn (__imag__ x, -2 * scale);
scale = -((M_MANT_DIG + 1) / 2);
__real__ x = M_SCALBN (__real__ x, -2 * scale);
__imag__ x = M_SCALBN (__imag__ x, -2 * scale);
}
d = __ieee754_hypot (__real__ x, __imag__ x);
d = M_HYPOT (__real__ x, __imag__ x);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (__real__ x > 0)
{
r = __ieee754_sqrt (0.5 * (d + __real__ x));
if (scale == 1 && fabs (__imag__ x) < 1.0)
r = M_SQRT (M_LIT (0.5) * (d + __real__ x));
if (scale == 1 && M_FABS (__imag__ x) < 1)
{
/* Avoid possible intermediate underflow. */
s = __imag__ x / r;
r = __scalbn (r, scale);
r = M_SCALBN (r, scale);
scale = 0;
}
else
s = 0.5 * (__imag__ x / r);
s = M_LIT (0.5) * (__imag__ x / r);
}
else
{
s = __ieee754_sqrt (0.5 * (d - __real__ x));
if (scale == 1 && fabs (__imag__ x) < 1.0)
s = M_SQRT (M_LIT (0.5) * (d - __real__ x));
if (scale == 1 && M_FABS (__imag__ x) < 1)
{
/* Avoid possible intermediate underflow. */
r = fabs (__imag__ x / s);
s = __scalbn (s, scale);
r = M_FABS (__imag__ x / s);
s = M_SCALBN (s, scale);
scale = 0;
}
else
r = fabs (0.5 * (__imag__ x / s));
r = M_FABS (M_LIT (0.5) * (__imag__ x / s));
}
if (scale)
{
r = __scalbn (r, scale);
s = __scalbn (s, scale);
r = M_SCALBN (r, scale);
s = M_SCALBN (s, scale);
}
math_check_force_underflow (r);
math_check_force_underflow (s);
__real__ res = r;
__imag__ res = __copysign (s, __imag__ x);
__imag__ res = M_COPYSIGN (s, __imag__ x);
}
}
return res;
}
weak_alias (__csqrt, csqrt)
#ifdef NO_LONG_DOUBLE
strong_alias (__csqrt, __csqrtl)
weak_alias (__csqrt, csqrtl)
declare_mgen_alias (__csqrt, csqrt)
#if M_LIBM_NEED_COMPAT (csqrt)
declare_mgen_libm_compat (__csqrt, csqrt)
#endif

View File

@ -1,163 +0,0 @@
/* Complex square root of float value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__csqrtf (__complex__ float x)
{
__complex__ float res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (icls == FP_INFINITE)
{
__real__ res = HUGE_VALF;
__imag__ res = __imag__ x;
}
else if (rcls == FP_INFINITE)
{
if (__real__ x < 0.0)
{
__real__ res = icls == FP_NAN ? __nanf ("") : 0;
__imag__ res = __copysignf (HUGE_VALF, __imag__ x);
}
else
{
__real__ res = __real__ x;
__imag__ res = (icls == FP_NAN
? __nanf ("") : __copysignf (0.0, __imag__ x));
}
}
else
{
__real__ res = __nanf ("");
__imag__ res = __nanf ("");
}
}
else
{
if (__glibc_unlikely (icls == FP_ZERO))
{
if (__real__ x < 0.0)
{
__real__ res = 0.0;
__imag__ res = __copysignf (__ieee754_sqrtf (-__real__ x),
__imag__ x);
}
else
{
__real__ res = fabsf (__ieee754_sqrtf (__real__ x));
__imag__ res = __copysignf (0.0, __imag__ x);
}
}
else if (__glibc_unlikely (rcls == FP_ZERO))
{
float r;
if (fabsf (__imag__ x) >= 2.0f * FLT_MIN)
r = __ieee754_sqrtf (0.5f * fabsf (__imag__ x));
else
r = 0.5f * __ieee754_sqrtf (2.0f * fabsf (__imag__ x));
__real__ res = r;
__imag__ res = __copysignf (r, __imag__ x);
}
else
{
float d, r, s;
int scale = 0;
if (fabsf (__real__ x) > FLT_MAX / 4.0f)
{
scale = 1;
__real__ x = __scalbnf (__real__ x, -2 * scale);
__imag__ x = __scalbnf (__imag__ x, -2 * scale);
}
else if (fabsf (__imag__ x) > FLT_MAX / 4.0f)
{
scale = 1;
if (fabsf (__real__ x) >= 4.0f * FLT_MIN)
__real__ x = __scalbnf (__real__ x, -2 * scale);
else
__real__ x = 0.0f;
__imag__ x = __scalbnf (__imag__ x, -2 * scale);
}
else if (fabsf (__real__ x) < 2.0f * FLT_MIN
&& fabsf (__imag__ x) < 2.0f * FLT_MIN)
{
scale = -((FLT_MANT_DIG + 1) / 2);
__real__ x = __scalbnf (__real__ x, -2 * scale);
__imag__ x = __scalbnf (__imag__ x, -2 * scale);
}
d = __ieee754_hypotf (__real__ x, __imag__ x);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (__real__ x > 0)
{
r = __ieee754_sqrtf (0.5f * (d + __real__ x));
if (scale == 1 && fabsf (__imag__ x) < 1.0f)
{
/* Avoid possible intermediate underflow. */
s = __imag__ x / r;
r = __scalbnf (r, scale);
scale = 0;
}
else
s = 0.5f * (__imag__ x / r);
}
else
{
s = __ieee754_sqrtf (0.5f * (d - __real__ x));
if (scale == 1 && fabsf (__imag__ x) < 1.0f)
{
/* Avoid possible intermediate underflow. */
r = fabsf (__imag__ x / s);
s = __scalbnf (s, scale);
scale = 0;
}
else
r = fabsf (0.5f * (__imag__ x / s));
}
if (scale)
{
r = __scalbnf (r, scale);
s = __scalbnf (s, scale);
}
math_check_force_underflow (r);
math_check_force_underflow (s);
__real__ res = r;
__imag__ res = __copysignf (s, __imag__ x);
}
}
return res;
}
#ifndef __csqrtf
weak_alias (__csqrtf, csqrtf)
#endif

