87837aace9
* elf/dl-deps.c (struct openaux_args): Add open_mode element. (openaux): Pass open_mode as new last argument to _dl_map_object. (_dl_map_object_deps): Add new argument open_mode. Initialize open_mode element of args variable with it. * elf/dl-open.c (dl_open_worker): Pass __RTLD_DLOPEN flag is set to _dl_map_object_deps. * elf/rtld.c (dl_main): Add zero as last parameter to _dl_map_object_deps call. * sysdeps/generic/ldsodefs.h: Adjust prototype of _dl_map_object_deps. * elf/nodlopen2.c: New file. * elf/nodlopenmod2.c: New file. * elf/Makefile: Add rules to build and run nodlopen2. * elf/tls-macros.hgg: ...here. New file. 2002-02-08 Richard Henderson <rth@redhat.com>
1830 lines
55 KiB
C
1830 lines
55 KiB
C
/* Run time dynamic linker.
|
||
Copyright (C) 1995-1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
||
This file is part of the GNU C Library.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with the GNU C Library; if not, write to the Free
|
||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||
02111-1307 USA. */
|
||
|
||
#include <fcntl.h>
|
||
#include <stdbool.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <unistd.h>
|
||
#include <sys/mman.h> /* Check if MAP_ANON is defined. */
|
||
#include <sys/param.h>
|
||
#include <sys/stat.h>
|
||
#include <ldsodefs.h>
|
||
#include <stdio-common/_itoa.h>
|
||
#include <entry.h>
|
||
#include <fpu_control.h>
|
||
#include <hp-timing.h>
|
||
#include <bits/libc-lock.h>
|
||
#include "dynamic-link.h"
|
||
#include "dl-librecon.h"
|
||
#include <unsecvars.h>
|
||
#include <dl-cache.h>
|
||
#include <dl-procinfo.h>
|
||
|
||
#include <assert.h>
|
||
|
||
/* Helper function to handle errors while resolving symbols. */
|
||
static void print_unresolved (int errcode, const char *objname,
|
||
const char *errsting);
|
||
|
||
/* Helper function to handle errors when a version is missing. */
|
||
static void print_missing_version (int errcode, const char *objname,
|
||
const char *errsting);
|
||
|
||
/* Print the various times we collected. */
|
||
static void print_statistics (void);
|
||
|
||
/* This is a list of all the modes the dynamic loader can be in. */
|
||
enum mode { normal, list, verify, trace };
|
||
|
||
/* Process all environments variables the dynamic linker must recognize.
|
||
Since all of them start with `LD_' we are a bit smarter while finding
|
||
all the entries. */
|
||
static void process_envvars (enum mode *modep);
|
||
|
||
int _dl_argc;
|
||
char **_dl_argv;
|
||
unsigned int _dl_skip_args; /* Nonzero if we were run directly. */
|
||
|
||
/* Set nonzero during loading and initialization of executable and
|
||
libraries, cleared before the executable's entry point runs. This
|
||
must not be initialized to nonzero, because the unused dynamic
|
||
linker loaded in for libc.so's "ld.so.1" dep will provide the
|
||
definition seen by libc.so's initializer; that value must be zero,
|
||
and will be since that dynamic linker's _dl_start and dl_main will
|
||
never be called. */
|
||
int _dl_starting_up;
|
||
|
||
/* This is the structure which defines all variables global to ld.so
|
||
(except those which cannot be added for some reason). */
|
||
struct rtld_global _rtld_global =
|
||
{
|
||
/* Get architecture specific initializer. */
|
||
#include <dl-procinfo.c>
|
||
._dl_debug_fd = STDERR_FILENO,
|
||
#if 1
|
||
/* XXX I know about at least one case where we depend on the old
|
||
weak behavior (it has to do with librt). Until we get DSO
|
||
groups implemented we have to make this the default.
|
||
Bummer. --drepper */
|
||
._dl_dynamic_weak = 1,
|
||
#endif
|
||
._dl_lazy = 1,
|
||
._dl_fpu_control = _FPU_DEFAULT,
|
||
._dl_correct_cache_id = _DL_CACHE_DEFAULT_ID,
|
||
._dl_hwcap_mask = HWCAP_IMPORTANT,
|
||
._dl_load_lock = _LIBC_LOCK_RECURSIVE_INITIALIZER
|
||
};
|
||
/* There must only be the definition in ld.so itself. */
|
||
#ifdef HAVE_PROTECTED
|
||
asm (".protected _rtld_global");
|
||
#endif
|
||
|
||
|
||
static void dl_main (const ElfW(Phdr) *phdr, ElfW(Word) phnum,
|
||
ElfW(Addr) *user_entry);
|
||
|
||
static struct libname_list _dl_rtld_libname;
|
||
static struct libname_list _dl_rtld_libname2;
|
||
|
||
/* We expect less than a second for relocation. */
|
||
#ifdef HP_SMALL_TIMING_AVAIL
|
||
# undef HP_TIMING_AVAIL
|
||
# define HP_TIMING_AVAIL HP_SMALL_TIMING_AVAIL
|
||
#endif
|
||
|
||
/* Variable for statistics. */
|
||
#ifndef HP_TIMING_NONAVAIL
|
||
static hp_timing_t rtld_total_time;
|
||
static hp_timing_t relocate_time;
|
||
static hp_timing_t load_time;
|
||
#endif
|
||
|
||
static ElfW(Addr) _dl_start_final (void *arg, struct link_map *bootstrap_map_p,
|
||
hp_timing_t start_time);
|
||
|
||
#ifdef RTLD_START
|
||
RTLD_START
|
||
#else
|
||
# error "sysdeps/MACHINE/dl-machine.h fails to define RTLD_START"
|
||
#endif
|
||
|
||
static ElfW(Addr) __attribute_used__ internal_function
|
||
_dl_start (void *arg)
|
||
{
|
||
struct link_map bootstrap_map;
|
||
hp_timing_t start_time;
|
||
#ifndef HAVE_BUILTIN_MEMSET
|
||
size_t cnt;
|
||
#endif
|
||
|
||
/* This #define produces dynamic linking inline functions for
|
||
bootstrap relocation instead of general-purpose relocation. */
|
||
#define RTLD_BOOTSTRAP
|
||
#define RESOLVE_MAP(sym, version, flags) \
|
||
((*(sym))->st_shndx == SHN_UNDEF ? 0 : &bootstrap_map)
|
||
#define RESOLVE(sym, version, flags) \
|
||
((*(sym))->st_shndx == SHN_UNDEF ? 0 : bootstrap_map.l_addr)
|
||
#include "dynamic-link.h"
|
||
|
||
if (HP_TIMING_INLINE && HP_TIMING_AVAIL)
|
||
HP_TIMING_NOW (start_time);
|
||
|
||
/* Partly clean the `bootstrap_map' structure up. Don't use
|
||
`memset' since it might not be built in or inlined and we cannot
|
||
make function calls at this point. Use '__builtin_memset' if we
|
||
know it is available. */
|
||
#ifdef HAVE_BUILTIN_MEMSET
|
||
__builtin_memset (bootstrap_map.l_info, '\0', sizeof (bootstrap_map.l_info));
|
||
#else
|
||
for (cnt = 0;
|
||
cnt < sizeof (bootstrap_map.l_info) / sizeof (bootstrap_map.l_info[0]);
|
||
++cnt)
|
||
bootstrap_map.l_info[cnt] = 0;
|
||
#endif
|
||
|
||
/* Figure out the run-time load address of the dynamic linker itself. */
|
||
bootstrap_map.l_addr = elf_machine_load_address ();
|
||
|
||
/* Read our own dynamic section and fill in the info array. */
|
||
bootstrap_map.l_ld = (void *) bootstrap_map.l_addr + elf_machine_dynamic ();
|
||
elf_get_dynamic_info (&bootstrap_map);
|
||
|
||
#ifdef ELF_MACHINE_BEFORE_RTLD_RELOC
|
||
ELF_MACHINE_BEFORE_RTLD_RELOC (bootstrap_map.l_info);
|
||
#endif
|
||
|
||
if (bootstrap_map.l_addr || ! bootstrap_map.l_info[VALIDX(DT_GNU_PRELINKED)])
|
||
{
|
||
/* Relocate ourselves so we can do normal function calls and
|
||
data access using the global offset table. */
|
||
|
||
ELF_DYNAMIC_RELOCATE (&bootstrap_map, 0, 0);
|
||
}
|
||
|
||
/* Please note that we don't allow profiling of this object and
|
||
therefore need not test whether we have to allocate the array
|
||
for the relocation results (as done in dl-reloc.c). */
|
||
|
||
/* Now life is sane; we can call functions and access global data.
