glibc/math/s_casinhl.c

111 lines
3.0 KiB
C

/* Return arc hyperbole sine for long double value.
Copyright (C) 1997-2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious overflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
__complex__ long double
__casinhl (__complex__ long double x)
{
__complex__ long double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (rcls <= FP_INFINITE || icls <= FP_INFINITE)
{
if (icls == FP_INFINITE)
{
__real__ res = __copysignl (HUGE_VALL, __real__ x);
if (rcls == FP_NAN)
__imag__ res = __nanl ("");
else
__imag__ res = __copysignl (rcls >= FP_ZERO ? M_PI_2l : M_PI_4l,
__imag__ x);
}
else if (rcls <= FP_INFINITE)
{
__real__ res = __real__ x;
if ((rcls == FP_INFINITE && icls >= FP_ZERO)
|| (rcls == FP_NAN && icls == FP_ZERO))
__imag__ res = __copysignl (0.0, __imag__ x);
else
__imag__ res = __nanl ("");
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
}
}
else if (rcls == FP_ZERO && icls == FP_ZERO)
{
res = x;
}
else
{
long double rx, ix;
__complex__ long double y;
/* Avoid cancellation by reducing to the first quadrant. */
rx = fabsl (__real__ x);
ix = fabsl (__imag__ x);
if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON)
{
/* For large x in the first quadrant, x + csqrt (1 + x * x)
is sufficiently close to 2 * x to make no significant
difference to the result; avoid possible overflow from
the squaring and addition. */
__real__ y = rx;
__imag__ y = ix;
res = __clogl (y);
__real__ res += M_LN2l;
}
else
{
__real__ y = (rx - ix) * (rx + ix) + 1.0;
__imag__ y = 2.0 * rx * ix;
y = __csqrtl (y);
__real__ y += rx;
__imag__ y += ix;
res = __clogl (y);
}
/* Give results the correct sign for the original argument. */
__real__ res = __copysignl (__real__ res, __real__ x);
__imag__ res = __copysignl (__imag__ res, __imag__ x);
}
return res;
}
weak_alias (__casinhl, casinhl)