glibc/sysdeps/powerpc/q_addsub.c

550 lines
14 KiB
C

/* Add or subtract two 128-bit floating point values. C prototype.
Copyright (C) 1997 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <quad_float.h>
/* Add 'a' to 'b' and put the result in 'result', but treat a[0]=axx,
b[0]=bxx. bxx differs from b[0] only in the high bit, similarly axx. */
/* Exceptions to raise:
- Invalid (SNaN)
- Invalid (Inf-Inf)
- Overflow
- Underflow
- Inexact
*/
/* Handle cases where exponent of a or b is maximum. */
static void
handle_max_exponent(unsigned result[4],
const unsigned a[4], const unsigned b[4],
const unsigned axx, /* Treat as a[0]. */
const unsigned bxx, /* Treat as b[0]. */
const unsigned ax, /* axx >> 16 & 0x7fff. */
const unsigned bx) /* bxx >> 16 & 0x7fff. */
{
int ax_ismax, bx_ismax;
unsigned a1,a2,a3, b1,b2,b3;
int a_zeromant, b_zeromant;
ax_ismax = ax == 0x7fff;
bx_ismax = bx == 0x7fff;
assert(ax_ismax || bx_ismax);
a1 = a[1]; a2 = a[2]; a3 = a[3];
b1 = b[1]; b2 = b[2]; b3 = b[3];
a_zeromant = (axx & 0xffff | a1 | a2 | a3) == 0;
b_zeromant = (bxx & 0xffff | b1 | b2 | b3) == 0;
/* Deal with SNaNs. */
if ( ax_ismax && !a_zeromant && (axx & 0x8000) == 0
|| bx_ismax && !b_zeromant && (bxx & 0x8000) == 0)
{
set_fpscr_bit(FPSCR_VXSNAN);
axx |= 0x8000; /* Demote the SNaN to a QNaN (whichever of */
bxx |= 0x8000; /* a or b it was). */
}
/* Deal with Inf-Inf. */
else if (a_zeromant && b_zeromant && (axx ^ bxx) == 0x80000000)
{
set_fpscr_bit(FPSCR_VXISI);
bxx |= 0x8000; /* Return an appropriate QNaN. */
}
/* Return the lexicographically larger of a or b, ignoring the sign
bits. */
if ((axx & 0x7fffffff) > (bxx & 0x7fffffff)) goto return_a;
else if ((axx & 0x7fffffff) < (bxx & 0x7fffffff)) goto return_b;
else if (a1 > b1) goto return_a;
else if (a1 < b1) goto return_b;
else if (a2 > b2) goto return_a;
else if (a2 < b2) goto return_b;
else if (a3 > b3) goto return_a; /* I've clearly been writing too */
else if (a3 < b3) goto return_b; /* much Fortran... */
/* If they are equal except for the sign bits, return 'b'. */
return_b:
result[0] = bxx; result[1] = b1; result[2] = b2; result[3] = b3;
return;
return_a:
result[0] = axx; result[1] = a1; result[2] = a2; result[3] = a3;
return;
}
/* Renormalise and output a FP number. */
static void
renormalise_value(unsigned result[4],
const unsigned axx,
unsigned ax,
unsigned r0,
unsigned r1,
unsigned r2,
unsigned r3)
{
int rshift;
if (r0 != 0 || cntlzw(a1) < 16 || 32 > ax-1)
{
rshift = cntlzw(r0)-15 + (-(cntlzw(r0) >> 5) & cntlzw(a1));
assert(rshift < 32);
if (rshift > ax-1)
{
ax--;
rshift = ax;
}
result[0] = (axx & 0x80000000
| ax-rshift << 16
| r0 << rshift & 0xffff
| a1 >> 32-rshift & 0xffff);
result[1] = a1 << rshift | a2 >> 32-rshift;
result[2] = a2 << rshift | a3 >> 32-rshift;
result[3] = a3 << rshift;
return;
}
result[3] = 0;
/* Special case for zero. */
if (a1 == 0 && a2 == 0 && a3 == 0)
{
result[0] = axx & 0x80000000;
result[1] = result[2] = 0;
return;
}
while (a1 != 0 && cntlzw(a2) >= 16 && 64 <= ax-1)
{
ax -= 32;
a1 = a2; a2 = a3; a3 = 0;
}
rshift = cntlzw(a1)-15 + (-(cntlzw(a1) >> 5) & cntlzw(a2));
assert(rshift < 32);
if (rshift > ax-1-32)
{
ax--;
rshift = ax-32;
}
result[0] = (axx & 0x80000000
| ax-rshift-32 << 16
| a1 << rshift & 0xffff
| a2 >> 32-rshift & 0xffff);
result[1] = a2 << rshift | a3 >> 32-rshift;
result[2] = a3 << rshift;
return;
}
/* Handle the case where one or both numbers are denormalised or zero.
