glibc/posix/regex_internal.c

1604 lines
42 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Extended regular expression matching and search library.
Copyright (C) 2002, 2003 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
static void re_string_construct_common (const char *str, int len,
re_string_t *pstr,
RE_TRANSLATE_TYPE trans, int icase,
const re_dfa_t *dfa);
#ifdef RE_ENABLE_I18N
static int re_string_skip_chars (re_string_t *pstr, int new_raw_idx,
wint_t *last_wc);
#endif /* RE_ENABLE_I18N */
static re_dfastate_t *create_newstate_common (re_dfa_t *dfa,
const re_node_set *nodes,
unsigned int hash);
static reg_errcode_t register_state (re_dfa_t *dfa, re_dfastate_t *newstate,
unsigned int hash);
static re_dfastate_t *create_ci_newstate (re_dfa_t *dfa,
const re_node_set *nodes,
unsigned int hash);
static re_dfastate_t *create_cd_newstate (re_dfa_t *dfa,
const re_node_set *nodes,
unsigned int context,
unsigned int hash);
static unsigned int inline calc_state_hash (const re_node_set *nodes,
unsigned int context);
/* Functions for string operation. */
/* This function allocate the buffers. It is necessary to call
re_string_reconstruct before using the object. */
static reg_errcode_t
re_string_allocate (pstr, str, len, init_len, trans, icase, dfa)
re_string_t *pstr;
const char *str;
int len, init_len, icase;
RE_TRANSLATE_TYPE trans;
const re_dfa_t *dfa;
{
reg_errcode_t ret;
int init_buf_len;
/* Ensure at least one character fits into the buffers. */
if (init_len < dfa->mb_cur_max)
init_len = dfa->mb_cur_max;
init_buf_len = (len + 1 < init_len) ? len + 1: init_len;
re_string_construct_common (str, len, pstr, trans, icase, dfa);
ret = re_string_realloc_buffers (pstr, init_buf_len);
if (BE (ret != REG_NOERROR, 0))
return ret;
pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len;
pstr->valid_raw_len = pstr->valid_len;
return REG_NOERROR;
}
/* This function allocate the buffers, and initialize them. */
static reg_errcode_t
re_string_construct (pstr, str, len, trans, icase, dfa)
re_string_t *pstr;
const char *str;
int len, icase;
RE_TRANSLATE_TYPE trans;
const re_dfa_t *dfa;
{
reg_errcode_t ret;
re_string_construct_common (str, len, pstr, trans, icase, dfa);
if (len > 0)
{
ret = re_string_realloc_buffers (pstr, len + 1);
if (BE (ret != REG_NOERROR, 0))
return ret;
}
pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
if (icase)
{
#ifdef RE_ENABLE_I18N
if (dfa->mb_cur_max > 1)
{
while (1)
{
ret = build_wcs_upper_buffer (pstr);
if (BE (ret != REG_NOERROR, 0))
return ret;
if (pstr->valid_raw_len >= len)
break;
if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max)
break;
ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
if (BE (ret != REG_NOERROR, 0))
return ret;
}
}
else
#endif /* RE_ENABLE_I18N */
build_upper_buffer (pstr);
}
else
{
#ifdef RE_ENABLE_I18N
if (dfa->mb_cur_max > 1)
build_wcs_buffer (pstr);
else
#endif /* RE_ENABLE_I18N */
{
if (trans != NULL)
re_string_translate_buffer (pstr);
else
{
pstr->valid_len = pstr->bufs_len;
pstr->valid_raw_len = pstr->bufs_len;
}
}
}
return REG_NOERROR;
}
/* Helper functions for re_string_allocate, and re_string_construct. */
static reg_errcode_t
re_string_realloc_buffers (pstr, new_buf_len)
re_string_t *pstr;
int new_buf_len;
{
#ifdef RE_ENABLE_I18N
if (pstr->mb_cur_max > 1)
{
wint_t *new_array = re_realloc (pstr->wcs, wint_t, new_buf_len);
if (BE (new_array == NULL, 0))
return REG_ESPACE;
pstr->wcs = new_array;
if (pstr->offsets != NULL)
{
int *new_array = re_realloc (pstr->offsets, int, new_buf_len);
if (BE (new_array == NULL, 0))
return REG_ESPACE;
pstr->offsets = new_array;
}
}
#endif /* RE_ENABLE_I18N */
if (pstr->mbs_allocated)
{
unsigned char *new_array = re_realloc (pstr->mbs, unsigned char,
new_buf_len);
if (BE (new_array == NULL, 0))
return REG_ESPACE;
pstr->mbs = new_array;
}
pstr->bufs_len = new_buf_len;
return REG_NOERROR;
}
static void
re_string_construct_common (str, len, pstr, trans, icase, dfa)
const char *str;
int len;
re_string_t *pstr;
RE_TRANSLATE_TYPE trans;
int icase;
const re_dfa_t *dfa;
{
memset (pstr, '\0', sizeof (re_string_t));
pstr->raw_mbs = (const unsigned char *) str;
pstr->len = len;
pstr->raw_len = len;
pstr->trans = trans;
pstr->icase = icase ? 1 : 0;
pstr->mbs_allocated = (trans != NULL || icase);
pstr->mb_cur_max = dfa->mb_cur_max;
pstr->is_utf8 = dfa->is_utf8;
pstr->map_notascii = dfa->map_notascii;
pstr->stop = pstr->len;
pstr->raw_stop = pstr->stop;
}
#ifdef RE_ENABLE_I18N
/* Build wide character buffer PSTR->WCS.
