glibc/linuxthreads/manager.c
Ulrich Drepper 3dd2c3e247 Update.
1998-04-30  Ulrich Drepper  <drepper@cygnus.com>

	* manager.c (pthread_free): Detect already free child.
	Patch by Xavier Leroy, reported by Matthias Urlichs.
1998-04-30 10:14:00 +00:00

458 lines
15 KiB
C

/* Linuxthreads - a simple clone()-based implementation of Posix */
/* threads for Linux. */
/* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */
/* */
/* This program is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU Library General Public License */
/* as published by the Free Software Foundation; either version 2 */
/* of the License, or (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU Library General Public License for more details. */
/* The "thread manager" thread: manages creation and termination of threads */
#include <errno.h>
#include <sched.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/select.h> /* for select */
#include <sys/mman.h> /* for mmap */
#include <sys/time.h>
#include <sys/wait.h> /* for waitpid macros */
#include <linux/tasks.h>
#include "pthread.h"
#include "internals.h"
#include "spinlock.h"
#include "restart.h"
/* Array of active threads. Entry 0 is reserved for the initial thread. */
struct pthread_handle_struct __pthread_handles[PTHREAD_THREADS_MAX] =
{ { 0, &__pthread_initial_thread}, /* All NULLs */ };
/* Mapping from stack segment to thread descriptor. */
/* Stack segment numbers are also indices into the __pthread_handles array. */
/* Stack segment number 0 is reserved for the initial thread. */
static inline pthread_descr thread_segment(int seg)
{
return (pthread_descr)(THREAD_STACK_START_ADDRESS - (seg - 1) * STACK_SIZE)
- 1;
}
/* Flag set in signal handler to record child termination */
static volatile int terminated_children = 0;
/* Flag set when the initial thread is blocked on pthread_exit waiting
for all other threads to terminate */
static int main_thread_exiting = 0;
/* Counter used to generate unique thread identifier.
Thread identifier is pthread_threads_counter + segment. */
static pthread_t pthread_threads_counter = 0;
/* Forward declarations */
static int pthread_handle_create(pthread_t *thread, const pthread_attr_t *attr,
void * (*start_routine)(void *), void *arg,
sigset_t *mask, int father_pid);
static void pthread_handle_free(pthread_descr th);
static void pthread_handle_exit(pthread_descr issuing_thread, int exitcode);
static void pthread_reap_children(void);
static void pthread_kill_all_threads(int sig, int main_thread_also);
/* The server thread managing requests for thread creation and termination */
int __pthread_manager(void *arg)
{
int reqfd = (int)arg;
sigset_t mask;
fd_set readfds;
struct timeval timeout;
int n;
struct pthread_request request;
/* If we have special thread_self processing, initialize it. */
#ifdef INIT_THREAD_SELF
INIT_THREAD_SELF(&__pthread_manager_thread);
#endif
/* Set the error variable. */
__pthread_manager_thread.p_errnop = &__pthread_manager_thread.p_errno;
__pthread_manager_thread.p_h_errnop = &__pthread_manager_thread.p_h_errno;
/* Block all signals except PTHREAD_SIG_RESTART */
sigfillset(&mask);
sigdelset(&mask, PTHREAD_SIG_RESTART);
sigprocmask(SIG_SETMASK, &mask, NULL);
/* Enter server loop */
while(1) {
FD_ZERO(&readfds);
FD_SET(reqfd, &readfds);
timeout.tv_sec = 2;
timeout.tv_usec = 0;
n = __select(reqfd + 1, &readfds, NULL, NULL, &timeout);
/* Check for termination of the main thread */
if (getppid() == 1) {
pthread_kill_all_threads(SIGKILL, 0);
_exit(0);
}
/* Check for dead children */
if (terminated_children) {
terminated_children = 0;
