When i386 and x86-64 mathinline.h was merged into a single mathinline.h,
"gcc -m32" enables x87 inline functions on x86-64 even when -mfpmath=sse
and SSE2 is enabled. It is a regression on x86-64. We should check
__SSE2_MATH__ instead of __x86_64__ when disabling x87 inline functions.
In BZ #15605 fix with addding memset/memmove alias in symbol-hacks.h,
x32 symbol-hacks.h change was missing. Fixed by including
<sysdeps/generic/symbol-hacks.h> in x32 symbol-hacks.h.
The IFUNC selector for gettimeofday runs before _libc_vdso_platform_setup where
__vdso_gettimeofday is set. The selector then sets __gettimeofday (the internal
version used within GLIBC) to use the system call version instead of the vDSO one.
This patch changes the check if vDSO is available to get its value directly
instead of rely on __vdso_gettimeofday.
This patch changes it by getting the vDSO value directly.
It fixes BZ#16431.
See commit 41b1792698 for testcase.
Note: while this works on s390x, the s390 code hangs when using -e.
But it hangs regardless of this code (the hang seems to occur before
the exit func is even called). I didn't look too closely at it as
it seems to be an issue external to this file, so this code shouldn't
make the situation any worse.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
This patches fixes BZ#16430 by setting a different symbol for internal
GLIBC calls that points to ifunc resolvers. For PPC32, if the symbol
is defined as hidden (which is the case for gettimeofday and time) the
compiler will create local branches (symbol@local) and linker will not
create PLT calls (required for IFUNC). This will leads to internal symbol
calling the IFUNC resolver instead of the resolved symbol.
For PPC64 this behavior does not occur because a call to a function in
another translation unit might use a different toc pointer thus requiring
a PLT call.
We needlessly enabled thread cancellation before it was necessary. As
only call that needs to be guarded is waitpid which is cancellation
point we could remove cancellation altogether.
The truncl assembly implementation (sysdeps/powerpc/powerpc64/fpu/s_truncl.S)
returns wrong results for some inputs where first double is a exact integer
and the precision is determined by second long double.
Checking on implementation comments and history, I am very confident the
assembly implementation was based on a version before commit
5c68d40169 that fixes BZ#2423 (Errors in
long double (ldbl-128ibm) rounding functions in glibc-2.4).
By just removing the implementation and make the build select
sysdeps/ieee754/ldbl-128ibm/s_truncl.c instead it fixes tgammal
issues regarding wrong result sign.
This patch fixes bug 16408, ldbl-128ibm expm1l returning NaN for some
large arguments.
The basic problem is that the approach of converting the exponent to
the form n * log(2) + y, where -0.5 <= y <= 0.5, then computing 2^n *
expm1(y) + (2^n - 1) falls over when 2^n overflows (starting slightly
before the point where expm1 overflows, when y is negative and n is
the least integer for which 2^n overflows). The ldbl-128 code, and
the x86/x86_64 code, make expm1l fall back to expl for large positive
arguments to avoid this issue. This patch makes the ldbl-128ibm code
do the same. (The problem appears for the particular argument in the
testsuite because the ldbl-128ibm code also uses an overflow threshold
that's for ldbl-128 and is too big for ldbl-128ibm, but the problem
described applies for large non-overflowing cases as well, although
during the freeze is not a suitable time for making the expm1 tests
cover cases close to overflow more thoroughly.)
This leaves some code for large positive arguments in expm1l that is
now dead. To keep the code for ldbl-128 and ldbl-128ibm similar, and
to avoid unnecessary changes during the freeze, the patch doesn't
remove it; instead I propose to file a bug in Bugzilla as a reminder
that this code (for overflow, including errno setting, and for
arguments of +Inf) is no longer needed and should be removed from both
those expm1l implementations.
Tested powerpc32.
* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Use __expl
for large positive arguments.
This patch fixes bug 16407, spurious overflows from ldbl-128ibm coshl.
The implementation assumed that a high part (reinterpreted as an
integer) of the absolute value of the argument of 0x408633ce8fb9f87dLL
or more meant overflow, but the actual threshold has high part
0x408633ce8fb9f87eLL (and a negative low part). The patch adjusts the
threshold accordingly.
sinhl probably has the same issue, but I didn't get that far in adding
tests of special cases (such as just below and above overflow) before
the freeze and during the freeze is not a suitable time to add them
(as they'd require ulps to be regenerated again), so I'm not changing
that function for now; when I add more tests of special cases, we'll
discover whether sinhl indeed has this problem.
Tested powerpc32.
* sysdeps/ieee754/ldbl-128ibm/e_coshl.c (__ieee754_coshl):
Increase overflow threshold.