If the byte sequence of the string are:
<mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3>
Then wide character buffer will be:
<wc1> , WEOF , <wc2> , WEOF , <wc3>
We use WEOF for padding, they indicate that the position isn't
a first byte of a multibyte character.
Note that this function assumes PSTR->VALID_LEN elements are already
built and starts from PSTR->VALID_LEN. */
static void
build_wcs_buffer (pstr)
re_string_t *pstr;
{
#ifdef _LIBC
unsigned char buf[pstr->mb_cur_max];
#else
unsigned char buf[64];
#endif
mbstate_t prev_st;
int byte_idx, end_idx, mbclen, remain_len;
/* Build the buffers from pstr->valid_len to either pstr->len or
pstr->bufs_len. */
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
{
wchar_t wc;
const char *p;
remain_len = end_idx - byte_idx;
prev_st = pstr->cur_state;
/* Apply the translation if we need. */
if (BE (pstr->trans != NULL, 0))
{
int i, ch;
for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
{
ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i];
buf[i] = pstr->trans[ch];
}
p = (const char *) buf;
}
else
p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx;
mbclen = mbrtowc (&wc, p, remain_len, &pstr->cur_state);
if (BE (mbclen == (size_t) -2, 0))
{
/* The buffer doesn't have enough space, finish to build. */
pstr->cur_state = prev_st;
break;
}
else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0))
{
/* We treat these cases as a singlebyte character. */
mbclen = 1;
wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
if (BE (pstr->trans != NULL, 0))
wc = pstr->trans[wc];
pstr->cur_state = prev_st;
}
/* Write wide character and padding. */
pstr->wcs[byte_idx++] = wc;
/* Write paddings. */
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
pstr->wcs[byte_idx++] = WEOF;
}
pstr->valid_len = byte_idx;
pstr->valid_raw_len = byte_idx;
}
/* Build wide character buffer PSTR->WCS like build_wcs_buffer,
but for REG_ICASE. */
static int
build_wcs_upper_buffer (pstr)
re_string_t *pstr;
{
mbstate_t prev_st;
int src_idx, byte_idx, end_idx, mbclen, remain_len;
#ifdef _LIBC
unsigned char buf[pstr->mb_cur_max];
#else
unsigned char buf[64];
#endif
byte_idx = pstr->valid_len;
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
#ifdef _LIBC
/* The following optimization assumes that the wchar_t encoding is
always ISO 10646. */
if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed)
{
while (byte_idx < end_idx)
{
wchar_t wc;
if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx])
&& mbsinit (&pstr->cur_state))
{
/* In case of a singlebyte character. */
pstr->mbs[byte_idx]
= toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]);
/* The next step uses the assumption that wchar_t is encoded
with ISO 10646: all ASCII values can be converted like
this. */
pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx];
++byte_idx;
continue;
}
remain_len = end_idx - byte_idx;
prev_st = pstr->cur_state;
mbclen = mbrtowc (&wc,
((const char *) pstr->raw_mbs + pstr->raw_mbs_idx
+ byte_idx), remain_len, &pstr->cur_state);
if (BE (mbclen > 0, 1))
{
wchar_t wcu = wc;
if (iswlower (wc))
{
int mbcdlen;
wcu = towupper (wc);
mbcdlen = wcrtomb (buf, wcu, &prev_st);
if (BE (mbclen == mbcdlen, 1))
memcpy (pstr->mbs + byte_idx, buf, mbclen);
else
{
src_idx = byte_idx;
goto offsets_needed;
}
}
else
memcpy (pstr->mbs + byte_idx,
pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen);
pstr->wcs[byte_idx++] = wcu;
/* Write paddings. */
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
pstr->wcs[byte_idx++] = WEOF;
}
else if (mbclen == (size_t) -1 || mbclen == 0)
{
/* It is an invalid character or '\0'. Just use the byte. */
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
pstr->mbs[byte_idx] = ch;
/* And also cast it to wide char. */
pstr->wcs[byte_idx++] = (wchar_t) ch;
if (BE (mbclen == (size_t) -1, 0))
pstr->cur_state = prev_st;
}
else
{
/* The buffer doesn't have enough space, finish to build. */
pstr->cur_state = prev_st;
break;
}
}
pstr->valid_len = byte_idx;
pstr->valid_raw_len = byte_idx;
return REG_NOERROR;
}
else
#endif
for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;)
{
wchar_t wc;
const char *p;
offsets_needed:
remain_len = end_idx - byte_idx;
prev_st = pstr->cur_state;
if (BE (pstr->trans != NULL, 0))
{
int i, ch;
for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
{
ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i];
buf[i] = pstr->trans[ch];
}
p = (const char *) buf;
}
else
p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx;
mbclen = mbrtowc (&wc, p, remain_len, &pstr->cur_state);
if (BE (mbclen > 0, 1))
{
wchar_t wcu = wc;
if (iswlower (wc))
{
int mbcdlen;
wcu = towupper (wc);