View File

@ -1,161 +0,0 @@
/* Complex square root of long double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ long double
__csqrtl (__complex__ long double x)
{
__complex__ long double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (icls == FP_INFINITE)
{
__real__ res = HUGE_VALL;
__imag__ res = __imag__ x;
}
else if (rcls == FP_INFINITE)
{
if (__real__ x < 0.0)
{
__real__ res = icls == FP_NAN ? __nanl ("") : 0;
__imag__ res = __copysignl (HUGE_VALL, __imag__ x);
}
else
{
__real__ res = __real__ x;
__imag__ res = (icls == FP_NAN
? __nanl ("") : __copysignl (0.0, __imag__ x));
}
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
}
}
else
{
if (__glibc_unlikely (icls == FP_ZERO))
{
if (__real__ x < 0.0)
{
__real__ res = 0.0;
__imag__ res = __copysignl (__ieee754_sqrtl (-__real__ x),
__imag__ x);
}
else
{
__real__ res = fabsl (__ieee754_sqrtl (__real__ x));
__imag__ res = __copysignl (0.0, __imag__ x);
}
}
else if (__glibc_unlikely (rcls == FP_ZERO))
{
long double r;
if (fabsl (__imag__ x) >= 2.0L * LDBL_MIN)
r = __ieee754_sqrtl (0.5L * fabsl (__imag__ x));
else
r = 0.5L * __ieee754_sqrtl (2.0L * fabsl (__imag__ x));
__real__ res = r;
__imag__ res = __copysignl (r, __imag__ x);
}
else
{
long double d, r, s;
int scale = 0;
if (fabsl (__real__ x) > LDBL_MAX / 4.0L)
{
scale = 1;
__real__ x = __scalbnl (__real__ x, -2 * scale);
__imag__ x = __scalbnl (__imag__ x, -2 * scale);
}
else if (fabsl (__imag__ x) > LDBL_MAX / 4.0L)
{
scale = 1;
if (fabsl (__real__ x) >= 4.0L * LDBL_MIN)
__real__ x = __scalbnl (__real__ x, -2 * scale);
else
__real__ x = 0.0L;
__imag__ x = __scalbnl (__imag__ x, -2 * scale);
}
else if (fabsl (__real__ x) < 2.0L * LDBL_MIN
&& fabsl (__imag__ x) < 2.0L * LDBL_MIN)
{
scale = -((LDBL_MANT_DIG + 1) / 2);
__real__ x = __scalbnl (__real__ x, -2 * scale);
__imag__ x = __scalbnl (__imag__ x, -2 * scale);
}
d = __ieee754_hypotl (__real__ x, __imag__ x);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (__real__ x > 0)
{
r = __ieee754_sqrtl (0.5L * (d + __real__ x));
if (scale == 1 && fabsl (__imag__ x) < 1.0L)
{
/* Avoid possible intermediate underflow. */
s = __imag__ x / r;
r = __scalbnl (r, scale);
scale = 0;
}
else
s = 0.5L * (__imag__ x / r);
}
else
{
s = __ieee754_sqrtl (0.5L * (d - __real__ x));
if (scale == 1 && fabsl (__imag__ x) < 1.0L)
{
/* Avoid possible intermediate underflow. */
r = fabsl (__imag__ x / s);
s = __scalbnl (s, scale);
scale = 0;
}
else
r = fabsl (0.5L * (__imag__ x / s));
}
if (scale)
{
r = __scalbnl (r, scale);
s = __scalbnl (s, scale);
}
math_check_force_underflow (r);
math_check_force_underflow (s);
__real__ res = r;
__imag__ res = __copysignl (s, __imag__ x);
}
}
return res;
}
weak_alias (__csqrtl, csqrtl)