|
||
Set up to use the operating system facilities, and find out from
|
||
the operating system's program loader where to find the program
|
||
header table in core. Put the rest of _dl_start into a separate
|
||
function, that way the compiler cannot put accesses to the GOT
|
||
before ELF_DYNAMIC_RELOCATE. */
|
||
{
|
||
ElfW(Addr) entry = _dl_start_final (arg, &bootstrap_map, start_time);
|
||
|
||
#ifndef ELF_MACHINE_START_ADDRESS
|
||
# define ELF_MACHINE_START_ADDRESS(map, start) (start)
|
||
#endif
|
||
|
||
return ELF_MACHINE_START_ADDRESS (GL(dl_loaded), entry);
|
||
}
|
||
}
|
||
|
||
|
||
#ifndef VALIDX
|
||
# define VALIDX(tag) (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGNUM \
|
||
+ DT_EXTRANUM + DT_VALTAGIDX (tag))
|
||
#endif
|
||
#ifndef ADDRIDX
|
||
# define ADDRIDX(tag) (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGNUM \
|
||
+ DT_EXTRANUM + DT_VALNUM + DT_ADDRTAGIDX (tag))
|
||
#endif
|
||
|
||
static ElfW(Addr)
|
||
_dl_start_final (void *arg, struct link_map *bootstrap_map_p,
|
||
hp_timing_t start_time)
|
||
{
|
||
/* The use of `alloca' here looks ridiculous but it helps. The goal
|
||
is to avoid the function from being inlined. There is no official
|
||
way to do this so we use this trick. gcc never inlines functions
|
||
which use `alloca'. */
|
||
ElfW(Addr) *start_addr = alloca (sizeof (ElfW(Addr)));
|
||
extern char _begin[], _end[];
|
||
#ifdef USE_TLS
|
||
ElfW(Ehdr) *ehdr;
|
||
ElfW(Phdr) *phdr;
|
||
size_t cnt;
|
||
dtv_t initdtv[2];
|
||
#endif
|
||
|
||
if (HP_TIMING_AVAIL)
|
||
{
|
||
/* If it hasn't happen yet record the startup time. */
|
||
if (! HP_TIMING_INLINE)
|
||
HP_TIMING_NOW (start_time);
|
||
|
||
/* Initialize the timing functions. */
|
||
HP_TIMING_DIFF_INIT ();
|
||
}
|
||
|
||
/* Transfer data about ourselves to the permanent link_map structure. */
|
||
GL(dl_rtld_map).l_addr = bootstrap_map_p->l_addr;
|
||
GL(dl_rtld_map).l_ld = bootstrap_map_p->l_ld;
|
||
GL(dl_rtld_map).l_opencount = 1;
|
||
memcpy (GL(dl_rtld_map).l_info, bootstrap_map_p->l_info,
|
||
sizeof GL(dl_rtld_map).l_info);
|
||
_dl_setup_hash (&GL(dl_rtld_map));
|
||
GL(dl_rtld_map).l_mach = bootstrap_map_p->l_mach;
|
||
GL(dl_rtld_map).l_map_start = (ElfW(Addr)) _begin;
|
||
GL(dl_rtld_map).l_map_end = (ElfW(Addr)) _end;
|
||
|
||
#if HP_TIMING_AVAIL
|
||
HP_TIMING_NOW (GL(dl_cpuclock_offset));
|
||
#endif
|
||
|
||
#if USE_TLS
|
||
/* Get the dynamic linkers program header. */
|
||
ehdr = (ElfW(Ehdr) *) GL(dl_rtld_map).l_map_start;
|
||
phdr = (ElfW(Phdr) *) (GL(dl_rtld_map).l_map_start + ehdr->e_phoff);
|
||
for (cnt = 0; cnt < ehdr->e_phnum; ++cnt)
|
||
if (phdr[cnt].p_type == PT_TLS)
|
||
{
|
||
void *tlsblock;
|
||
size_t max_align = MAX (TLS_INIT_TCB_ALIGN, phdr[cnt].p_align);
|
||
|
||
GL(dl_rtld_map).l_tls_blocksize = phdr[cnt].p_memsz;
|
||
GL(dl_rtld_map).l_tls_align = phdr[cnt].p_align;
|
||
assert (GL(dl_rtld_map).l_tls_blocksize != 0);
|
||
GL(dl_rtld_map).l_tls_initimage_size = phdr[cnt].p_filesz;
|
||
GL(dl_rtld_map).l_tls_initimage = (void *) (GL(dl_rtld_map).l_map_start
|
||
+ phdr[cnt].p_offset);
|
||
|
||
/* We can now allocate the initial TLS block. This can happen
|
||
on the stack. We'll get the final memory later when we
|
||
know all about the various objects loaded at startup
|
||
time. */
|
||
# if TLS_TCB_AT_TP
|
||
tlsblock = alloca (roundup (GL(dl_rtld_map).l_tls_blocksize,
|
||
TLS_INIT_TCB_ALIGN)
|
||
+ TLS_INIT_TCB_SIZE
|
||
+ max_align);
|
||
# elif TLS_DTV_AT_TP
|
||
tlsblock = alloca (roundup (TLS_INIT_TCB_SIZE,
|
||
GL(dl_rtld_map).l_tls_align)
|
||
+ GL(dl_rtld_map).l_tls_blocksize
|
||
+ max_align);
|
||
# else
|
||
/* In case a model with a different layout for the TCB and DTV
|
||
is defined add another #elif here and in the following #ifs. */
|
||
# error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
|
||
# endif
|
||
/* Align the TLS block. */
|
||
tlsblock = (void *) (((uintptr_t) tlsblock + max_align - 1)
|
||
& ~(max_align - 1));
|
||
|
||
/* Initialize the dtv. */
|
||
initdtv[0].counter = 1;
|
||
|
||
/* Initialize the TLS block. */
|
||
# if TLS_TCB_AT_TP
|
||
initdtv[1].pointer = tlsblock;
|
||
# elif TLS_DTV_AT_TP
|
||
GL(dl_rtld_map).l_tls_offset = roundup (TLS_INIT_TCB_SIZE,
|
||
GL(dl_rtld_map).l_tls_align);
|
||
initdtv[1].pointer = (char *) tlsblock + GL(dl_rtld_map).l_tls_offset);
|
||
# else
|
||
# error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
|
||
# endif
|
||
memset (__mempcpy (initdtv[1].pointer, GL(dl_rtld_map).l_tls_initimage,
|
||
GL(dl_rtld_map).l_tls_initimage_size),
|
||
'\0', (GL(dl_rtld_map).l_tls_blocksize
|
||
- GL(dl_rtld_map).l_tls_initimage_size));
|
||
|
||
/* Install the pointer to the dtv. */
|
||
|
||
/* Initialize the thread pointer. */
|
||
# if TLS_TCB_AT_TP
|
||
GL(dl_rtld_map).l_tls_offset
|
||
= roundup (GL(dl_rtld_map).l_tls_blocksize, TLS_INIT_TCB_ALIGN);
|
||
|
||
INSTALL_DTV ((char *) tlsblock + GL(dl_rtld_map).l_tls_offset,
|
||
initdtv);
|
||
|
||
TLS_INIT_TP ((char *) tlsblock + GL(dl_rtld_map).l_tls_offset);
|
||
# elif TLS_DTV_AT_TP
|
||
INSTALL_DTV (tlsblock, initdtv);
|
||
TLS_INIT_TP (tlsblock);
|
||
# else
|
||
# error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
|
||
# endif
|
||
|
||
/* So far this is module number one. */
|
||
GL(dl_rtld_map).l_tls_modid = 1;
|
||
|
||
/* There can only be one PT_TLS entry. */
|
||
break;
|
||
}
|
||
#endif /* use TLS */
|
||
|
||
/* Call the OS-dependent function to set up life so we can do things like
|
||
file access. It will call `dl_main' (below) to do all the real work
|
||
of the dynamic linker, and then unwind our frame and run the user
|
||
entry point on the same stack we entered on. */
|
||
*start_addr = _dl_sysdep_start (arg, &dl_main);
|
||
|
||
#ifndef HP_TIMING_NONAVAIL
|
||
if (HP_TIMING_AVAIL)
|
||
{
|
||
hp_timing_t end_time;
|
||
|
||
/* Get the current time. */
|
||
HP_TIMING_NOW (end_time);
|
||
|
||
/* Compute the difference. */
|
||
HP_TIMING_DIFF (rtld_total_time, start_time, end_time);
|
||
}
|
||
#endif
|
||
|
||
if (__builtin_expect (GL(dl_debug_mask) & DL_DEBUG_STATISTICS, 0))
|
||
print_statistics ();
|
||
|
||
return *start_addr;
|
||
}
|
||
|
||
/* Now life is peachy; we can do all normal operations.
|
||
On to the real work. */
|
||
|
||
/* Some helper functions. */
|
||
|
||
/* Arguments to relocate_doit. */
|
||
struct relocate_args
|
||
{
|
||
struct link_map *l;
|
||
int lazy;
|
||
};
|
||
|
||
struct map_args
|
||
{
|
||
/* Argument to map_doit. */
|
||
char *str;
|
||
/* Return value of map_doit. */
|
||
struct link_map *main_map;
|
||
};
|
||
|
||
/* Arguments to version_check_doit. */
|
||
struct version_check_args
|
||
{
|
||
int doexit;
|
||
int dotrace;
|
||
};
|
||
|
||
static void
|
||
relocate_doit (void *a)
|
||
{
|
||
struct relocate_args *args = (struct relocate_args *) a;
|
||
|
||
INTUSE(_dl_relocate_object) (args->l, args->l->l_scope, args->lazy, 0);
|
||
}
|
||
|
||
static void
|
||
map_doit (void *a)
|
||
{
|
||
struct map_args *args = (struct map_args *) a;
|
||
args->main_map = INTUSE(_dl_map_object) (NULL, args->str, 0, lt_library, 0, 0);
|
||
}
|
||
|
||
static void
|
||
version_check_doit (void *a)
|
||
{
|
||
struct version_check_args *args = (struct version_check_args *) a;
|
||
if (_dl_check_all_versions (GL(dl_loaded), 1, args->dotrace) && args->doexit)
|
||
/* We cannot start the application. Abort now. */
|
||
_exit (1);
|
||
}
|
||
|
||
|
||
static inline struct link_map *
|
||
find_needed (const char *name)
|
||
{
|
||
unsigned int n = GL(dl_loaded)->l_searchlist.r_nlist;
|
||
|
||
while (n-- > 0)
|
||
if (_dl_name_match_p (name, GL(dl_loaded)->l_searchlist.r_list[n]))
|
||
return GL(dl_loaded)->l_searchlist.r_list[n];
|
||
|
||
/* Should never happen. */
|
||
return NULL;
|
||
}
|
||
|
||
static int
|
||
match_version (const char *string, struct link_map *map)
|
||
{
|
||
const char *strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
|
||
ElfW(Verdef) *def;
|
||
|
||
#define VERDEFTAG (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGIDX (DT_VERDEF))
|
||
if (map->l_info[VERDEFTAG] == NULL)
|
||
/* The file has no symbol versioning. */
|
||
return 0;
|
||
|
||
def = (ElfW(Verdef) *) ((char *) map->l_addr
|
||
+ map->l_info[VERDEFTAG]->d_un.d_ptr);
|
||
while (1)
|
||
{
|
||
ElfW(Verdaux) *aux = (ElfW(Verdaux) *) ((char *) def + def->vd_aux);
|
||
|
||
/* Compare the version strings. */
|
||
if (strcmp (string, strtab + aux->vda_name) == 0)
|
||
/* Bingo! */
|
||
return 1;
|
||
|
||
/* If no more definitions we failed to find what we want. */
|
||
if (def->vd_next == 0)
|
||
break;
|
||
|
||
/* Next definition. */
|
||
def = (ElfW(Verdef) *) ((char *) def + def->vd_next);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const char *library_path; /* The library search path. */
|
||
static const char *preloadlist; /* The list preloaded objects. */
|
||
static int version_info; /* Nonzero if information about
|
||
versions has to be printed. */
|
||
|
||
static void
|
||
dl_main (const ElfW(Phdr) *phdr,
|
||
ElfW(Word) phnum,
|
||
ElfW(Addr) *user_entry)
|
||
{
|
||
const ElfW(Phdr) *ph;
|
||
enum mode mode;
|
||
struct link_map **preloads;
|
||
unsigned int npreloads;
|
||
size_t file_size;
|
||
char *file;
|
||
bool has_interp = false;
|
||
unsigned int i;
|
||
bool prelinked = false;
|
||
bool rtld_is_main = false;
|
||
#ifndef HP_TIMING_NONAVAIL
|
||
hp_timing_t start;
|
||
hp_timing_t stop;
|
||
hp_timing_t diff;
|
||
#endif
|
||
#ifdef USE_TLS
|
||
void *tcbp;
|
||
#endif
|
||
|
||
/* Process the environment variable which control the behaviour. */
|
||
process_envvars (&mode);
|
||
|
||
/* Set up a flag which tells we are just starting. */
|
||
_dl_starting_up = 1;
|
||
|
||
if (*user_entry == (ElfW(Addr)) ENTRY_POINT)
|
||
{
|
||
/* Ho ho. We are not the program interpreter! We are the program
|
||
itself! This means someone ran ld.so as a command. Well, that
|
||
might be convenient to do sometimes. We support it by
|
||
interpreting the args like this:
|
||
|
||
ld.so PROGRAM ARGS...