This case almost never happens, so we don't slow the main code
with it. */
static void
handle_min_exponent(unsigned result[4],
const unsigned a[4], const unsigned b[4],
const unsigned axx, /* Treat as a[0]. */
const unsigned bxx, /* Treat as b[0]. */
const unsigned ax, /* axx >> 16 & 0x7fff. */
const unsigned bx) /* bxx >> 16 & 0x7fff. */
{
int ax_denorm, bx_denorm;
unsigned a1,a2,a3, b1,b2,b3;
int a_zeromant, b_zeromant;
ax_denorm = ax == 0;
bx_denorm = bx == 0;
assert(ax_denorm || bx_denorm);
a1 = a[1]; a2 = a[2]; a3 = a[3];
b1 = b[1]; b2 = b[2]; b3 = b[3];
}
/* Add a+b+cin modulo 2^32, put result in 'r' and carry in 'cout'. */
#define addc(r,cout,a,b,cin) \
do { \
unsigned long long addc_tmp = (a)+(b)+(cin);
(cout) = addc_tmp >> 32;
(r) = addc_tmp;
}
/* Calculate a+~b+cin modulo 2^32, put result in 'r' and carry in 'cout'. */
#define subc(r,cout,a,b,cin) \
do { \
unsigned long long addc_tmp = (a)-(b)+(cin)-1;
(cout) = addc_tmp >> 63;
(r) = addc_tmp;
}
/* Handle the case where both exponents are the same. This requires quite
a different algorithm than the general case. */
static void
handle_equal_exponents(unsigned result[4],
const unsigned a[4], const unsigned b[4],
const unsigned axx, /* Treat as a[0]. */
const unsigned bxx, /* Treat as b[0]. */
unsigned ax) /* [ab]xx >> 16 & 0x7fff. */
{
unsigned a1,a2,a3, b1,b2,b3;
int roundmode;
unsigned carry, r0;
a1 = a[1]; a2 = a[2]; a3 = a[3];
b1 = b[1]; b2 = b[2]; b3 = b[3];
if ((int)(axx ^ bxx) >= 0)
{
int roundmode;
/* Adding. */
roundmode = fegetround();
/* What about overflow? */
if (ax == 0x7ffe)
{
/* Oh no! Too big! */
/* Result:
rounding result
-------- ------
nearest return Inf with sign of a,b
zero return nearest possible non-Inf value with
sign of a,b
+Inf return +Inf if a,b>0, otherwise return
value just before -Inf.
-Inf return +Inf if a,b>0, otherwise return
value just before -Inf.
*/
set_fpscr_bit(FPSCR_OX);
/* Overflow always produces inexact result. */
set_fpscr_bit(FPSCR_XX);
if ( roundmode == FE_TONEAREST
|| roundmode == FE_UPWARD && (int)axx >= 0
|| roundmode == FE_DOWNWARD && (int)axx < 0)
{
result[3] = result[2] = result[1] = 0;
result[0] = axx & 0xffff0000 | 0x7fff0000;
}
else
{
result[3] = result[2] = result[1] = 0xffffffff;
result[0] = axx & 0xfffe0000 | 0x7ffeffff;
}
return;
}
/* We need to worry about rounding/inexact here. Do it like this: */
if (a3 + b3 & 1)
{
/* Need to round. Upwards? */
set_fpscr_bit(FPSCR_XX);
carry = ( roundmode == FE_NEAREST && (a3 + b3 & 2) != 0
|| roundmode == FE_UPWARD && (int)axx >= 0
|| roundmode == FE_DOWNWARD && (int)axx < 0);
}
else
carry = 0; /* Result will be exact. */
/* Perform the addition. */
addc(a3,carry,a3,b3,carry);
addc(a2,carry,a2,b2,carry);
addc(a1,carry,a1,b1,carry);
r0 = (axx & 0xffff) + (bxx & 0xffff) + carry;
/* Shift right by 1. */
result[3] = a3 >> 1 | a2 << 31;
result[2] = a2 >> 1 | a1 << 31;
result[1] = a1 >> 1 | r0 << 31;
/* Exponent of result is exponent of inputs plus 1.