View File

@ -24,14 +24,18 @@
#undef __cexpf
#undef cexpf
#define __cexpf internal_cexpf
static _Complex float internal_cexpf (_Complex float x);
#include <math/s_cexpf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_cexpf
#include <math-type-macros-float.h>
#undef __cexpf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_cexp_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_cexpf (c1_cfloat_decl (x))

View File

@ -24,14 +24,18 @@
#undef __clog10f
#undef clog10f
#define __clog10f internal_clog10f
static _Complex float internal_clog10f (_Complex float x);
#include <math/s_clog10f.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_clog10f
#include <math-type-macros-float.h>
#undef __clog10f
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_clog10_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_clog10f (c1_cfloat_decl (x))

View File

@ -24,14 +24,18 @@
#undef __clogf
#undef clogf
#define __clogf internal_clogf
static _Complex float internal_clogf (_Complex float x);
#include <math/s_clogf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_clogf
#include <math-type-macros-float.h>
#undef __clogf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_clog_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_clogf (c1_cfloat_decl (x))

View File

@ -24,14 +24,18 @@
#undef __cpowf
#undef cpowf
#define __cpowf internal_cpowf
static _Complex float internal_cpowf (_Complex float x, _Complex float c);
#include <math/s_cpowf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_cpowf
#include <math-type-macros-float.h>
#undef __cpowf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_cpow_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_cpowf (c1_cfloat_decl (x), c1_cfloat_decl (c))

View File

@ -24,14 +24,18 @@
#undef __cprojf
#undef cprojf
#define __cprojf internal_cprojf
static _Complex float internal_cprojf (_Complex float x);
#include <math/s_cprojf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_cprojf
#include <math-type-macros-float.h>
#undef __cprojf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_cproj_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_cprojf (c1_cfloat_decl (x))

View File

@ -24,14 +24,18 @@
#undef __csqrtf
#undef csqrtf
#define __csqrtf internal_csqrtf
static _Complex float internal_csqrtf (_Complex float x);
#include <math/s_csqrtf.c>
#include "cfloat-compat.h"
#define M_DECL_FUNC(f) internal_csqrtf
#include <math-type-macros-float.h>
#undef __csqrtf
/* Disable any aliasing from base template. */
#undef declare_mgen_alias
#define declare_mgen_alias(__to, __from)
#include <math/s_csqrt_template.c>
#include "cfloat-compat.h"
c1_cfloat_rettype
__c1_csqrtf (c1_cfloat_decl (x))

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_cexp.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __cexp, cexpl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_cexpl.c>
long_double_symbol (libm, __cexpl, cexpl);

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_clog.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __clog, clogl, GLIBC_2_1);
#endif

View File

@ -1,7 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_clog10.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __clog10, __clog10l, GLIBC_2_1);
compat_symbol (libm, clog10, clog10l, GLIBC_2_1);
#endif

View File

@ -1,10 +1,31 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#define __clog10l __clog10l_internal
#include <math/s_clog10l.c>
#undef __clog10l
/* clog10l alias overrides for platforms where long double
was previously not unique.
Copyright (C) 2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#define M_DECL_FUNC(x) __clog10l_internal
#include <math-type-macros-ldouble.h>
#undef declare_mgen_alias
#define declare_mgen_alias(from, to)
#include <s_clog10_template.c>
/* __clog10l is also a public symbol. */
strong_alias (__clog10l_internal, __clog10l__internal)
long_double_symbol (libm, __clog10l_internal, __clog10l);
long_double_symbol (libm, __clog10l__internal, clog10l);

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_clogl.c>
long_double_symbol (libm, __clogl, clogl);

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_cpow.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __cpow, cpowl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_cpowl.c>
long_double_symbol (libm, __cpowl, cpowl);

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_cproj.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __cproj, cprojl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_cprojl.c>
long_double_symbol (libm, __cprojl, cprojl);

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#include <math/s_csqrt.c>
#if LONG_DOUBLE_COMPAT(libm, GLIBC_2_1)
compat_symbol (libm, __csqrt, csqrtl, GLIBC_2_1);
#endif

View File

@ -1,6 +0,0 @@
#include <complex.h>
#include <math_ldbl_opt.h>
#undef weak_alias
#define weak_alias(n,a)
#include <math/s_csqrtl.c>
long_double_symbol (libm, __csqrtl, csqrtl);

View File

@ -22,21 +22,14 @@
#include <math.h>
#include "mathimpl.h"
#ifndef SUFF
#define SUFF
#endif
#ifndef float_type
#define float_type double
#endif
#define CONCATX(a,b) __CONCAT(a,b)
#define s(name) CONCATX(name,SUFF)
#define s(name) M_SUF (name)
#define m81(func) __m81_u(s(func))
__complex__ float_type
s(__cexp) (__complex__ float_type x)
CFLOAT
s(__cexp) (CFLOAT x)
{
__complex__ float_type retval;
CFLOAT retval;
unsigned long ix_cond;
ix_cond = __m81_test (__imag__ x);

View File

@ -1,3 +0,0 @@
#define SUFF f
#define float_type float
#include <s_cexp.c>

View File

@ -1,3 +0,0 @@
#define SUFF l
#define float_type long double
#include <s_cexp.c>