|
||
|
||
The first argument is the name of a file containing an ELF
|
||
executable we will load and run with the following arguments.
|
||
To simplify life here, PROGRAM is searched for using the
|
||
normal rules for shared objects, rather than $PATH or anything
|
||
like that. We just load it and use its entry point; we don't
|
||
pay attention to its PT_INTERP command (we are the interpreter
|
||
ourselves). This is an easy way to test a new ld.so before
|
||
installing it. */
|
||
rtld_is_main = true;
|
||
|
||
/* Note the place where the dynamic linker actually came from. */
|
||
GL(dl_rtld_map).l_name = _dl_argv[0];
|
||
|
||
while (_dl_argc > 1)
|
||
if (! strcmp (_dl_argv[1], "--list"))
|
||
{
|
||
mode = list;
|
||
GL(dl_lazy) = -1; /* This means do no dependency analysis. */
|
||
|
||
++_dl_skip_args;
|
||
--_dl_argc;
|
||
++_dl_argv;
|
||
}
|
||
else if (! strcmp (_dl_argv[1], "--verify"))
|
||
{
|
||
mode = verify;
|
||
|
||
++_dl_skip_args;
|
||
--_dl_argc;
|
||
++_dl_argv;
|
||
}
|
||
else if (! strcmp (_dl_argv[1], "--library-path") && _dl_argc > 2)
|
||
{
|
||
library_path = _dl_argv[2];
|
||
|
||
_dl_skip_args += 2;
|
||
_dl_argc -= 2;
|
||
_dl_argv += 2;
|
||
}
|
||
else if (! strcmp (_dl_argv[1], "--inhibit-rpath") && _dl_argc > 2)
|
||
{
|
||
GL(dl_inhibit_rpath) = _dl_argv[2];
|
||
|
||
_dl_skip_args += 2;
|
||
_dl_argc -= 2;
|
||
_dl_argv += 2;
|
||
}
|
||
else
|
||
break;
|
||
|
||
/* If we have no further argument the program was called incorrectly.
|
||
Grant the user some education. */
|
||
if (_dl_argc < 2)
|
||
_dl_fatal_printf ("\
|
||
Usage: ld.so [OPTION]... EXECUTABLE-FILE [ARGS-FOR-PROGRAM...]\n\
|
||
You have invoked `ld.so', the helper program for shared library executables.\n\
|
||
This program usually lives in the file `/lib/ld.so', and special directives\n\
|
||
in executable files using ELF shared libraries tell the system's program\n\
|
||
loader to load the helper program from this file. This helper program loads\n\
|
||
the shared libraries needed by the program executable, prepares the program\n\
|
||
to run, and runs it. You may invoke this helper program directly from the\n\
|
||
command line to load and run an ELF executable file; this is like executing\n\
|
||
that file itself, but always uses this helper program from the file you\n\
|
||
specified, instead of the helper program file specified in the executable\n\
|
||
file you run. This is mostly of use for maintainers to test new versions\n\
|
||
of this helper program; chances are you did not intend to run this program.\n\
|
||
\n\
|
||
--list list all dependencies and how they are resolved\n\
|
||
--verify verify that given object really is a dynamically linked\n\
|
||
object we can handle\n\
|
||
--library-path PATH use given PATH instead of content of the environment\n\
|
||
variable LD_LIBRARY_PATH\n\
|
||
--inhibit-rpath LIST ignore RUNPATH and RPATH information in object names\n\
|
||
in LIST\n");
|
||
|
||
++_dl_skip_args;
|
||
--_dl_argc;
|
||
++_dl_argv;
|
||
|
||
/* Initialize the data structures for the search paths for shared
|
||
objects. */
|
||
_dl_init_paths (library_path);
|
||
|
||
if (__builtin_expect (mode, normal) == verify)
|
||
{
|
||
const char *objname;
|
||
const char *err_str = NULL;
|
||
struct map_args args;
|
||
|
||
args.str = _dl_argv[0];
|
||
(void) INTUSE(_dl_catch_error) (&objname, &err_str, map_doit, &args);
|
||
if (__builtin_expect (err_str != NULL, 0))
|
||
{
|
||
if (err_str != _dl_out_of_memory)
|
||
free ((char *) err_str);
|
||
_exit (EXIT_FAILURE);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
HP_TIMING_NOW (start);
|
||
INTUSE(_dl_map_object) (NULL, _dl_argv[0], 0, lt_library, 0, 0);
|
||
HP_TIMING_NOW (stop);
|
||
|
||
HP_TIMING_DIFF (load_time, start, stop);
|
||
}
|
||
|
||
phdr = GL(dl_loaded)->l_phdr;
|
||
phnum = GL(dl_loaded)->l_phnum;
|
||
/* We overwrite here a pointer to a malloc()ed string. But since
|
||
the malloc() implementation used at this point is the dummy
|
||
implementations which has no real free() function it does not
|
||
makes sense to free the old string first. */
|
||
GL(dl_loaded)->l_name = (char *) "";
|
||
*user_entry = GL(dl_loaded)->l_entry;
|
||
}
|
||
else
|
||
{
|
||
/* Create a link_map for the executable itself.
|
||
This will be what dlopen on "" returns. */
|
||
_dl_new_object ((char *) "", "", lt_executable, NULL);
|
||
if (GL(dl_loaded) == NULL)
|
||
_dl_fatal_printf ("cannot allocate memory for link map\n");
|
||
GL(dl_loaded)->l_phdr = phdr;
|
||
GL(dl_loaded)->l_phnum = phnum;
|
||
GL(dl_loaded)->l_entry = *user_entry;
|
||
|
||
/* At this point we are in a bit of trouble. We would have to
|
||
fill in the values for l_dev and l_ino. But in general we
|
||
do not know where the file is. We also do not handle AT_EXECFD
|
||
even if it would be passed up.
|
||
|
||
We leave the values here defined to 0. This is normally no
|
||
problem as the program code itself is normally no shared
|
||
object and therefore cannot be loaded dynamically. Nothing
|
||
prevent the use of dynamic binaries and in these situations
|
||
we might get problems. We might not be able to find out
|
||
whether the object is already loaded. But since there is no
|
||
easy way out and because the dynamic binary must also not
|
||
have an SONAME we ignore this program for now. If it becomes
|
||
a problem we can force people using SONAMEs. */
|
||
|
||
/* We delay initializing the path structure until we got the dynamic
|
||
information for the program. */
|
||
}
|
||
|
||
GL(dl_loaded)->l_map_end = 0;
|
||
/* Perhaps the executable has no PT_LOAD header entries at all. */
|
||
GL(dl_loaded)->l_map_start = ~0;
|
||
/* We opened the file, account for it. */
|
||
++GL(dl_loaded)->l_opencount;
|
||
|
||
/* Scan the program header table for the dynamic section. */
|
||
for (ph = phdr; ph < &phdr[phnum]; ++ph)
|
||
switch (ph->p_type)
|
||
{
|
||
case PT_PHDR:
|
||
/* Find out the load address. */
|
||
GL(dl_loaded)->l_addr = (ElfW(Addr)) phdr - ph->p_vaddr;
|
||
break;
|
||
case PT_DYNAMIC:
|
||
/* This tells us where to find the dynamic section,
|
||
which tells us everything we need to do. */
|
||
GL(dl_loaded)->l_ld = (void *) GL(dl_loaded)->l_addr + ph->p_vaddr;
|
||
break;
|
||
case PT_INTERP:
|
||
/* This "interpreter segment" was used by the program loader to
|
||
find the program interpreter, which is this program itself, the
|
||
dynamic linker. We note what name finds us, so that a future
|
||
dlopen call or DT_NEEDED entry, for something that wants to link
|
||
against the dynamic linker as a shared library, will know that
|
||
the shared object is already loaded. */
|
||
_dl_rtld_libname.name = ((const char *) GL(dl_loaded)->l_addr
|
||
+ ph->p_vaddr);
|
||
/* _dl_rtld_libname.next = NULL; Already zero. */
|
||
GL(dl_rtld_map).l_libname = &_dl_rtld_libname;
|
||
|
||
/* Ordinarilly, we would get additional names for the loader from
|
||
our DT_SONAME. This can't happen if we were actually linked as
|
||
a static executable (detect this case when we have no DYNAMIC).
