The most common use case of math functions is with default rounding
mode, i.e. rounding to nearest. Setting and restoring rounding mode
is an unnecessary overhead for this, so I've added support for a
context, which does the set/restore only if the FP status needs a
change. The code is written such that only x86 uses these. Other
architectures should be unaffected by it, but would definitely benefit
if the set/restore has as much overhead relative to the rest of the
code, as the x86 bits do.
Here's a summary of the performance improvement due to these
improvements; I've only mentioned functions that use the set/restore
and have benchmark inputs for x86_64:
Before:
cos(): ITERS:4.69335e+08: TOTAL:28884.6Mcy, MAX:4080.28cy, MIN:57.562cy, 16248.6 calls/Mcy
exp(): ITERS:4.47604e+08: TOTAL:28796.2Mcy, MAX:207.721cy, MIN:62.385cy, 15543.9 calls/Mcy
pow(): ITERS:1.63485e+08: TOTAL:28879.9Mcy, MAX:362.255cy, MIN:172.469cy, 5660.86 calls/Mcy
sin(): ITERS:3.89578e+08: TOTAL:28900Mcy, MAX:704.859cy, MIN:47.583cy, 13480.2 calls/Mcy
tan(): ITERS:7.0971e+07: TOTAL:28902.2Mcy, MAX:1357.79cy, MIN:388.58cy, 2455.55 calls/Mcy
After:
cos(): ITERS:6.0014e+08: TOTAL:28875.9Mcy, MAX:364.283cy, MIN:45.716cy, 20783.4 calls/Mcy
exp(): ITERS:5.48578e+08: TOTAL:28764.9Mcy, MAX:191.617cy, MIN:51.011cy, 19071.1 calls/Mcy
pow(): ITERS:1.70013e+08: TOTAL:28873.6Mcy, MAX:689.522cy, MIN:163.989cy, 5888.18 calls/Mcy
sin(): ITERS:4.64079e+08: TOTAL:28891.5Mcy, MAX:6959.3cy, MIN:36.189cy, 16062.8 calls/Mcy
tan(): ITERS:7.2354e+07: TOTAL:28898.9Mcy, MAX:1295.57cy, MIN:380.698cy, 2503.7 calls/Mcy
So the improvements are:
cos: 27.9089%
exp: 22.6919%
pow: 4.01564%
sin: 19.1585%
tan: 1.96086%
The downside of the change is that it will have an adverse performance
impact on non-default rounding modes, but I think the tradeoff is
justified.