Sign of result is common sign of inputs. */
result[0] = r0 >> 1 & 0xffff | axx + 0x10000 & 0xffff0000;
}
else
{
/* Subtracting. */
/* Perform the subtraction, a-b. */
subc(a3,carry,a3,b3,0);
subc(a2,carry,a2,b2,carry);
subc(a1,carry,a1,b1,carry);
subc(r0,carry,a0&0xffff,b0&0xffff,carry);
/* Maybe we should have calculated b-a... */
if (carry)
{
subc(a3,carry,0,a3,0);
subc(a2,carry,0,a2,carry);
subc(a1,carry,0,a1,carry);
subc(r0,carry,0,r0,carry);
axx ^= 0x80000000;
}
renormalise_value(result, axx, ax, r0, a1, a2, a3);
}
}
static void
add(unsigned result[4], const unsigned a[4], const unsigned b[4],
unsigned axx, unsigned bxx)
{
int ax, bx, diff, carry;
unsigned a0,a1,a2,a3, b0,b1,b2,b3,b4, sdiff;
ax = axx >> 16 & 0x7fff;
bx = bxx >> 16 & 0x7fff;
/* Deal with NaNs and Inf. */
if (ax == 0x7fff || bx == 0x7fff)
{
handle_max_exponent(result, a, b, axx, bxx, ax, bx);
return;
}
/* Deal with denorms and zero. */
if (ax == 0 || bx == 0)
{
handle_min_exponent(result, a, b, axx, bxx, ax, bx);
return;
}
/* Finally, one special case, when both exponents are equal. */
if (ax == bx)
{
handle_equal_exponents(result, a, b, axx, bxx, ax);
return;
}
sdiff = axx ^ bxx;
/* Swap a and b if b has a larger magnitude than a, so that a will have
the larger magnitude. */
if (ax < bx)
{
const unsigned *t;
t = b; b = a; a = t;
diff = bx - ax;
ax = bx;
axx = bxx;
}
else
diff = ax - bx;
a0 = a[0] & 0xffff | 0x10000; a1 = a[1]; a2 = a[2]; a3 = a[3];
b0 = b[0] & 0xffff | 0x10000; b1 = b[1]; b2 = b[2]; b3 = b[3];
if (diff < 32)
{
b4 = b3 << 32-diff;
b3 = b3 >> diff | b2 << 32-biff;
b2 = b2 >> diff | b1 << 32-diff;
b1 = b1 >> diff | b0 << 32-diff;
b0 = b0 >> diff;
}
else if (diff < 64)
{
diff -= 32;
b4 = b3 & 1 | b3 >> (diff == 32) | b2 << 32-biff;
b3 = b2 >> diff | b1 << 32-diff;
b2 = b1 >> diff | b0 << 32-diff;
b1 = b0 >> diff;
b0 = 0;
}
else if (diff < 96)
{
b4 = b2 | b3 | b1 << 32-diff;
b3 = b1 >> diff | b0 << 32-diff;
b2 = b0 >> diff;
b1 = b0 = 0;
}
else if (diff < 128)
{
b4 = b1 | b2 | b3 | b0 << 32-diff;
b3 = b0 >> diff;
b2 = b1 = b0 = 0;
}
else
{
b4 = b0|b1|b2|b3;
b3 = b2 = b1 = b0 = 0;
}
/* Now, two cases: one for addition, one for subtraction. */
if ((int)sdiff >= 0)
{
/* Addition. */
/*
/* Perform the addition. */
addc(a3,carry,a3,b3,0);
addc(a2,carry,a2,b2,carry);
addc(a1,carry,a1,b1,carry);
addc(a0,carry,a0,b0,carry);
if (a0 & 0x20000)
{
/* Need to renormalise by shifting right. */
/* Shift right by 1. */
b4 = b4 | a3 << 31;
a3 = a3 >> 1 | a2 << 31;
a2 = a2 >> 1 | a1 << 31;
result[1] = a1 >> 1 | r0 << 31;
/* Exponent of result is exponent of inputs plus 1.