|
||
If so, assume the filename component of the interpreter path to
|
||
be our SONAME, and add it to our name list. */
|
||
if (GL(dl_rtld_map).l_ld == NULL)
|
||
{
|
||
const char *p = NULL;
|
||
const char *cp = _dl_rtld_libname.name;
|
||
|
||
/* Find the filename part of the path. */
|
||
while (*cp != '\0')
|
||
if (*cp++ == '/')
|
||
p = cp;
|
||
|
||
if (p != NULL)
|
||
{
|
||
_dl_rtld_libname2.name = p;
|
||
/* _dl_rtld_libname2.next = NULL; Already zero. */
|
||
_dl_rtld_libname.next = &_dl_rtld_libname2;
|
||
}
|
||
}
|
||
|
||
has_interp = true;
|
||
break;
|
||
case PT_LOAD:
|
||
{
|
||
ElfW(Addr) mapstart;
|
||
ElfW(Addr) allocend;
|
||
|
||
/* Remember where the main program starts in memory. */
|
||
mapstart = (GL(dl_loaded)->l_addr
|
||
+ (ph->p_vaddr & ~(ph->p_align - 1)));
|
||
if (GL(dl_loaded)->l_map_start > mapstart)
|
||
GL(dl_loaded)->l_map_start = mapstart;
|
||
|
||
/* Also where it ends. */
|
||
allocend = GL(dl_loaded)->l_addr + ph->p_vaddr + ph->p_memsz;
|
||
if (GL(dl_loaded)->l_map_end < allocend)
|
||
GL(dl_loaded)->l_map_end = allocend;
|
||
}
|
||
break;
|
||
#ifdef USE_TLS
|
||
case PT_TLS:
|
||
/* Note that in the case the dynamic linker we duplicate work
|
||
here since we read the PT_TLS entry already in
|
||
_dl_start_final. But the result is repeatable so do not
|
||
check for this special but unimportant case. */
|
||
GL(dl_loaded)->l_tls_blocksize = ph->p_memsz;
|
||
GL(dl_loaded)->l_tls_align = ph->p_align;
|
||
GL(dl_loaded)->l_tls_initimage_size = ph->p_filesz;
|
||
GL(dl_loaded)->l_tls_initimage = (void *) ph->p_vaddr;
|
||
/* This is the first element of the initialization image list.
|
||
We create the list as circular since we have to append at
|
||
the end. */
|
||
GL(dl_initimage_list) = GL(dl_loaded)->l_tls_nextimage
|
||
= GL(dl_loaded)->l_tls_previmage = GL(dl_loaded);
|
||
|
||
/* This image gets the ID one. */
|
||
GL(dl_tls_max_dtv_idx) = GL(dl_loaded)->l_tls_modid = 1;
|
||
break;
|
||
#endif
|
||
}
|
||
if (! GL(dl_loaded)->l_map_end)
|
||
GL(dl_loaded)->l_map_end = ~0;
|
||
if (! GL(dl_rtld_map).l_libname && GL(dl_rtld_map).l_name)
|
||
{
|
||
/* We were invoked directly, so the program might not have a
|
||
PT_INTERP. */
|
||
_dl_rtld_libname.name = GL(dl_rtld_map).l_name;
|
||
/* _dl_rtld_libname.next = NULL; Already zero. */
|
||
GL(dl_rtld_map).l_libname = &_dl_rtld_libname;
|
||
}
|
||
else
|
||
assert (GL(dl_rtld_map).l_libname); /* How else did we get here? */
|
||
|
||
if (! rtld_is_main)
|
||
{
|
||
/* Extract the contents of the dynamic section for easy access. */
|
||
elf_get_dynamic_info (GL(dl_loaded));
|
||
if (GL(dl_loaded)->l_info[DT_HASH])
|
||
/* Set up our cache of pointers into the hash table. */
|
||
_dl_setup_hash (GL(dl_loaded));
|
||
}
|
||
|
||
if (__builtin_expect (mode, normal) == verify)
|
||
{
|
||
/* We were called just to verify that this is a dynamic
|
||
executable using us as the program interpreter. Exit with an
|
||
error if we were not able to load the binary or no interpreter
|
||
is specified (i.e., this is no dynamically linked binary. */
|
||
if (GL(dl_loaded)->l_ld == NULL)
|
||
_exit (1);
|
||
|
||
/* We allow here some platform specific code. */
|
||
#ifdef DISTINGUISH_LIB_VERSIONS
|
||
DISTINGUISH_LIB_VERSIONS;
|
||
#endif
|
||
_exit (has_interp ? 0 : 2);
|
||
}
|
||
|
||
if (! rtld_is_main)
|
||
/* Initialize the data structures for the search paths for shared
|
||
objects. */
|
||
_dl_init_paths (library_path);
|
||
|
||
/* Put the link_map for ourselves on the chain so it can be found by
|
||
name. Note that at this point the global chain of link maps contains
|
||
exactly one element, which is pointed to by dl_loaded. */
|
||
if (! GL(dl_rtld_map).l_name)
|
||
/* If not invoked directly, the dynamic linker shared object file was
|
||
found by the PT_INTERP name. */
|
||
GL(dl_rtld_map).l_name = (char *) GL(dl_rtld_map).l_libname->name;
|
||
GL(dl_rtld_map).l_type = lt_library;
|
||
GL(dl_loaded)->l_next = &GL(dl_rtld_map);
|
||
GL(dl_rtld_map).l_prev = GL(dl_loaded);
|
||
++GL(dl_nloaded);
|
||
|
||
/* We have two ways to specify objects to preload: via environment
|
||
variable and via the file /etc/ld.so.preload. The latter can also
|
||
be used when security is enabled. */
|
||
preloads = NULL;
|
||
npreloads = 0;
|
||
|
||
if (__builtin_expect (preloadlist != NULL, 0))
|
||
{
|
||
/* The LD_PRELOAD environment variable gives list of libraries
|
||
separated by white space or colons that are loaded before the
|
||
executable's dependencies and prepended to the global scope
|
||
list. If the binary is running setuid all elements
|
||
containing a '/' are ignored since it is insecure. */
|
||
char *list = strdupa (preloadlist);
|
||
char *p;
|
||
|
||
HP_TIMING_NOW (start);
|
||
|
||
/* Prevent optimizing strsep. Speed is not important here. */
|
||
while ((p = (strsep) (&list, " :")) != NULL)
|
||
if (p[0] != '\0'
|
||
&& (__builtin_expect (! __libc_enable_secure, 1)
|
||
|| strchr (p, '/') == NULL))
|
||
{
|
||
struct link_map *new_map = INTUSE(_dl_map_object) (GL(dl_loaded),
|
||
p, 1,
|
||
lt_library,
|
||
0, 0);
|
||
if (++new_map->l_opencount == 1)
|
||
/* It is no duplicate. */
|
||
++npreloads;
|
||
}
|
||
|
||
HP_TIMING_NOW (stop);
|
||
HP_TIMING_DIFF (diff, start, stop);
|
||
HP_TIMING_ACCUM_NT (load_time, diff);
|
||
}
|
||
|
||
/* Read the contents of the file. */
|
||
file = _dl_sysdep_read_whole_file ("/etc/ld.so.preload", &file_size,
|
||
PROT_READ | PROT_WRITE);
|
||
if (__builtin_expect (file != MAP_FAILED, 0))
|
||
{
|
||
/* Parse the file. It contains names of libraries to be loaded,
|
||
separated by white spaces or `:'. It may also contain
|
||
comments introduced by `#'. */
|
||
char *problem;
|
||
char *runp;
|
||
size_t rest;
|
||
|
||
/* Eliminate comments. */
|
||
runp = file;
|
||
rest = file_size;
|
||
while (rest > 0)
|
||
{
|
||
char *comment = memchr (runp, '#', rest);
|
||
if (comment == NULL)
|
||
break;
|
||
|
||
rest -= comment - runp;
|
||
do
|
||
*comment = ' ';
|
||
while (--rest > 0 && *++comment != '\n');
|
||
}
|
||
|
||
/* We have one problematic case: if we have a name at the end of
|
||
the file without a trailing terminating characters, we cannot
|
||
place the \0. Handle the case separately. */
|
||
if (file[file_size - 1] != ' ' && file[file_size - 1] != '\t'
|
||
&& file[file_size - 1] != '\n' && file[file_size - 1] != ':')
|
||
{
|
||
problem = &file[file_size];
|
||
while (problem > file && problem[-1] != ' ' && problem[-1] != '\t'
|
||
&& problem[-1] != '\n' && problem[-1] != ':')
|
||
--problem;
|
||
|
||
if (problem > file)
|
||
problem[-1] = '\0';
|
||
}
|
||
else
|
||
{
|
||
problem = NULL;
|
||
file[file_size - 1] = '\0';
|
||
}
|
||
|
||
HP_TIMING_NOW (start);
|
||
|
||
if (file != problem)
|
||
{
|
||
char *p;
|
||
runp = file;
|
||
while ((p = strsep (&runp, ": \t\n")) != NULL)
|
||
if (p[0] != '\0')
|
||
{
|
||
struct link_map *new_map = INTUSE(_dl_map_object) (GL(dl_loaded),
|
||
p, 1,
|
||
lt_library,
|
||
0, 0);
|
||
if (++new_map->l_opencount == 1)
|
||
/* It is no duplicate. */
|
||
++npreloads;
|
||
}
|
||
}
|
||
|
||
if (problem != NULL)