This patch fixes bug 16400, spurious underflow exceptions for ldbl-128
/ ldbl-128ibm lgammal with small positive arguments, by just using
-__logl (x) as the result in the problem cases (similar to the
previous fix for problems with small negative arguments).
Tested powerpc32, and also tested on mips64 that this does not require
ulps regeneration for the ldbl-128 case.
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
Return -__logl (x) for small positive arguments without evaluating
a polynomial.
All the other ptrace structures in this file have a __ prefix except this
new one. This in turn causes build problems for most packages that try to
use ptrace such as strace:
gcc -DHAVE_CONFIG_H -I. -I../.. -I../../linux/x86_64 -I../../linux \
-I./linux -Wall -Wwrite-strings -g -O2 -MT process.o -MD -MP \
-MF .deps/process.Tpo -c -o process.o ../../process.c
In file included from ../../process.c:63:0:
/usr/include/linux/ptrace.h:58:8: error: redefinition of 'struct ptrace_peeksiginfo_args'
struct ptrace_peeksiginfo_args {
^
In file included from ../../defs.h:159:0,
from ../../process.c:37:
/usr/include/sys/ptrace.h:191:8: note: originally defined here
struct ptrace_peeksiginfo_args
^
Since this struct was introduced in glibc-2.18, there shouldn't be any
real regressions with adding the __ prefix.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
This patch fixes bug 16390, incorrect signs of zero results from
ldbl-128ibm atan2l, soft-float only. The problem is a longstanding
GCC bug with fabsl not being correct for signed zero for soft float,
and the fix is using -fno-builtin-fabsl as a workaround, as already
done for various other source files. Tested powerpc-nofpu.
* sysdeps/powerpc/nofpu/Makefile [$(subdir) = math]
(CFLAGS-e_atan2l.c): Use -fno-builtin-fabsl.
This patch fixes bug 16386, ldbl-128ibm logl inaccuracy (with
consequent inaccuracy for lgammal) for arguments where the high double
is subnormal, which showed up while attempting to regenerate ulps for
powerpc-nofpu for 2.19. The problem here is logic failing to allow
for subnormals when calculating the exponent of the argument. Tested
for powerpc-nofpu.
* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): Adjust
numbers with subnormal high part when calculating exponent.
This patch fixes bug 16385, ldbl-128ibm asinhl inaccuracy, which
showed up while attempting to regenerate ulps for powerpc-nofpu for
2.19. The problem here was use of fabs instead of fabsl meaning large
arguments were reduced to the precision of double. Tested for
powerpc-nofpu.
* sysdeps/ieee754/ldbl-128ibm/s_asinhl.c (__asinhl): Use fabsl not
fabs.
This patch fixes bug 16384, ldbl-128ibm acoshl inaccuracy, which
showed up while attempting to regenerate ulps for powerpc-nofpu for
2.19. There were two separate problems, use of __log1p instead of
__log1pl and an insufficiently accurate constant value for log 2
(which this patch replaces by use of M_LN2l), each of which could
cause substantial inaccuracy in affected cases.
Tested for powerpc-nofpu.
* sysdeps/ieee754/ldbl-128ibm/e_acoshl.c (ln2): Initialize with
M_LN2l.
(__ieee754_acoshl): Use __log1pl not __log1p.
We support older kernels that lack this header, so check for it
before we try to use it.
Reported-by: Adhemerval Zanella <azanella@linux.vnet.ibm.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
This patch fixes bug 16337, ldbl-128 lgammal spurious overflows for
small negative arguments (the arguments in question are already in the
testsuite). The implementation uses the reflection formula to compute
lgamma of negative x from lgamma of -x, effectively resulting in a
calculation -log(x^2) + log(-x); cancellation isn't problematic in
this case (bugs for problematic cancellation in lgamma are 2542, 2543,
2558), but the x^2 calculation can underflow (in which case there is
spurious logic to return an overflowing value - lgamma can only ever
correctly overflow for large positive arguments, though tgamma can
overflow for small arguments of either sign as well as large positive
arguments). The fix is simply to calculate the result directly with
logl when the argument is a small enough negative number.
Tested mips64.
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
Calculate results for small negative arguments directly rather
than using reflection formula with special underflow handling.
As discussed in
<https://sourceware.org/ml/libc-alpha/2012-04/msg00840.html> and
<https://sourceware.org/ml/libc-alpha/2012-04/msg00989.html>, it seems
appropriate to flatten sysdeps/unix/bsd/bsd4.4 into sysdeps/unix/bsd.