mbcdlen = wcrtomb (buf, wcu, &prev_st);
if (BE (mbclen == mbcdlen, 1))
memcpy (pstr->mbs + byte_idx, buf, mbclen);
else
{
int i;
if (byte_idx + mbcdlen > pstr->bufs_len)
{
pstr->cur_state = prev_st;
break;
}
if (pstr->offsets == NULL)
{
pstr->offsets = re_malloc (int, pstr->bufs_len);
if (pstr->offsets == NULL)
return REG_ESPACE;
}
if (!pstr->offsets_needed)
{
for (i = 0; i < byte_idx; ++i)
pstr->offsets[i] = i;
pstr->offsets_needed = 1;
}
memcpy (pstr->mbs + byte_idx, buf, mbcdlen);
pstr->wcs[byte_idx] = wcu;
pstr->offsets[byte_idx] = src_idx;
for (i = 1; i < mbcdlen; ++i)
{
pstr->offsets[byte_idx + i]
= src_idx + (i < mbclen ? i : mbclen - 1);
pstr->wcs[byte_idx + i] = WEOF;
}
pstr->len += mbcdlen - mbclen;
if (pstr->raw_stop > src_idx)
pstr->stop += mbcdlen - mbclen;
end_idx = (pstr->bufs_len > pstr->len)
? pstr->len : pstr->bufs_len;
byte_idx += mbcdlen;
src_idx += mbclen;
continue;
}
}
else
memcpy (pstr->mbs + byte_idx, p, mbclen);
if (BE (pstr->offsets_needed != 0, 0))
{
int i;
for (i = 0; i < mbclen; ++i)
pstr->offsets[byte_idx + i] = src_idx + i;
}
src_idx += mbclen;
pstr->wcs[byte_idx++] = wcu;
/* Write paddings. */
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
pstr->wcs[byte_idx++] = WEOF;
}
else if (mbclen == (size_t) -1 || mbclen == 0)
{
/* It is an invalid character or '\0'. Just use the byte. */
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx];
if (BE (pstr->trans != NULL, 0))
ch = pstr->trans [ch];
pstr->mbs[byte_idx] = ch;
if (BE (pstr->offsets_needed != 0, 0))
pstr->offsets[byte_idx] = src_idx;
++src_idx;
/* And also cast it to wide char. */
pstr->wcs[byte_idx++] = (wchar_t) ch;
if (BE (mbclen == (size_t) -1, 0))
pstr->cur_state = prev_st;
}
else
{
/* The buffer doesn't have enough space, finish to build. */
pstr->cur_state = prev_st;
break;
}
}
pstr->valid_len = byte_idx;
pstr->valid_raw_len = src_idx;
return REG_NOERROR;
}
/* Skip characters until the index becomes greater than NEW_RAW_IDX.
Return the index. */
static int
re_string_skip_chars (pstr, new_raw_idx, last_wc)
re_string_t *pstr;
int new_raw_idx;
wint_t *last_wc;
{
mbstate_t prev_st;
int rawbuf_idx, mbclen;
wchar_t wc = 0;
/* Skip the characters which are not necessary to check. */
for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len;
rawbuf_idx < new_raw_idx;)
{
int remain_len;
remain_len = pstr->len - rawbuf_idx;
prev_st = pstr->cur_state;
mbclen = mbrtowc (&wc, (const char *) pstr->raw_mbs + rawbuf_idx,
remain_len, &pstr->cur_state);
if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0))
{
/* We treat these cases as a singlebyte character. */
mbclen = 1;
pstr->cur_state = prev_st;
}
/* Then proceed the next character. */
rawbuf_idx += mbclen;
}
*last_wc = (wint_t) wc;
return rawbuf_idx;
}
#endif /* RE_ENABLE_I18N */
/* Build the buffer PSTR->MBS, and apply the translation if we need.
This function is used in case of REG_ICASE. */
static void
build_upper_buffer (pstr)
re_string_t *pstr;
{
int char_idx, end_idx;
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx)
{
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx];
if (BE (pstr->trans != NULL, 0))
ch = pstr->trans[ch];
if (islower (ch))
pstr->mbs[char_idx] = toupper (ch);
else
pstr->mbs[char_idx] = ch;
}
pstr->valid_len = char_idx;
pstr->valid_raw_len = char_idx;
}
/* Apply TRANS to the buffer in PSTR. */
static void
re_string_translate_buffer (pstr)
re_string_t *pstr;
{
int buf_idx, end_idx;
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx)
{
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx];
pstr->mbs[buf_idx] = pstr->trans[ch];
}
pstr->valid_len = buf_idx;
pstr->valid_raw_len = buf_idx;
}
/* This function re-construct the buffers.
Concretely, convert to wide character in case of pstr->mb_cur_max > 1,
convert to upper case in case of REG_ICASE, apply translation. */
static reg_errcode_t
re_string_reconstruct (pstr, idx, eflags, newline)
re_string_t *pstr;
int idx, eflags, newline;
{
int offset = idx - pstr->raw_mbs_idx;
if (offset < 0)
{
/* Reset buffer. */
#ifdef RE_ENABLE_I18N
if (pstr->mb_cur_max > 1)
memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
#endif /* RE_ENABLE_I18N */
pstr->len = pstr->raw_len;
pstr->stop = pstr->raw_stop;
pstr->valid_len = 0;
pstr->raw_mbs_idx = 0;
pstr->valid_raw_len = 0;
pstr->offsets_needed = 0;
pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
: CONTEXT_NEWLINE | CONTEXT_BEGBUF);
if (!pstr->mbs_allocated)
pstr->mbs = (unsigned char *) pstr->raw_mbs;
offset = idx;
}
if (offset != 0)
{
/* Are the characters which are already checked remain? */
if (offset < pstr->valid_raw_len
#ifdef RE_ENABLE_I18N
/* Handling this would enlarge the code too much.