|
||
{
|
||
char *p = strndupa (problem, file_size - (problem - file));
|
||
struct link_map *new_map = INTUSE(_dl_map_object) (GL(dl_loaded), p,
|
||
1, lt_library,
|
||
0, 0);
|
||
if (++new_map->l_opencount == 1)
|
||
/* It is no duplicate. */
|
||
++npreloads;
|
||
}
|
||
|
||
HP_TIMING_NOW (stop);
|
||
HP_TIMING_DIFF (diff, start, stop);
|
||
HP_TIMING_ACCUM_NT (load_time, diff);
|
||
|
||
/* We don't need the file anymore. */
|
||
__munmap (file, file_size);
|
||
}
|
||
|
||
if (__builtin_expect (npreloads, 0) != 0)
|
||
{
|
||
/* Set up PRELOADS with a vector of the preloaded libraries. */
|
||
struct link_map *l;
|
||
preloads = __alloca (npreloads * sizeof preloads[0]);
|
||
l = GL(dl_rtld_map).l_next; /* End of the chain before preloads. */
|
||
i = 0;
|
||
do
|
||
{
|
||
preloads[i++] = l;
|
||
l = l->l_next;
|
||
} while (l);
|
||
assert (i == npreloads);
|
||
}
|
||
|
||
/* Load all the libraries specified by DT_NEEDED entries. If LD_PRELOAD
|
||
specified some libraries to load, these are inserted before the actual
|
||
dependencies in the executable's searchlist for symbol resolution. */
|
||
HP_TIMING_NOW (start);
|
||
INTUSE(_dl_map_object_deps) (GL(dl_loaded), preloads, npreloads,
|
||
mode == trace, 0);
|
||
HP_TIMING_NOW (stop);
|
||
HP_TIMING_DIFF (diff, start, stop);
|
||
HP_TIMING_ACCUM_NT (load_time, diff);
|
||
|
||
/* Mark all objects as being in the global scope and set the open
|
||
counter. */
|
||
for (i = GL(dl_loaded)->l_searchlist.r_nlist; i > 0; )
|
||
{
|
||
--i;
|
||
GL(dl_loaded)->l_searchlist.r_list[i]->l_global = 1;
|
||
++GL(dl_loaded)->l_searchlist.r_list[i]->l_opencount;
|
||
}
|
||
|
||
#ifndef MAP_ANON
|
||
/* We are done mapping things, so close the zero-fill descriptor. */
|
||
__close (_dl_zerofd);
|
||
_dl_zerofd = -1;
|
||
#endif
|
||
|
||
/* Remove _dl_rtld_map from the chain. */
|
||
GL(dl_rtld_map).l_prev->l_next = GL(dl_rtld_map).l_next;
|
||
if (GL(dl_rtld_map).l_next)
|
||
GL(dl_rtld_map).l_next->l_prev = GL(dl_rtld_map).l_prev;
|
||
|
||
if (__builtin_expect (GL(dl_rtld_map).l_opencount > 1, 1))
|
||
{
|
||
/* Some DT_NEEDED entry referred to the interpreter object itself, so
|
||
put it back in the list of visible objects. We insert it into the
|
||
chain in symbol search order because gdb uses the chain's order as
|
||
its symbol search order. */
|
||
i = 1;
|
||
while (GL(dl_loaded)->l_searchlist.r_list[i] != &GL(dl_rtld_map))
|
||
++i;
|
||
GL(dl_rtld_map).l_prev = GL(dl_loaded)->l_searchlist.r_list[i - 1];
|
||
if (__builtin_expect (mode, normal) == normal)
|
||
GL(dl_rtld_map).l_next = (i + 1 < GL(dl_loaded)->l_searchlist.r_nlist
|
||
? GL(dl_loaded)->l_searchlist.r_list[i + 1]
|
||
: NULL);
|
||
else
|
||
/* In trace mode there might be an invisible object (which we
|
||
could not find) after the previous one in the search list.
|
||
In this case it doesn't matter much where we put the
|
||
interpreter object, so we just initialize the list pointer so
|
||
that the assertion below holds. */
|
||
GL(dl_rtld_map).l_next = GL(dl_rtld_map).l_prev->l_next;
|
||
|
||
assert (GL(dl_rtld_map).l_prev->l_next == GL(dl_rtld_map).l_next);
|
||
GL(dl_rtld_map).l_prev->l_next = &GL(dl_rtld_map);
|
||
if (GL(dl_rtld_map).l_next != NULL)
|
||
{
|
||
assert (GL(dl_rtld_map).l_next->l_prev == GL(dl_rtld_map).l_prev);
|
||
GL(dl_rtld_map).l_next->l_prev = &GL(dl_rtld_map);
|
||
}
|
||
}
|
||
|
||
/* Now let us see whether all libraries are available in the
|
||
versions we need. */
|
||
{
|
||
struct version_check_args args;
|
||
args.doexit = mode == normal;
|
||
args.dotrace = mode == trace;
|
||
_dl_receive_error (print_missing_version, version_check_doit, &args);
|
||
}
|
||
|
||
if (__builtin_expect (mode, normal) != normal)
|
||
{
|
||
/* We were run just to list the shared libraries. It is
|
||
important that we do this before real relocation, because the
|
||
functions we call below for output may no longer work properly
|
||
after relocation. */
|
||
if (! GL(dl_loaded)->l_info[DT_NEEDED])
|
||
_dl_printf ("\tstatically linked\n");
|
||
else
|
||
{
|
||
struct link_map *l;
|
||
|
||
if (GL(dl_debug_mask) & DL_DEBUG_PRELINK)
|
||
{
|
||
struct r_scope_elem *scope = &GL(dl_loaded)->l_searchlist;
|
||
|
||
for (i = 0; i < scope->r_nlist; i++)
|
||
{
|
||
l = scope->r_list [i];
|
||
if (l->l_faked)
|
||
{
|
||
_dl_printf ("\t%s => not found\n", l->l_libname->name);
|
||
continue;
|
||
}
|
||
if (_dl_name_match_p (GL(dl_trace_prelink), l))
|
||
GL(dl_trace_prelink_map) = l;
|
||
_dl_printf ("\t%s => %s (0x%0*Zx, 0x%0*Zx)\n",
|
||
l->l_libname->name[0] ? l->l_libname->name
|
||
: _dl_argv[0] ?: "<main program>",
|
||
l->l_name[0] ? l->l_name
|
||
: _dl_argv[0] ?: "<main program>",
|
||
(int) sizeof l->l_map_start * 2,
|
||
l->l_map_start,
|
||
(int) sizeof l->l_addr * 2,
|
||
l->l_addr);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (l = GL(dl_loaded)->l_next; l; l = l->l_next)
|
||
if (l->l_faked)
|
||
/* The library was not found. */
|
||
_dl_printf ("\t%s => not found\n", l->l_libname->name);
|
||
else
|
||
_dl_printf ("\t%s => %s (0x%0*Zx)\n", l->l_libname->name,
|
||
l->l_name, (int) sizeof l->l_map_start * 2,
|
||
l->l_map_start);
|
||
}
|
||
}
|
||
|
||
if (__builtin_expect (mode, trace) != trace)
|
||
for (i = 1; i < _dl_argc; ++i)
|
||
{
|
||
const ElfW(Sym) *ref = NULL;
|
||
ElfW(Addr) loadbase;
|
||
lookup_t result;
|
||
|
||
result = INTUSE(_dl_lookup_symbol) (_dl_argv[i], GL(dl_loaded),
|
||
&ref, GL(dl_loaded)->l_scope,
|
||
ELF_RTYPE_CLASS_PLT, 1);
|
||
|
||
loadbase = LOOKUP_VALUE_ADDRESS (result);
|
||
|
||
_dl_printf ("%s found at 0x%0*Zd in object at 0x%0*Zd\n",
|
||
_dl_argv[i],
|
||
(int) sizeof ref->st_value * 2, ref->st_value,
|
||
(int) sizeof loadbase * 2, loadbase);
|
||
}
|
||
else
|
||
{
|
||
/* If LD_WARN is set warn about undefined symbols. */
|
||
if (GL(dl_lazy) >= 0 && GL(dl_verbose))
|
||
{
|
||
/* We have to do symbol dependency testing. */
|
||
struct relocate_args args;
|
||
struct link_map *l;
|
||
|
||
args.lazy = GL(dl_lazy);
|
||
|
||
l = GL(dl_loaded);
|
||
while (l->l_next)
|
||
l = l->l_next;
|
||
do
|
||
{
|
||
if (l != &GL(dl_rtld_map) && ! l->l_faked)
|
||
{
|
||
args.l = l;
|
||
_dl_receive_error (print_unresolved, relocate_doit,
|
||
&args);
|
||
}
|
||
l = l->l_prev;
|
||
} while (l);
|
||
|
||
if ((GL(dl_debug_mask) & DL_DEBUG_PRELINK)
|
||
&& GL(dl_rtld_map).l_opencount > 1)
|
||
INTUSE(_dl_relocate_object) (&GL(dl_rtld_map),
|
||
GL(dl_loaded)->l_scope, 0, 0);
|
||
}
|
||
|
||
#define VERNEEDTAG (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGIDX (DT_VERNEED))
|
||
if (version_info)
|
||
{
|
||
/* Print more information. This means here, print information
|
||
about the versions needed. */
|
||
int first = 1;
|
||
struct link_map *map = GL(dl_loaded);
|
||
|
||
for (map = GL(dl_loaded); map != NULL; map = map->l_next)
|
||
{
|
||
const char *strtab;
|
||
ElfW(Dyn) *dyn = map->l_info[VERNEEDTAG];
|
||
ElfW(Verneed) *ent;
|
||
|
||
if (dyn == NULL)
|
||
continue;
|
||
|
||
strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
|
||
ent = (ElfW(Verneed) *) (map->l_addr + dyn->d_un.d_ptr);
|
||
|
||