The bulk of the patch is just moving files. The only other changes
are: update paths in sysdeps/mach/hurd/Implies and
sysdeps/unix/sysv/linux/wait3.c; merge the two syscalls.list files,
with the removal of syscalls that were in
sysdeps/unix/bsd/syscalls.list but overridden in the bsd4.4 directory
by .c files there.
Tested x86_64. The installed shared libraries are identical before
and after the patch except for libc.so where the move of wait3.c
(included by sysdeps/unix/sysv/linux/wait3.c) affects debug info, but
the disassembly is unchanged.
* sysdeps/mach/hurd/Implies: Change unix/bsd/bsd4.4 to unix/bsd.
* sysdeps/unix/bsd/syscalls.list (chflags): Add entry from
sysdeps/unix/bsd/bsd4.4/syscalls.list.
(fchflags): Likewise.
(revoke): Likewise.
(setlogin): Likewise.
(sigaltstack): Likewise.
(wait4): Likewise.
(sigblock): Remove.
(sigsetmask): Likewise.
(wait3): Likewise.
(waitpid): Likewise.
* sysdeps/unix/bsd/bsd4.4/syscalls.list: Remove file.
* sysdeps/unix/sysv/linux/wait3.c: Update directory of included
file.
* sysdeps/unix/bsd/bsd4.4/Makefile: Move to ...
* sysdeps/unix/bsd/Makefile: ... here.
* sysdeps/unix/bsd/bsd4.4/Versions: Move to ...
* sysdeps/unix/bsd/Versions: ... here.
* sysdeps/unix/bsd/bsd4.4/bits/sockaddr.h: Move to ...
* sysdeps/unix/bsd/bits/sockaddr.h: ... here.
* sysdeps/unix/bsd/bsd4.4/cmsg_nxthdr.c: Move to ...
* sysdeps/unix/bsd/cmsg_nxthdr.c: ... here.
* sysdeps/unix/bsd/bsd4.4/sigblock.c: Move to ...
* sysdeps/unix/bsd/sigblock.c: ... here.
* sysdeps/unix/bsd/bsd4.4/sigsetmask.c: Move to ...
* sysdeps/unix/bsd/sigsetmask.c: ... here.
* sysdeps/unix/bsd/bsd4.4/sigvec.c: Move to ...
* sysdeps/unix/bsd/sigvec.c: ... here.
* sysdeps/unix/bsd/bsd4.4/tcdrain.c: Move to ...
* sysdeps/unix/bsd/tcdrain.c: ... here.
* sysdeps/unix/bsd/bsd4.4/tcgetattr.c: Move to ...
* sysdeps/unix/bsd/tcgetattr.c: ... here.
* sysdeps/unix/bsd/bsd4.4/tcsetattr.c: Move to ...
* sysdeps/unix/bsd/tcsetattr.c: ... here.
* sysdeps/unix/bsd/bsd4.4/wait.c: Move to ...
* sysdeps/unix/bsd/wait.c: ... here.
* sysdeps/unix/bsd/bsd4.4/wait3.c: Move to ...
* sysdeps/unix/bsd/wait3.c: ... here.
* sysdeps/unix/bsd/bsd4.4/waitpid.c: Move to ...
* sysdeps/unix/bsd/waitpid.c: ... here.
This patch fixes bug 16356, bad results from x86 / x86_64 expl /
exp10l in directed rounding modes, the most serious of the bugs shown
up by my patch expanding libm test coverage. When I fixed bug 16293,
I thought it was only necessary to set round-to-nearest when using
frndint in expm1 functions, because in other cases the cancellation
error from having the resulting fractional part close to 1 or -1 would
not be significant. However, in expl and exp10l, the way the final
fractional part gets computed (something more complicated than a
simple subtraction, because more precision is needed than you'd get
that way) can result in a value outside the range [-1, 1] when the
argument to frndint was very close to an integer and was rounded the
"wrong" way because of the rounding mode - and the f2xm1 instruction
has undefined results if its argument is outside [-1, 1], so resulting
in the large errors seen. So this patch removes the USE_AS_EXPM1L
conditionals on the round-to-nearest settings, so all of expl, expm1l
and exp10l now get round-to-nearest used for frndint (meaning the
final fractional part can at most be slightly above 0.5 in
magnitude). Associated tests of exp and exp10 are added and testing
of exp10 in directed rounding modes enabled.
Tested x86_64 and x86 and ulps updated accordingly.
* sysdeps/i386/fpu/e_expl.S (IEEE754_EXPL): Also set
round-to-nearest for [!USE_AS_EXPM1L].
* sysdeps/x86_64/fpu/e_expl.S (IEEE754_EXPL): Likewise.
* math/auto-libm-test-in: Do not expect cosh tests to fail. Add
more tests of exp and exp10. Expect some exp10 tests to miss
exceptions or fail in directed rounding modes.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (exp10_tonearest_test_data): New array.