Accept a slowdown in that case. */
&& pstr->offsets_needed == 0
#endif
)
{
/* Yes, move them to the front of the buffer. */
pstr->tip_context = re_string_context_at (pstr, offset - 1, eflags,
newline);
#ifdef RE_ENABLE_I18N
if (pstr->mb_cur_max > 1)
memmove (pstr->wcs, pstr->wcs + offset,
(pstr->valid_len - offset) * sizeof (wint_t));
#endif /* RE_ENABLE_I18N */
if (pstr->mbs_allocated)
memmove (pstr->mbs, pstr->mbs + offset,
pstr->valid_len - offset);
pstr->valid_len -= offset;
pstr->valid_raw_len -= offset;
#if DEBUG
assert (pstr->valid_len > 0);
#endif
}
else
{
/* No, skip all characters until IDX. */
#ifdef RE_ENABLE_I18N
if (BE (pstr->offsets_needed, 0))
{
pstr->len = pstr->raw_len - idx + offset;
pstr->stop = pstr->raw_stop - idx + offset;
pstr->offsets_needed = 0;
}
#endif
pstr->valid_len = 0;
pstr->valid_raw_len = 0;
#ifdef RE_ENABLE_I18N
if (pstr->mb_cur_max > 1)
{
int wcs_idx;
wint_t wc = WEOF;
#ifdef _LIBC
if (pstr->is_utf8)
{
const unsigned char *raw, *p, *q, *end;
/* Special case UTF-8. Multi-byte chars start with any
byte other than 0x80 - 0xbf. */
raw = pstr->raw_mbs + pstr->raw_mbs_idx;
end = raw + (offset - pstr->mb_cur_max);
for (p = raw + offset - 1; p >= end; --p)
if ((*p & 0xc0) != 0x80)
{
mbstate_t cur_state;
wchar_t wc2;
int mlen = raw + pstr->len - p;
unsigned char buf[6];
q = p;
if (BE (pstr->trans != NULL, 0))
{
int i = mlen < 6 ? mlen : 6;
while (--i >= 0)
buf[i] = pstr->trans[p[i]];
q = buf;
}
/* XXX Don't use mbrtowc, we know which conversion
to use (UTF-8 -> UCS4). */
memset (&cur_state, 0, sizeof (cur_state));
mlen = mbrtowc (&wc2, p, mlen, &cur_state)
- (raw + offset - p);
if (mlen >= 0)
{
memset (&pstr->cur_state, '\0',
sizeof (mbstate_t));
pstr->valid_len = mlen;
wc = wc2;
}
break;
}
}
#endif
if (wc == WEOF)
pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx;
if (BE (pstr->valid_len, 0))
{
for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx)
pstr->wcs[wcs_idx] = WEOF;
if (pstr->mbs_allocated)
memset (pstr->mbs, 255, pstr->valid_len);
}
pstr->valid_raw_len = pstr->valid_len;
pstr->tip_context = (IS_WIDE_WORD_CHAR (wc) ? CONTEXT_WORD
: ((newline && IS_WIDE_NEWLINE (wc))
? CONTEXT_NEWLINE : 0));
}
else
#endif /* RE_ENABLE_I18N */
{
int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1];
if (pstr->trans)
c = pstr->trans[c];
pstr->tip_context = (IS_WORD_CHAR (c) ? CONTEXT_WORD
: ((newline && IS_NEWLINE (c))
? CONTEXT_NEWLINE : 0));
}
}
if (!pstr->mbs_allocated)
pstr->mbs += offset;
}
pstr->raw_mbs_idx = idx;
pstr->len -= offset;
pstr->stop -= offset;
/* Then build the buffers. */
#ifdef RE_ENABLE_I18N
if (pstr->mb_cur_max > 1)
{
if (pstr->icase)
{
int ret = build_wcs_upper_buffer (pstr);
if (BE (ret != REG_NOERROR, 0))
return ret;
}
else
build_wcs_buffer (pstr);
}
else
#endif /* RE_ENABLE_I18N */
{
if (pstr->icase)
build_upper_buffer (pstr);
else if (pstr->trans != NULL)
re_string_translate_buffer (pstr);
else
pstr->valid_len = pstr->len;
}
pstr->cur_idx = 0;
return REG_NOERROR;
}
static unsigned char
re_string_peek_byte_case (const re_string_t *pstr,
int idx)
{
int ch, off;
/* Handle the common (easiest) cases first. */
if (BE (!pstr->icase, 1))
return re_string_peek_byte (pstr, idx);
#ifdef RE_ENABLE_I18N
if (pstr->mb_cur_max > 1
&& ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx))
return re_string_peek_byte (pstr, idx);
#endif
off = pstr->cur_idx + idx;
#ifdef RE_ENABLE_I18N
if (pstr->offsets_needed)
off = pstr->offsets[off];
#endif
ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
if (pstr->trans)
ch = pstr->trans[ch];
#ifdef RE_ENABLE_I18N
/* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I
this function returns CAPITAL LETTER I instead of first byte of
DOTLESS SMALL LETTER I. The latter would confuse the parser,
since peek_byte_case doesn't advance cur_idx in any way. */
if (pstr->offsets_needed && !isascii (ch))