if (first)
|
||
{
|
||
_dl_printf ("\n\tVersion information:\n");
|
||
first = 0;
|
||
}
|
||
|
||
_dl_printf ("\t%s:\n",
|
||
map->l_name[0] ? map->l_name : _dl_argv[0]);
|
||
|
||
while (1)
|
||
{
|
||
ElfW(Vernaux) *aux;
|
||
struct link_map *needed;
|
||
|
||
needed = find_needed (strtab + ent->vn_file);
|
||
aux = (ElfW(Vernaux) *) ((char *) ent + ent->vn_aux);
|
||
|
||
while (1)
|
||
{
|
||
const char *fname = NULL;
|
||
|
||
if (needed != NULL
|
||
&& match_version (strtab + aux->vna_name,
|
||
needed))
|
||
fname = needed->l_name;
|
||
|
||
_dl_printf ("\t\t%s (%s) %s=> %s\n",
|
||
strtab + ent->vn_file,
|
||
strtab + aux->vna_name,
|
||
aux->vna_flags & VER_FLG_WEAK
|
||
? "[WEAK] " : "",
|
||
fname ?: "not found");
|
||
|
||
if (aux->vna_next == 0)
|
||
/* No more symbols. */
|
||
break;
|
||
|
||
/* Next symbol. */
|
||
aux = (ElfW(Vernaux) *) ((char *) aux
|
||
+ aux->vna_next);
|
||
}
|
||
|
||
if (ent->vn_next == 0)
|
||
/* No more dependencies. */
|
||
break;
|
||
|
||
/* Next dependency. */
|
||
ent = (ElfW(Verneed) *) ((char *) ent + ent->vn_next);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
_exit (0);
|
||
}
|
||
|
||
#ifdef USE_TLS
|
||
/* Now it is time to determine the layout of the static TLS block
|
||
and allocate it for the initial thread. Note that we always
|
||
allocate the static block, we never defer it even if no
|
||
DF_STATIC_TLS bit is set. The reason is that we know glibc will
|
||
use the static model. First add the dynamic linker to the list
|
||
if it also uses TLS. */
|
||
if (GL(dl_rtld_map).l_tls_blocksize != 0)
|
||
{
|
||
/* At to the list. */
|
||
if (GL(dl_initimage_list) == NULL)
|
||
GL(dl_initimage_list) = GL(dl_rtld_map).l_tls_nextimage
|
||
= GL(dl_rtld_map).l_tls_previmage = &GL(dl_rtld_map);
|
||
else
|
||
{
|
||
GL(dl_rtld_map).l_tls_nextimage
|
||
= GL(dl_initimage_list)->l_tls_nextimage;
|
||
GL(dl_rtld_map).l_tls_nextimage->l_tls_previmage
|
||
= &GL(dl_rtld_map);
|
||
GL(dl_rtld_map).l_tls_previmage = GL(dl_initimage_list);
|
||
GL(dl_rtld_map).l_tls_previmage->l_tls_nextimage
|
||
= &GL(dl_rtld_map);
|
||
GL(dl_initimage_list) = &GL(dl_rtld_map);
|
||
}
|
||
|
||
/* Assign a module ID. */
|
||
GL(dl_rtld_map).l_tls_modid = _dl_next_tls_modid ();
|
||
}
|
||
|
||
/* Computer the TLS offsets for the various blocks. We call this
|
||
function even if none of the modules available at startup time
|
||
uses TLS to initialize some variables. */
|
||
_dl_determine_tlsoffset (GL(dl_initimage_list));
|
||
|
||
/* Construct the static TLS block and the dtv for the initial
|
||
thread. For some platforms this will include allocating memory
|
||
for the thread descriptor. The memory for the TLS block will
|
||
never be freed. It should be allocated accordingly. The dtv
|
||
array can be changed if dynamic loading requires it. */
|
||
tcbp = _dl_allocate_tls ();
|
||
if (tcbp == NULL)
|
||
_dl_fatal_printf ("cannot allocate TLS data structures for inital thread");
|
||
|
||
/* And finally install it for the main thread. */
|
||
TLS_INIT_TP (tcbp);
|
||
#endif
|
||
|
||
if (GL(dl_loaded)->l_info [ADDRIDX (DT_GNU_LIBLIST)]
|
||
&& ! __builtin_expect (GL(dl_profile) != NULL, 0))
|
||
{
|
||
ElfW(Lib) *liblist, *liblistend;
|
||
struct link_map **r_list, **r_listend, *l;
|
||
const char *strtab = (const void *) D_PTR (GL(dl_loaded),
|
||
l_info[DT_STRTAB]);
|
||
|
||
assert (GL(dl_loaded)->l_info [VALIDX (DT_GNU_LIBLISTSZ)] != NULL);
|
||
liblist = (ElfW(Lib) *)
|
||
GL(dl_loaded)->l_info [ADDRIDX (DT_GNU_LIBLIST)]->d_un.d_ptr;
|
||
liblistend = (ElfW(Lib) *)
|
||
((char *) liblist
|
||
+ GL(dl_loaded)->l_info [VALIDX (DT_GNU_LIBLISTSZ)]->d_un.d_val);
|
||
r_list = GL(dl_loaded)->l_searchlist.r_list;
|
||
r_listend = r_list + GL(dl_loaded)->l_searchlist.r_nlist;
|
||
|
||
for (; r_list < r_listend && liblist < liblistend; r_list++)
|
||
{
|
||
l = *r_list;
|
||
|
||
if (l == GL(dl_loaded))
|
||
continue;
|
||
|
||
/* If the library is not mapped where it should, fail. */
|
||
if (l->l_addr)
|
||
break;
|
||
|
||
/* Next, check if checksum matches. */
|
||
if (l->l_info [VALIDX(DT_CHECKSUM)] == NULL
|
||
|| l->l_info [VALIDX(DT_CHECKSUM)]->d_un.d_val
|
||
!= liblist->l_checksum)
|
||
break;
|
||
|
||
if (l->l_info [VALIDX(DT_GNU_PRELINKED)] == NULL
|
||
|| l->l_info [VALIDX(DT_GNU_PRELINKED)]->d_un.d_val
|
||
!= liblist->l_time_stamp)
|
||
break;
|
||
|
||
if (! _dl_name_match_p (strtab + liblist->l_name, l))
|
||
break;
|
||
|
||
++liblist;
|
||
}
|
||
|
||
|
||
if (r_list == r_listend && liblist == liblistend)
|
||
prelinked = true;
|
||
|
||
if (__builtin_expect (GL(dl_debug_mask) & DL_DEBUG_LIBS, 0))
|
||
_dl_printf ("\nprelink checking: %s\n", prelinked ? "ok" : "failed");
|
||
}
|
||
|
||
if (prelinked)
|
||
{
|
||
if (GL(dl_loaded)->l_info [ADDRIDX (DT_GNU_CONFLICT)] != NULL)
|
||
{
|
||
ElfW(Rela) *conflict, *conflictend;
|
||
#ifndef HP_TIMING_NONAVAIL
|
||
hp_timing_t start;
|
||
hp_timing_t stop;
|
||
#endif
|
||
|
||
HP_TIMING_NOW (start);
|
||
assert (GL(dl_loaded)->l_info [VALIDX (DT_GNU_CONFLICTSZ)] != NULL);
|
||
conflict = (ElfW(Rela) *)
|
||
GL(dl_loaded)->l_info [ADDRIDX (DT_GNU_CONFLICT)]->d_un.d_ptr;
|
||
conflictend = (ElfW(Rela) *)
|
||
((char *) conflict
|
||
+ GL(dl_loaded)->l_info [VALIDX (DT_GNU_CONFLICTSZ)]->d_un.d_val);
|
||
_dl_resolve_conflicts (GL(dl_loaded), conflict, conflictend);
|
||
HP_TIMING_NOW (stop);
|
||
HP_TIMING_DIFF (relocate_time, start, stop);
|
||
}
|
||
|
||
_dl_sysdep_start_cleanup ();
|
||
}
|
||
else
|
||
{
|
||
/* Now we have all the objects loaded. Relocate them all except for
|
||
the dynamic linker itself. We do this in reverse order so that copy
|
||
relocs of earlier objects overwrite the data written by later
|
||
objects. We do not re-relocate the dynamic linker itself in this
|
||
loop because that could result in the GOT entries for functions we
|
||
call being changed, and that would break us. It is safe to relocate
|
||
the dynamic linker out of order because it has no copy relocs (we
|
||
know that because it is self-contained). */
|
||
|
||
struct link_map *l;
|
||
int consider_profiling = GL(dl_profile) != NULL;
|
||
#ifndef HP_TIMING_NONAVAIL
|
||
hp_timing_t start;
|
||
hp_timing_t stop;
|
||
hp_timing_t add;
|
||
#endif
|
||
|
||
/* If we are profiling we also must do lazy reloaction. */
|
||
GL(dl_lazy) |= consider_profiling;
|
||
|
||
l = GL(dl_loaded);
|
||
while (l->l_next)
|
||
l = l->l_next;
|
||
|
||
HP_TIMING_NOW (start);
|
||
do
|
||
{
|
||
/* While we are at it, help the memory handling a bit. We have to
|
||
mark some data structures as allocated with the fake malloc()
|
||
implementation in ld.so. */
|
||
struct libname_list *lnp = l->l_libname->next;
|
||
|
||
while (__builtin_expect (lnp != NULL, 0))
|
||
{
|
||
lnp->dont_free = 1;
|
||
lnp = lnp->next;
|
||
}
|
||
|
||
if (l != &GL(dl_rtld_map))
|
||
INTUSE(_dl_relocate_object) (l, l->l_scope, GL(dl_lazy),
|
||
consider_profiling);
|
||
|
||
l = l->l_prev;
|
||
}
|
||
while (l);
|
||
HP_TIMING_NOW (stop);
|
||
|
||
HP_TIMING_DIFF (relocate_time, start, stop);
|
||
|
||
/* Do any necessary cleanups for the startup OS interface code.