(exp10_test_tonearest): New function.
(exp10_towardzero_test_data): New array.
(exp10_test_towardzero): New function.
(exp10_downward_test_data): New array.
(exp10_test_downward): New function.
(exp10_upward_test_data): New array.
(exp10_test_upward): New function.
(main): Call the new functions.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Various libm functions have inadequate test coverage in libm-test.inc
/ auto-libm-test-in - failing to cover all the usual special cases
(infinities, NaNs, zero, large and small finite values, subnormals) as
well as a reasonable range of ordinary inputs and, where appropriate,
inputs close to the thresholds for underflow and overflow.
This patch improves test coverage for real functions [a-c]* (with the
expectation of adding more coverage for other functions later).
Tested x86_64 and x86 and ulps updated accordingly (and eight glibc
bugs and one C11 DR filed for issues found in the process).
* math/auto-libm-test-in: Add more tests of acos, acosh, asin,
asinh, atan, atan2, atanh, cbrt, cos and cosh.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (acosh_test_data): Add more tests.
(atanh_test_data): Likewise.
(ceil_test_data): Likewise.
(copysign_test_data): Likewise.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch moves tests of cpow to auto-libm-test-in, adding the
required support to gen-auto-libm-tests.
Tested x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add tests of cpow.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (cpow_test_data): Use AUTO_TESTS_cc_c.
* * math/gen-auto-libm-tests.c (func_calc_method): Add value
mpc_cc_c.
(func_calc_desc): Add mpc_cc_c union field.
(test_functions): Add cpow.
(special_fill_2pi): New function.
(special_real_inputs): Add 2pi.
(calc_generic_results): Handle mpc_cc_c.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch moves tests of ccos, ccosh, cexp, clog, csqrt, ctan and
ctanh to auto-libm-test-in, adding the required support to
gen-auto-libm-tests. Other TEST_c_c functions aren't moved for now
(although the relevant table entries are put in gen-auto-libm-tests
for it to know how to handle them): clog10 because of a known MPC bug
causing it to hang for at least some pure imaginary inputs (fixed in
SVN, but I'd rather not rely on unreleased versions of MPFR or MPC
even if relying on very recent releases); the inverse trig and
hyperbolic functions because of known slowness in special cases; and
csin / csinh because of observed slowness that I need to investigate
and report to the MPC maintainers. Slowness can be bypassed by moving
to incremental generation (only for new / changed tests) rather than
regenerating the whole of auto-libm-test-out every time, but that
needs implementing. (This patch takes the time for running
gen-auto-libm-tests from about one second to seven, on my system,
which I think is reasonable. The slow functions would make it take
several minutes at least, which seems unreasonable.)
Tested x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add tests of ccos, ccosh, cexp, clog,
csqrt, ctan and ctanh.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (TEST_COND_x86_64): New macro.
(TEST_COND_x86): Likewise.
(ccos_test_data): Use AUTO_TESTS_c_c.
(ccosh_test_data): Likewise.
(cexp_test_data): Likewise.
(clog_test_data): Likewise.
(csqrt_test_data): Likewise.
(ctan_test_data): Likewise.
(ctan_tonearest_test_data): Likewise.
(ctan_towardzero_test_data): Likewise.
(ctan_downward_test_data): Likewise.
(ctan_upward_test_data): Likewise.
(ctanh_test_data): Likewise.
(ctanh_tonearest_test_data): Likewise.
(ctanh_towardzero_test_data): Likewise.
(ctanh_downward_test_data): Likewise.
(ctanh_upward_test_data): Likewise.
* math/gen-auto-libm-tests.c (func_calc_method): Add value
mpc_c_c.
(func_calc_desc): Add mpc_c_c union field.
(FUNC_mpc_c_c): New macro.
(test_functions): Add cacos, cacosh, casin, casinh, catan, catanh,
ccos, ccosh, cexp, clog, clog10, csin, csinh, csqrt, ctan and
ctanh.
(special_fill_min_subnorm_p120): New function.
(special_real_inputs): Add min_subnorm_p120.
(calc_generic_results): Handle mpc_c_c.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch consolidates the multiple copies of code that looks up sin
and cos of a number from the lookup table and computes the final
value, into static functions. This does not have a noticeable
performance impact since the functions are inlined by gcc.
There is further scope for consolidation in the functions but they
cause a more noticable impact on performance (>5%) due to which I have
held back on them.
Removed more redundant computations in the slow paths of the sin and
cos functions. The notable change is the passing of the most
significant bits of X to the slow functions to check if X is positive
so that just the absolute value of x can be passed and the repeated
ABS() operation is avoided.