return re_string_peek_byte (pstr, idx);
#endif
return ch;
}
static unsigned char
re_string_fetch_byte_case (re_string_t *pstr)
{
int ch;
if (BE (!pstr->icase, 1))
return re_string_fetch_byte (pstr);
#ifdef RE_ENABLE_I18N
if (pstr->offsets_needed)
{
int off;
/* For tr_TR.UTF-8 [[:islower:]] there is
[[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip
in that case the whole multi-byte character and return
the original letter. On the other side, with
[[: DOTLESS SMALL LETTER I return [[:I, as doing
anything else would complicate things too much. */
if (!re_string_first_byte (pstr, pstr->cur_idx))
return re_string_fetch_byte (pstr);
off = pstr->offsets[pstr->cur_idx];
ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
if (pstr->trans)
ch = pstr->trans[ch];
if (! isascii (ch))
return re_string_fetch_byte (pstr);
re_string_skip_bytes (pstr,
re_string_char_size_at (pstr, pstr->cur_idx));
return ch;
}
#endif
ch = pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++];
if (pstr->trans)
ch = pstr->trans[ch];
return ch;
}
static void
re_string_destruct (pstr)
re_string_t *pstr;
{
#ifdef RE_ENABLE_I18N
re_free (pstr->wcs);
re_free (pstr->offsets);
#endif /* RE_ENABLE_I18N */
if (pstr->mbs_allocated)
re_free (pstr->mbs);
}
/* Return the context at IDX in INPUT. */
static unsigned int
re_string_context_at (input, idx, eflags, newline_anchor)
const re_string_t *input;
int idx, eflags, newline_anchor;
{
int c;
if (idx < 0 || idx == input->len)
{
if (idx < 0)
/* In this case, we use the value stored in input->tip_context,
since we can't know the character in input->mbs[-1] here. */
return input->tip_context;
else /* (idx == input->len) */
return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF
: CONTEXT_NEWLINE | CONTEXT_ENDBUF);
}
#ifdef RE_ENABLE_I18N
if (input->mb_cur_max > 1)
{
wint_t wc;
int wc_idx = idx;
while(input->wcs[wc_idx] == WEOF)
{
#ifdef DEBUG
/* It must not happen. */
assert (wc_idx >= 0);
#endif
--wc_idx;
if (wc_idx < 0)
return input->tip_context;
}
wc = input->wcs[wc_idx];
if (IS_WIDE_WORD_CHAR (wc))
return CONTEXT_WORD;
return (newline_anchor && IS_WIDE_NEWLINE (wc)) ? CONTEXT_NEWLINE : 0;
}
else
#endif
{
c = re_string_byte_at (input, idx);
if (IS_WORD_CHAR (c))
return CONTEXT_WORD;
return (newline_anchor && IS_NEWLINE (c)) ? CONTEXT_NEWLINE : 0;
}
}
/* Functions for set operation. */
static reg_errcode_t
re_node_set_alloc (set, size)
re_node_set *set;
int size;
{
set->alloc = size;
set->nelem = 0;
set->elems = re_malloc (int, size);
if (BE (set->elems == NULL, 0))
return REG_ESPACE;
return REG_NOERROR;
}
static reg_errcode_t
re_node_set_init_1 (set, elem)
re_node_set *set;
int elem;
{
set->alloc = 1;
set->nelem = 1;
set->elems = re_malloc (int, 1);
if (BE (set->elems == NULL, 0))
{
set->alloc = set->nelem = 0;
return REG_ESPACE;
}
set->elems[0] = elem;
return REG_NOERROR;
}
static reg_errcode_t
re_node_set_init_2 (set, elem1, elem2)
re_node_set *set;
int elem1, elem2;
{
set->alloc = 2;
set->elems = re_malloc (int, 2);
if (BE (set->elems == NULL, 0))
return REG_ESPACE;
if (elem1 == elem2)
{
set->nelem = 1;
set->elems[0] = elem1;
}
else
{
set->nelem = 2;
if (elem1 < elem2)
{
set->elems[0] = elem1;
set->elems[1] = elem2;
}
else
{
set->elems[0] = elem2;
set->elems[1] = elem1;
}
}
return REG_NOERROR;
}
static reg_errcode_t
re_node_set_init_copy (dest, src)
re_node_set *dest;
const re_node_set *src;
{
dest->nelem = src->nelem;
if (src->nelem > 0)
{
dest->alloc = dest->nelem;
dest->elems = re_malloc (int, dest->alloc);
if (BE (dest->elems == NULL, 0))
{
dest->alloc = dest->nelem = 0;
return REG_ESPACE;
}
memcpy (dest->elems, src->elems, src->nelem * sizeof (int));
}
else
re_node_set_init_empty (dest);
return REG_NOERROR;
}
/* Calculate the intersection of the sets SRC1 and SRC2. And merge it to
DEST. Return value indicate the error code or REG_NOERROR if succeeded.