|
||
We do these now so that no calls are made after rtld re-relocation
|
||
which might be resolved to different functions than we expect.
|
||
We cannot do this before relocating the other objects because
|
||
_dl_relocate_object might need to call `mprotect' for DT_TEXTREL. */
|
||
_dl_sysdep_start_cleanup ();
|
||
|
||
/* Now enable profiling if needed. Like the previous call,
|
||
this has to go here because the calls it makes should use the
|
||
rtld versions of the functions (particularly calloc()), but it
|
||
needs to have _dl_profile_map set up by the relocator. */
|
||
if (__builtin_expect (GL(dl_profile_map) != NULL, 0))
|
||
/* We must prepare the profiling. */
|
||
INTUSE(_dl_start_profile) (GL(dl_profile_map), GL(dl_profile_output));
|
||
|
||
if (GL(dl_rtld_map).l_opencount > 1)
|
||
{
|
||
/* There was an explicit ref to the dynamic linker as a shared lib.
|
||
Re-relocate ourselves with user-controlled symbol definitions. */
|
||
HP_TIMING_NOW (start);
|
||
INTUSE(_dl_relocate_object) (&GL(dl_rtld_map), GL(dl_loaded)->l_scope,
|
||
0, 0);
|
||
HP_TIMING_NOW (stop);
|
||
HP_TIMING_DIFF (add, start, stop);
|
||
HP_TIMING_ACCUM_NT (relocate_time, add);
|
||
}
|
||
}
|
||
|
||
/* Now set up the variable which helps the assembler startup code. */
|
||
GL(dl_main_searchlist) = &GL(dl_loaded)->l_searchlist;
|
||
GL(dl_global_scope)[0] = &GL(dl_loaded)->l_searchlist;
|
||
|
||
/* Save the information about the original global scope list since
|
||
we need it in the memory handling later. */
|
||
GL(dl_initial_searchlist) = *GL(dl_main_searchlist);
|
||
|
||
{
|
||
/* Initialize _r_debug. */
|
||
struct r_debug *r = _dl_debug_initialize (GL(dl_rtld_map).l_addr);
|
||
struct link_map *l;
|
||
|
||
l = GL(dl_loaded);
|
||
|
||
#ifdef ELF_MACHINE_DEBUG_SETUP
|
||
|
||
/* Some machines (e.g. MIPS) don't use DT_DEBUG in this way. */
|
||
|
||
ELF_MACHINE_DEBUG_SETUP (l, r);
|
||
ELF_MACHINE_DEBUG_SETUP (&GL(dl_rtld_map), r);
|
||
|
||
#else
|
||
|
||
if (l->l_info[DT_DEBUG] != NULL)
|
||
/* There is a DT_DEBUG entry in the dynamic section. Fill it in
|
||
with the run-time address of the r_debug structure */
|
||
l->l_info[DT_DEBUG]->d_un.d_ptr = (ElfW(Addr)) r;
|
||
|
||
/* Fill in the pointer in the dynamic linker's own dynamic section, in
|
||
case you run gdb on the dynamic linker directly. */
|
||
if (GL(dl_rtld_map).l_info[DT_DEBUG] != NULL)
|
||
GL(dl_rtld_map).l_info[DT_DEBUG]->d_un.d_ptr = (ElfW(Addr)) r;
|
||
|
||
#endif
|
||
|
||
/* Notify the debugger that all objects are now mapped in. */
|
||
r->r_state = RT_ADD;
|
||
INTUSE(_dl_debug_state) ();
|
||
}
|
||
|
||
#ifndef MAP_COPY
|
||
/* We must munmap() the cache file. */
|
||
INTUSE(_dl_unload_cache) ();
|
||
#endif
|
||
|
||
/* Once we return, _dl_sysdep_start will invoke
|
||
the DT_INIT functions and then *USER_ENTRY. */
|
||
}
|
||
|
||
/* This is a little helper function for resolving symbols while
|
||
tracing the binary. */
|
||
static void
|
||
print_unresolved (int errcode __attribute__ ((unused)), const char *objname,
|
||
const char *errstring)
|
||
{
|
||
if (objname[0] == '\0')
|
||
objname = _dl_argv[0] ?: "<main program>";
|
||
_dl_error_printf ("%s (%s)\n", errstring, objname);
|
||
}
|
||
|
||
/* This is a little helper function for resolving symbols while
|
||
tracing the binary. */
|
||
static void
|
||
print_missing_version (int errcode __attribute__ ((unused)),
|
||
const char *objname, const char *errstring)
|
||
{
|
||
_dl_error_printf ("%s: %s: %s\n", _dl_argv[0] ?: "<program name unknown>",
|
||
objname, errstring);
|
||
}
|
||
|
||
/* Nonzero if any of the debugging options is enabled. */
|
||
static int any_debug;
|
||
|
||
/* Process the string given as the parameter which explains which debugging
|
||
options are enabled. */
|
||
static void
|
||
process_dl_debug (const char *dl_debug)
|
||
{
|
||
/* When adding new entries make sure that the maximal length of a name
|
||
is correctly handled in the LD_DEBUG_HELP code below. */
|
||
static const struct
|
||
{
|
||
unsigned char len;
|
||
const char name[10];
|
||
const char helptext[41];
|
||
unsigned short int mask;
|
||
} debopts[] =
|
||
{
|
||
#define LEN_AND_STR(str) sizeof (str) - 1, str
|
||
{ LEN_AND_STR ("libs"), "display library search paths",
|
||
DL_DEBUG_LIBS | DL_DEBUG_IMPCALLS },
|
||
{ LEN_AND_STR ("reloc"), "display relocation processing",
|
||
DL_DEBUG_RELOC | DL_DEBUG_IMPCALLS },
|
||
{ LEN_AND_STR ("files"), "display progress for input file",
|
||
DL_DEBUG_FILES | DL_DEBUG_IMPCALLS },
|
||
{ LEN_AND_STR ("symbols"), "display symbol table processing",
|
||
DL_DEBUG_SYMBOLS | DL_DEBUG_IMPCALLS },
|
||
{ LEN_AND_STR ("bindings"), "display information about symbol binding",
|
||
DL_DEBUG_BINDINGS | DL_DEBUG_IMPCALLS },
|
||
{ LEN_AND_STR ("versions"), "display version dependencies",
|
||
DL_DEBUG_VERSIONS | DL_DEBUG_IMPCALLS },
|
||
{ LEN_AND_STR ("all"), "all previous options combined",
|
||
DL_DEBUG_LIBS | DL_DEBUG_RELOC | DL_DEBUG_FILES | DL_DEBUG_SYMBOLS
|
||
| DL_DEBUG_BINDINGS | DL_DEBUG_VERSIONS | DL_DEBUG_IMPCALLS },
|
||
{ LEN_AND_STR ("statistics"), "display relocation statistics",
|
||
DL_DEBUG_STATISTICS },
|
||
{ LEN_AND_STR ("help"), "display this help message and exit",
|
||
DL_DEBUG_HELP },
|
||
};
|
||
#define ndebopts (sizeof (debopts) / sizeof (debopts[0]))
|
||
|
||
/* Skip separating white spaces and commas. */
|
||
while (*dl_debug != '\0')
|
||
{
|
||
if (*dl_debug != ' ' && *dl_debug != ',' && *dl_debug != ':')
|
||
{
|
||
size_t cnt;
|
||
size_t len = 1;
|
||
|
||
while (dl_debug[len] != '\0' && dl_debug[len] != ' '
|
||
&& dl_debug[len] != ',' && dl_debug[len] != ':')
|
||
++len;
|
||
|
||
for (cnt = 0; cnt < ndebopts; ++cnt)
|
||
if (debopts[cnt].len == len
|
||
&& memcmp (dl_debug, debopts[cnt].name, len) == 0)
|
||
{
|
||
GL(dl_debug_mask) |= debopts[cnt].mask;
|
||
any_debug = 1;
|
||
break;
|
||
}
|
||
|
||
if (cnt == ndebopts)
|
||
{
|
||
/* Display a warning and skip everything until next
|
||
separator. */
|
||
char *copy = strndupa (dl_debug, len);
|
||
_dl_error_printf ("\
|
||
warning: debug option `%s' unknown; try LD_DEBUG=help\n", copy);
|
||
}
|
||
|
||
dl_debug += len;
|
||
continue;
|
||
}
|
||
|
||
++dl_debug;
|
||
}
|
||
|
||
if (GL(dl_debug_mask) & DL_DEBUG_HELP)
|
||
{
|
||
size_t cnt;
|
||
|
||
_dl_printf ("\
|
||
Valid options for the LD_DEBUG environment variable are:\n\n");
|
||
|
||
for (cnt = 0; cnt < ndebopts; ++cnt)
|
||
_dl_printf (" %.*s%s%s\n", debopts[cnt].len, debopts[cnt].name,
|
||
" " + debopts[cnt].len - 3,
|
||
debopts[cnt].helptext);
|
||
|
||
_dl_printf ("\n\
|
||
To direct the debugging output into a file instead of standard output\n\
|
||
a filename can be specified using the LD_DEBUG_OUTPUT environment variable.\n");
|
||
_exit (0);
|
||
}
|
||
}
|
||
|
||
/* Process all environments variables the dynamic linker must recognize.