Sign of result is common sign of inputs. */
result[0] = r0 >> 1 & 0xffff | axx + 0x10000 & 0xffff0000;
}
}
else
{
/* Subtraction. */
}
}
/* Add the absolute values of two 128-bit floating point values,
give the result the sign of one of them. The only exception this
can raise is for SNaN. */
static void
aadd(unsigned result[4], const unsigned a[4], const unsigned b[4])
{
unsigned ax, bx, xd;
const unsigned *sml;
unsigned t0,t1,t2,t3,tx, s0,s1,s2,s3,s4, carry;
int rmode, xdelta, shift;
ax = a[0] >> 16 & 0x7fff;
bx = b[0] >> 16 & 0x7fff;
/* Deal with . */
if (ax == 0x7fff)
{
t0 = a[0]; t1 = a[1]; t2 = a[2]; t3 = a[3];
/* Check for SNaN. */
if ((t0 & 0x8000) == 0
&& (t0 & 0x7fff | t1 | t2 | t3) != 0)
set_fpscr_bit(FPSCR_VXSNAN);
/* Return b. */
result[0] = t0; result[1] = t1; result[2] = t2; result[3] = t3;
return;
}
/* Deal with b==Inf or b==NaN. */
if (bx == 0x7fff)
{
t0 = b[0]; t1 = b[1]; t2 = b[2]; t3 = b[3];
/* Check for SNaN. */
if ((t0 & 0x8000) == 0
&& (t0 & 0x7fff | t1 | t2 | t3) != 0)
set_fpscr_bit(FPSCR_VXSNAN);
/* Return b. */
result[0] = t0; result[1] = t1; result[2] = t2; result[3] = t3;
return;
}
/* Choose the larger of the two to be 't', and the smaller to be 's'. */
if (ax > bx)
{
t0 = a[0] & 0xffff | (ax != 0) << 16;
t1 = a[1]; t2 = a[2]; t3 = a[3]; tx = ax;
s0 = b[0] & 0xffff | (bx != 0) << 16;
s1 = b[1]; s2 = b[2]; s3 = b[3];
xd = ax-bx;
}
else
{
t0 = b[0] & 0xffff | (bx != 0) << 16;
t1 = b[1]; t2 = b[2]; t3 = b[3]; tx = bx;
s0 = a[0] & 0xffff | (ax != 0) << 16;
s1 = a[1]; s2 = a[2]; s3 = a[3];
sml = a;
xd = bx-ax;
}
/* Shift 's2' right by 'xd' bits. */
switch (xd >> 5)
{
case 0:
s4 = 0;
break;
case 1:
s4 = s3; s3 = s2; s2 = s1; s1 = s0; s0 = 0;
break;
case 2:
s4 = s2 | s3 != 0;
s3 = s1; s2 = s0; s1 = s0 = 0;
break;
case 3:
s4 = s1 | (s3|s2) != 0;
s3 = s0; s2 = s1 = s0 = 0;
break;
default:
s4 = s0 | (s3|s2|s1) != 0;
s3 = s2 = s1 = s0 = 0;
}
xd = xd & 0x1f;
if (xd != 0)
{
s4 = s4 >> xd | (s4 << 32-xd) != 0 | s3 << 32-xd;
s3 = s3 >> xd | s2 << 32-xd;
s2 = s2 >> xd | s1 << 32-xd;
s1 = s1 >> xd | s0 << 32-xd;
s0 = s0 >> xd;
}
/* Do the addition. */
#define addc(r,cout,a,b,cin) \
do { \
unsigned long long addc_tmp = (a)+(b)+(cin);
(cout) = addc_tmp >> 32;
(r) = addc_tmp;
}
addc(t3,carry,t3,s3,0);
addc(t2,carry,t2,s2,carry);
addc(t1,carry,t1,s1,carry);
t0 = t0 + s0 + carry;
/* Renormalise. */
xdelta = 15-cntlzw(t0);
if (tx + xdelta <= 0x7fff)
shift = xdelta;
else
{
}
}
/* Add two 128-bit floating point values. */
void
__q_add(unsigned result[4], const unsigned a[4], const unsigned b[4])
{
if ((a[0] ^ b[0]) >= 0)
aadd(result, a, b);
else
asubtract(result, a, b);
}
/* Subtract two 128-bit floating point values. */
void
__q_sub(unsigned result[4], const unsigned a[4], const unsigned b[4])
{
if ((a[0] ^ b[0]) < 0)
aadd(result, a, b);
else
asubtract(result, a, b);
}