Note: We assume dest->elems is NULL, when dest->alloc is 0. */
static reg_errcode_t
re_node_set_add_intersect (dest, src1, src2)
re_node_set *dest;
const re_node_set *src1, *src2;
{
int i1, i2, id;
if (src1->nelem > 0 && src2->nelem > 0)
{
if (src1->nelem + src2->nelem + dest->nelem > dest->alloc)
{
int new_alloc = src1->nelem + src2->nelem + dest->nelem;
int *new_elems = re_realloc (dest->elems, int, new_alloc);
if (BE (new_elems == NULL, 0))
return REG_ESPACE;
dest->elems = new_elems;
dest->alloc = new_alloc;
}
}
else
return REG_NOERROR;
for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
{
if (src1->elems[i1] > src2->elems[i2])
{
++i2;
continue;
}
if (src1->elems[i1] == src2->elems[i2])
{
while (id < dest->nelem && dest->elems[id] < src2->elems[i2])
++id;
if (id < dest->nelem && dest->elems[id] == src2->elems[i2])
++id;
else
{
memmove (dest->elems + id + 1, dest->elems + id,
sizeof (int) * (dest->nelem - id));
dest->elems[id++] = src2->elems[i2++];
++dest->nelem;
}
}
++i1;
}
return REG_NOERROR;
}
/* Calculate the union set of the sets SRC1 and SRC2. And store it to
DEST. Return value indicate the error code or REG_NOERROR if succeeded. */
static reg_errcode_t
re_node_set_init_union (dest, src1, src2)
re_node_set *dest;
const re_node_set *src1, *src2;
{
int i1, i2, id;
if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0)
{
dest->alloc = src1->nelem + src2->nelem;
dest->elems = re_malloc (int, dest->alloc);
if (BE (dest->elems == NULL, 0))
return REG_ESPACE;
}
else
{
if (src1 != NULL && src1->nelem > 0)
return re_node_set_init_copy (dest, src1);
else if (src2 != NULL && src2->nelem > 0)
return re_node_set_init_copy (dest, src2);
else
re_node_set_init_empty (dest);
return REG_NOERROR;
}
for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
{
if (src1->elems[i1] > src2->elems[i2])
{
dest->elems[id++] = src2->elems[i2++];
continue;
}
if (src1->elems[i1] == src2->elems[i2])
++i2;
dest->elems[id++] = src1->elems[i1++];
}
if (i1 < src1->nelem)
{
memcpy (dest->elems + id, src1->elems + i1,
(src1->nelem - i1) * sizeof (int));
id += src1->nelem - i1;
}
else if (i2 < src2->nelem)
{
memcpy (dest->elems + id, src2->elems + i2,
(src2->nelem - i2) * sizeof (int));
id += src2->nelem - i2;
}
dest->nelem = id;
return REG_NOERROR;
}
/* Calculate the union set of the sets DEST and SRC. And store it to
DEST. Return value indicate the error code or REG_NOERROR if succeeded. */
static reg_errcode_t
re_node_set_merge (dest, src)
re_node_set *dest;
const re_node_set *src;
{
int si, di;
if (src == NULL || src->nelem == 0)
return REG_NOERROR;
if (dest->alloc < src->nelem + dest->nelem)
{
int new_alloc = 2 * (src->nelem + dest->alloc);
int *new_buffer = re_realloc (dest->elems, int, new_alloc);
if (BE (new_buffer == NULL, 0))
return REG_ESPACE;
dest->elems = new_buffer;
dest->alloc = new_alloc;
}
for (si = 0, di = 0 ; si < src->nelem && di < dest->nelem ;)
{
int cp_from, ncp, mid, right, src_elem = src->elems[si];
/* Binary search the spot we will add the new element. */
right = dest->nelem;
while (di < right)
{
mid = (di + right) / 2;
if (dest->elems[mid] < src_elem)
di = mid + 1;
else
right = mid;
}
if (di >= dest->nelem)
break;
if (dest->elems[di] == src_elem)
{
/* Skip since, DEST already has the element. */
++di;
++si;
continue;
}
/* Skip the src elements which are less than dest->elems[di]. */
cp_from = si;
while (si < src->nelem && src->elems[si] < dest->elems[di])
++si;
/* Copy these src elements. */
ncp = si - cp_from;
memmove (dest->elems + di + ncp, dest->elems + di,
sizeof (int) * (dest->nelem - di));
memcpy (dest->elems + di, src->elems + cp_from,
sizeof (int) * ncp);
/* Update counters. */
di += ncp;
dest->nelem += ncp;
}
/* Copy remaining src elements. */
if (si < src->nelem)
{
memcpy (dest->elems + di, src->elems + si,
sizeof (int) * (src->nelem - si));
dest->nelem += src->nelem - si;
}
return REG_NOERROR;
}
/* Insert the new element ELEM to the re_node_set* SET.
return 0 if SET already has ELEM,
return -1 if an error is occured, return 1 otherwise. */
static int
re_node_set_insert (set, elem)
re_node_set *set;
int elem;
{
int idx, right, mid;
/* In case of the set is empty. */
if (set->elems == NULL || set->alloc == 0)
{
if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1))
return 1;
else
return -1;
}
/* Binary search the spot we will add the new element. */
idx = 0;
right = set->nelem;
while (idx < right)
{
mid = (idx + right) / 2;
if (set->elems[mid] < elem)
idx = mid + 1;
else
right = mid;
}
/* Realloc if we need. */
if (set->alloc < set->nelem + 1)
{
int *new_array;
set->alloc = set->alloc * 2;
new_array = re_malloc (int, set->alloc);
if (BE (new_array == NULL, 0))
return -1;
/* Copy the elements they are followed by the new element. */
if (idx > 0)
memcpy (new_array, set->elems, sizeof (int) * (idx));
/* Copy the elements which follows the new element. */
if (set->nelem - idx > 0)
memcpy (new_array + idx + 1, set->elems + idx,
sizeof (int) * (set->nelem - idx));
re_free (set->elems);
set->elems = new_array;
}
else
{
/* Move the elements which follows the new element. */
if (set->nelem - idx > 0)
memmove (set->elems + idx + 1, set->elems + idx,
sizeof (int) * (set->nelem - idx));
}
/* Insert the new element. */
set->elems[idx] = elem;
++set->nelem;
return 1;
}
/* Compare two node sets SET1 and SET2.