|
||
Since all of them start with `LD_' we are a bit smarter while finding
|
||
all the entries. */
|
||
extern char **_environ;
|
||
|
||
|
||
static void
|
||
process_envvars (enum mode *modep)
|
||
{
|
||
char **runp = _environ;
|
||
char *envline;
|
||
enum mode mode = normal;
|
||
char *debug_output = NULL;
|
||
|
||
/* This is the default place for profiling data file. */
|
||
GL(dl_profile_output) = &"/var/tmp\0/var/profile"[__libc_enable_secure
|
||
? 9 : 0];
|
||
|
||
while ((envline = _dl_next_ld_env_entry (&runp)) != NULL)
|
||
{
|
||
size_t len = 0;
|
||
|
||
while (envline[len] != '\0' && envline[len] != '=')
|
||
++len;
|
||
|
||
if (envline[len] != '=')
|
||
/* This is a "LD_" variable at the end of the string without
|
||
a '=' character. Ignore it since otherwise we will access
|
||
invalid memory below. */
|
||
continue;
|
||
|
||
switch (len)
|
||
{
|
||
case 4:
|
||
/* Warning level, verbose or not. */
|
||
if (memcmp (envline, "WARN", 4) == 0)
|
||
GL(dl_verbose) = envline[5] != '\0';
|
||
break;
|
||
|
||
case 5:
|
||
/* Debugging of the dynamic linker? */
|
||
if (memcmp (envline, "DEBUG", 5) == 0)
|
||
process_dl_debug (&envline[6]);
|
||
break;
|
||
|
||
case 7:
|
||
/* Print information about versions. */
|
||
if (memcmp (envline, "VERBOSE", 7) == 0)
|
||
{
|
||
version_info = envline[8] != '\0';
|
||
break;
|
||
}
|
||
|
||
/* List of objects to be preloaded. */
|
||
if (memcmp (envline, "PRELOAD", 7) == 0)
|
||
{
|
||
preloadlist = &envline[8];
|
||
break;
|
||
}
|
||
|
||
/* Which shared object shall be profiled. */
|
||
if (memcmp (envline, "PROFILE", 7) == 0 && envline[8] != '\0')
|
||
GL(dl_profile) = &envline[8];
|
||
break;
|
||
|
||
case 8:
|
||
/* Do we bind early? */
|
||
if (memcmp (envline, "BIND_NOW", 8) == 0)
|
||
{
|
||
GL(dl_lazy) = envline[9] == '\0';
|
||
break;
|
||
}
|
||
if (memcmp (envline, "BIND_NOT", 8) == 0)
|
||
GL(dl_bind_not) = envline[9] != '\0';
|
||
break;
|
||
|
||
case 9:
|
||
/* Test whether we want to see the content of the auxiliary
|
||
array passed up from the kernel. */
|
||
if (memcmp (envline, "SHOW_AUXV", 9) == 0)
|
||
_dl_show_auxv ();
|
||
break;
|
||
|
||
case 10:
|
||
/* Mask for the important hardware capabilities. */
|
||
if (memcmp (envline, "HWCAP_MASK", 10) == 0)
|
||
GL(dl_hwcap_mask) = __strtoul_internal (&envline[11], NULL, 0, 0);
|
||
break;
|
||
|
||
case 11:
|
||
/* Path where the binary is found. */
|
||
if (!__libc_enable_secure
|
||
&& memcmp (envline, "ORIGIN_PATH", 11) == 0)
|
||
GL(dl_origin_path) = &envline[12];
|
||
break;
|
||
|
||
case 12:
|
||
/* The library search path. */
|
||
if (memcmp (envline, "LIBRARY_PATH", 12) == 0)
|
||
{
|
||
library_path = &envline[13];
|
||
break;
|
||
}
|
||
|
||
/* Where to place the profiling data file. */
|
||
if (memcmp (envline, "DEBUG_OUTPUT", 12) == 0)
|
||
{
|
||
debug_output = &envline[13];
|
||
break;
|
||
}
|
||
|
||
if (memcmp (envline, "DYNAMIC_WEAK", 12) == 0)
|
||
GL(dl_dynamic_weak) = 1;
|
||
break;
|
||
|
||
case 14:
|
||
/* Where to place the profiling data file. */
|
||
if (!__libc_enable_secure
|
||
&& memcmp (envline, "PROFILE_OUTPUT", 14) == 0
|
||
&& envline[15] != '\0')
|
||
GL(dl_profile_output) = &envline[15];
|
||
break;
|
||
|
||
case 16:
|
||
/* The mode of the dynamic linker can be set. */
|
||
if (memcmp (envline, "TRACE_PRELINKING", 16) == 0)
|
||
{
|
||
mode = trace;
|
||
GL(dl_verbose) = 1;
|
||
GL(dl_debug_mask) |= DL_DEBUG_PRELINK;
|
||
GL(dl_trace_prelink) = &envline[17];
|
||
}
|
||
break;
|
||
|
||
case 20:
|
||
/* The mode of the dynamic linker can be set. */
|
||
if (memcmp (envline, "TRACE_LOADED_OBJECTS", 20) == 0)
|
||
mode = trace;
|
||
break;
|
||
|
||
/* We might have some extra environment variable to handle. This
|
||
is tricky due to the pre-processing of the length of the name
|
||
in the switch statement here. The code here assumes that added
|
||
environment variables have a different length. */
|
||
#ifdef EXTRA_LD_ENVVARS
|
||
EXTRA_LD_ENVVARS
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* The caller wants this information. */
|
||
*modep = mode;
|
||
|
||
/* Extra security for SUID binaries. Remove all dangerous environment
|
||
variables. */
|
||
if (__builtin_expect (__libc_enable_secure, 0))
|
||
{
|
||
static const char unsecure_envvars[] =
|
||
#ifdef EXTRA_UNSECURE_ENVVARS
|
||
EXTRA_UNSECURE_ENVVARS
|
||
#endif
|
||
UNSECURE_ENVVARS;
|
||
const char *nextp;
|
||
|
||
nextp = unsecure_envvars;
|
||
do
|
||
{
|
||
unsetenv (nextp);
|
||
/* We could use rawmemchr but this need not be fast. */
|
||
nextp = (char *) (strchr) (nextp, '\0') + 1;
|
||
}
|
||
while (*nextp != '\0');
|
||
|
||
if (__access ("/etc/suid-debug", F_OK) != 0)
|
||
unsetenv ("MALLOC_CHECK_");
|
||
}
|
||
/* If we have to run the dynamic linker in debugging mode and the
|
||
LD_DEBUG_OUTPUT environment variable is given, we write the debug
|
||
messages to this file. */
|
||
else if (any_debug && debug_output != NULL)
|
||
{
|
||
#ifdef O_NOFOLLOW
|
||
const int flags = O_WRONLY | O_APPEND | O_CREAT | O_NOFOLLOW;
|
||
#else
|
||
const int flags = O_WRONLY | O_APPEND | O_CREAT;
|
||
#endif
|
||
size_t name_len = strlen (debug_output);
|
||
char buf[name_len + 12];
|
||
char *startp;
|
||
|
||
buf[name_len + 11] = '\0';
|
||
startp = _itoa (__getpid (), &buf[name_len + 11], 10, 0);
|
||
*--startp = '.';
|
||
startp = memcpy (startp - name_len, debug_output, name_len);
|
||
|
||
GL(dl_debug_fd) = __open (startp, flags, DEFFILEMODE);
|
||
if (GL(dl_debug_fd) == -1)
|
||
/* We use standard output if opening the file failed. */
|
||
GL(dl_debug_fd) = STDOUT_FILENO;
|
||
}
|
||
}
|
||
|
||
|
||
/* Print the various times we collected. */
|
||
static void
|
||
print_statistics (void)
|
||
{
|
||
#ifndef HP_TIMING_NONAVAIL
|
||
char buf[200];
|
||
char *cp;
|
||
char *wp;
|
||
|
||
/* Total time rtld used. */
|
||
if (HP_TIMING_AVAIL)
|
||
{
|
||
HP_TIMING_PRINT (buf, sizeof (buf), rtld_total_time);
|
||
INTUSE(_dl_debug_printf) ("\nruntime linker statistics:\n"
|
||
" total startup time in dynamic loader: %s\n",
|
||
buf);
|
||
}
|
||
|
||
/* Print relocation statistics. */
|
||
if (HP_TIMING_AVAIL)
|
||
{
|
||
char pbuf[30];
|
||
HP_TIMING_PRINT (buf, sizeof (buf), relocate_time);
|
||
cp = _itoa ((1000ULL * relocate_time) / rtld_total_time,
|
||
pbuf + sizeof (pbuf), 10, 0);
|
||
wp = pbuf;
|
||
switch (pbuf + sizeof (pbuf) - cp)
|
||
{
|
||
case 3:
|
||
*wp++ = *cp++;
|
||
case 2:
|
||
*wp++ = *cp++;
|
||
case 1:
|
||
*wp++ = '.';
|
||
*wp++ = *cp++;
|
||
}
|
||
*wp = '\0';
|
||
INTUSE(_dl_debug_printf) ("\
|
||
time needed for relocation: %s (%s%%)\n",
|
||
buf, pbuf);
|
||
}
|
||
#endif
|
||
INTUSE(_dl_debug_printf) (" number of relocations: %lu\n",
|
||
GL(dl_num_relocations));
|
||
INTUSE(_dl_debug_printf) (" number of relocations from cache: %lu\n",
|
||
GL(dl_num_cache_relocations));
|
||
|
||
#ifndef HP_TIMING_NONAVAIL
|
||
/* Time spend while loading the object and the dependencies. */
|
||
if (HP_TIMING_AVAIL)
|
||
{
|
||
char pbuf[30];
|
||
HP_TIMING_PRINT (buf, sizeof (buf), load_time);
|
||
cp = _itoa ((1000ULL * load_time) / rtld_total_time,
|
||
pbuf + sizeof (pbuf), 10, 0);
|
||
wp = pbuf;
|
||
switch (pbuf + sizeof (pbuf) - cp)
|
||
{
|
||
case 3:
|
||
*wp++ = *cp++;
|
||
case 2:
|
||
*wp++ = *cp++;
|
||
case 1:
|
||
*wp++ = '.';
|
||
*wp++ = *cp++;
|
||
}
|
||
*wp = '\0';
|
||
INTUSE(_dl_debug_printf) ("\
|
||
time needed to load objects: %s (%s%%)\n",
|
||
buf, pbuf);
|
||
}
|
||
#endif
|
||
}
|