return 1 if SET1 and SET2 are equivalent, retrun 0 otherwise. */
static int
re_node_set_compare (set1, set2)
const re_node_set *set1, *set2;
{
int i;
if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem)
return 0;
for (i = 0 ; i < set1->nelem ; i++)
if (set1->elems[i] != set2->elems[i])
return 0;
return 1;
}
/* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */
static int
re_node_set_contains (set, elem)
const re_node_set *set;
int elem;
{
int idx, right, mid;
if (set->nelem <= 0)
return 0;
/* Binary search the element. */
idx = 0;
right = set->nelem - 1;
while (idx < right)
{
mid = (idx + right) / 2;
if (set->elems[mid] < elem)
idx = mid + 1;
else
right = mid;
}
return set->elems[idx] == elem ? idx + 1 : 0;
}
static void
re_node_set_remove_at (set, idx)
re_node_set *set;
int idx;
{
if (idx < 0 || idx >= set->nelem)
return;
if (idx < set->nelem - 1)
memmove (set->elems + idx, set->elems + idx + 1,
sizeof (int) * (set->nelem - idx - 1));
--set->nelem;
}
/* Add the token TOKEN to dfa->nodes, and return the index of the token.
Or return -1, if an error will be occured. */
static int
re_dfa_add_node (dfa, token, mode)
re_dfa_t *dfa;
re_token_t token;
int mode;
{
if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0))
{
int new_nodes_alloc = dfa->nodes_alloc * 2;
re_token_t *new_array = re_realloc (dfa->nodes, re_token_t,
new_nodes_alloc);
if (BE (new_array == NULL, 0))
return -1;
dfa->nodes = new_array;
if (mode)
{
int *new_nexts, *new_indices;
re_node_set *new_edests, *new_eclosures, *new_inveclosures;
new_nexts = re_realloc (dfa->nexts, int, new_nodes_alloc);
new_indices = re_realloc (dfa->org_indices, int, new_nodes_alloc);
new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc);
new_eclosures = re_realloc (dfa->eclosures, re_node_set,
new_nodes_alloc);
new_inveclosures = re_realloc (dfa->inveclosures, re_node_set,
new_nodes_alloc);
if (BE (new_nexts == NULL || new_indices == NULL
|| new_edests == NULL || new_eclosures == NULL
|| new_inveclosures == NULL, 0))
return -1;
dfa->nexts = new_nexts;
dfa->org_indices = new_indices;
dfa->edests = new_edests;
dfa->eclosures = new_eclosures;
dfa->inveclosures = new_inveclosures;
}
dfa->nodes_alloc = new_nodes_alloc;
}
dfa->nodes[dfa->nodes_len] = token;
dfa->nodes[dfa->nodes_len].duplicated = 0;
dfa->nodes[dfa->nodes_len].constraint = 0;
return dfa->nodes_len++;
}
static unsigned int inline
calc_state_hash (nodes, context)
const re_node_set *nodes;
unsigned int context;
{
unsigned int hash = nodes->nelem + context;
int i;
for (i = 0 ; i < nodes->nelem ; i++)
hash += nodes->elems[i];
return hash;
}
/* Search for the state whose node_set is equivalent to NODES.
Return the pointer to the state, if we found it in the DFA.
Otherwise create the new one and return it. In case of an error
return NULL and set the error code in ERR.
Note: - We assume NULL as the invalid state, then it is possible that
return value is NULL and ERR is REG_NOERROR.
- We never return non-NULL value in case of any errors, it is for
optimization. */
static re_dfastate_t*
re_acquire_state (err, dfa, nodes)
reg_errcode_t *err;
re_dfa_t *dfa;
const re_node_set *nodes;
{
unsigned int hash;
re_dfastate_t *new_state;
struct re_state_table_entry *spot;
int i;
if (BE (nodes->nelem == 0, 0))
{
*err = REG_NOERROR;
return NULL;
}
hash = calc_state_hash (nodes, 0);
spot = dfa->state_table + (hash & dfa->state_hash_mask);
for (i = 0 ; i < spot->num ; i++)
{
re_dfastate_t *state = spot->array[i];
if (hash != state->hash)
continue;
if (re_node_set_compare (&state->nodes, nodes))
return state;
}
/* There are no appropriate state in the dfa, create the new one. */
new_state = create_ci_newstate (dfa, nodes, hash);
if (BE (new_state != NULL, 1))
return new_state;
else
{
*err = REG_ESPACE;
return NULL;
}
}
/* Search for the state whose node_set is equivalent to NODES and
whose context is equivalent to CONTEXT.
Return the pointer to the state, if we found it in the DFA.
Otherwise create the new one and return it. In case of an error
return NULL and set the error code in ERR.
Note: - We assume NULL as the invalid state, then it is possible that
return value is NULL and ERR is REG_NOERROR.
- We never return non-NULL value in case of any errors, it is for
optimization. */
static re_dfastate_t*
re_acquire_state_context (err, dfa, nodes, context)
reg_errcode_t *err;
re_dfa_t *dfa;
const re_node_set *nodes;
unsigned int context;
{
unsigned int hash;
re_dfastate_t *new_state;
struct re_state_table_entry *spot;
int i;
if (nodes->nelem == 0)
{
*err = REG_NOERROR;
return NULL;
}
hash = calc_state_hash (nodes, context);
spot = dfa->state_table + (hash & dfa->state_hash_mask);
for (i = 0 ; i < spot->num ; i++)
{
re_dfastate_t *state = spot->array[i];
if (state->hash == hash
&& state->context == context
&& re_node_set_compare (state->entrance_nodes, nodes))
return state;
}
/* There are no appropriate state in `dfa', create the new one. */
new_state = create_cd_newstate (dfa, nodes, context, hash);
if (BE (new_state != NULL, 1))
return new_state;
else
{
*err = REG_ESPACE;
return NULL;
}
}
/* Allocate memory for DFA state and initialize common properties.
Return the new state if succeeded, otherwise return NULL. */
static re_dfastate_t *
create_newstate_common (dfa, nodes, hash)
re_dfa_t *dfa;
const re_node_set *nodes;
unsigned int hash;
{
re_dfastate_t *newstate;
reg_errcode_t err;
newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
if (BE (newstate == NULL, 0))
return NULL;
err = re_node_set_init_copy (&newstate->nodes, nodes);
if (BE (err != REG_NOERROR, 0))
{
re_free (newstate);
return NULL;
}
newstate->trtable = NULL;
newstate->hash = hash;
return newstate;
}
/* Store the new state NEWSTATE whose hash value is HASH in appropriate
position. Return value indicate the error code if failed. */
static reg_errcode_t
register_state (dfa, newstate, hash)
re_dfa_t *dfa;
re_dfastate_t *newstate;
unsigned int hash;
{
struct re_state_table_entry *spot;
spot = dfa->state_table + (hash & dfa->state_hash_mask);
if (BE (spot->alloc <= spot->num, 0))
{
int new_alloc = 2 * spot->num + 2;
re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *,
new_alloc);
if (BE (new_array == NULL, 0))
return REG_ESPACE;
spot->array = new_array;
spot->alloc = new_alloc;
}
spot->array[spot->num++] = newstate;
return REG_NOERROR;
}
/* Create the new state which is independ of contexts.
Return the new state if succeeded, otherwise return NULL. */
static re_dfastate_t *
create_ci_newstate (dfa, nodes, hash)
re_dfa_t *dfa;
const re_node_set *nodes;
unsigned int hash;
{
int i;
reg_errcode_t err;
re_dfastate_t *newstate;
newstate = create_newstate_common (dfa, nodes, hash);
if (BE (newstate == NULL, 0))
return NULL;
newstate->entrance_nodes = &newstate->nodes;
for (i = 0 ; i < nodes->nelem ; i++)
{
re_token_t *node = dfa->nodes + nodes->elems[i];
re_token_type_t type = node->type;
if (type == CHARACTER && !node->constraint)
continue;
/* If the state has the halt node, the state is a halt state. */
else if (type == END_OF_RE)
newstate->halt = 1;
#ifdef RE_ENABLE_I18N
else if (type == COMPLEX_BRACKET
|| type == OP_UTF8_PERIOD
|| (type == OP_PERIOD && dfa->mb_cur_max > 1))
newstate->accept_mb = 1;
#endif /* RE_ENABLE_I18N */
else if (type == OP_BACK_REF)
newstate->has_backref = 1;
else if (type == ANCHOR || node->constraint)
newstate->has_constraint = 1;
}
err = register_state (dfa, newstate, hash);
if (BE (err != REG_NOERROR, 0))
{
free_state (newstate);
newstate = NULL;
}
return newstate;
}
/* Create the new state which is depend on the context CONTEXT.
Return the new state if succeeded, otherwise return NULL. */
static re_dfastate_t *
create_cd_newstate (dfa, nodes, context, hash)
re_dfa_t *dfa;
const re_node_set *nodes;
unsigned int context, hash;
{
int i, nctx_nodes = 0;
reg_errcode_t err;
re_dfastate_t *newstate;
newstate = create_newstate_common (dfa, nodes, hash);
if (BE (newstate == NULL, 0))
return NULL;
newstate->context = context;
newstate->entrance_nodes = &newstate->nodes;
for (i = 0 ; i < nodes->nelem ; i++)
{
unsigned int constraint = 0;
re_token_t *node = dfa->nodes + nodes->elems[i];
re_token_type_t type = node->type;
if (node->constraint)
constraint = node->constraint;
if (type == CHARACTER && !constraint)
continue;
/* If the state has the halt node, the state is a halt state. */
else if (type == END_OF_RE)
newstate->halt = 1;
#ifdef RE_ENABLE_I18N
else if (type == COMPLEX_BRACKET
|| type == OP_UTF8_PERIOD
|| (type == OP_PERIOD && dfa->mb_cur_max > 1))
newstate->accept_mb = 1;
#endif /* RE_ENABLE_I18N */
else if (type == OP_BACK_REF)
newstate->has_backref = 1;
else if (type == ANCHOR)
constraint = node->opr.ctx_type;
if (constraint)
{
if (newstate->entrance_nodes == &newstate->nodes)
{
newstate->entrance_nodes = re_malloc (re_node_set, 1);
if (BE (newstate->entrance_nodes == NULL, 0))
{
free_state (newstate);
return NULL;
}
re_node_set_init_copy (newstate->entrance_nodes, nodes);
nctx_nodes = 0;
newstate->has_constraint = 1;
}
if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context))
{
re_node_set_remove_at (&newstate->nodes, i - nctx_nodes);
++nctx_nodes;
}
}
}
err = register_state (dfa, newstate, hash);
if (BE (err != REG_NOERROR, 0))
{
free_state (newstate);
newstate = NULL;
}
return newstate;
}
static void
free_state (state)
re_dfastate_t *state;
{
if (state->entrance_nodes != &state->nodes)
{
re_node_set_free (state->entrance_nodes);
re_free (state->entrance_nodes);
}
re_node_set_free (&state->nodes);
re_free (state->trtable);
re_free (state);
}