pthread_reap_children();
}
/* Read and execute request */
if (n == 1 && FD_ISSET(reqfd, &readfds)) {
n = __libc_read(reqfd, (char *)&request, sizeof(request));
ASSERT(n == sizeof(request));
switch(request.req_kind) {
case REQ_CREATE:
request.req_thread->p_retcode =
pthread_handle_create((pthread_t *) &request.req_thread->p_retval,
request.req_args.create.attr,
request.req_args.create.fn,
request.req_args.create.arg,
&request.req_args.create.mask,
request.req_thread->p_pid);
restart(request.req_thread);
break;
case REQ_FREE:
pthread_handle_free(request.req_args.free.thread);
break;
case REQ_PROCESS_EXIT:
pthread_handle_exit(request.req_thread,
request.req_args.exit.code);
break;
case REQ_MAIN_THREAD_EXIT:
main_thread_exiting = 1;
if (__pthread_main_thread->p_nextlive == __pthread_main_thread) {
restart(__pthread_main_thread);
return 0;
}
break;
}
}
}
}
/* Process creation */
static int pthread_start_thread(void *arg)
{
pthread_descr self = (pthread_descr) arg;
void * outcome;
/* Initialize special thread_self processing, if any. */
#ifdef INIT_THREAD_SELF
INIT_THREAD_SELF(self);
#endif
/* Make sure our pid field is initialized, just in case we get there
before our father has initialized it. */
self->p_pid = __getpid();
/* Initial signal mask is that of the creating thread. (Otherwise,
we'd just inherit the mask of the thread manager.) */
sigprocmask(SIG_SETMASK, &self->p_start_args.mask, NULL);
/* Set the scheduling policy and priority for the new thread, if needed */
if (self->p_start_args.schedpolicy >= 0)
__sched_setscheduler(self->p_pid, self->p_start_args.schedpolicy,
&self->p_start_args.schedparam);
/* Run the thread code */
outcome = self->p_start_args.start_routine(self->p_start_args.arg);
/* Exit with the given return value */
pthread_exit(outcome);
return 0;
}
static int pthread_handle_create(pthread_t *thread, const pthread_attr_t *attr,
void * (*start_routine)(void *), void *arg,
sigset_t * mask, int father_pid)
{
size_t sseg;
int pid;
pthread_descr new_thread;
pthread_t new_thread_id;
void *guardaddr = NULL;
/* Find a free stack segment for the current stack */
for (sseg = 1; ; sseg++)
{
if (sseg >= PTHREAD_THREADS_MAX)
return EAGAIN;
if (__pthread_handles[sseg].h_descr != NULL)
continue;
if (attr == NULL || !attr->stackaddr_set)
{
new_thread = thread_segment(sseg);
/* Allocate space for stack and thread descriptor. */
if (mmap((caddr_t)((char *)(new_thread+1) - INITIAL_STACK_SIZE),
INITIAL_STACK_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED | MAP_GROWSDOWN,
-1, 0) != MAP_FAILED)
{
/* We manage to get a stack. Now see whether we need a guard
and allocate it if necessary. */
if (attr == NULL || attr->guardsize != 0)
{
guardaddr = mmap ((caddr_t)((char *)(new_thread+1)
- STACK_SIZE),
attr ? attr->guardsize : __getpagesize (),
0, MAP_FIXED, -1, 0);
if (guardaddr == MAP_FAILED)
/* We don't make this an error. */
guardaddr = NULL;
}
break;
}
/* It seems part of this segment is already mapped. Try the next. */
}
else
{
new_thread = (pthread_descr) attr->stackaddr - 1;
break;
}
}
/* Allocate new thread identifier */
pthread_threads_counter += PTHREAD_THREADS_MAX;
new_thread_id = sseg + pthread_threads_counter;
/* Initialize the thread descriptor */
new_thread->p_nextwaiting = NULL;
new_thread->p_tid = new_thread_id;
new_thread->p_priority = 0;
new_thread->p_spinlock = &(__pthread_handles[sseg].h_spinlock);
new_thread->p_signal = 0;
new_thread->p_signal_jmp = NULL;
new_thread->p_cancel_jmp = NULL;
new_thread->p_terminated = 0;
new_thread->p_detached = attr == NULL ? 0 : attr->detachstate;
new_thread->p_exited = 0;
new_thread->p_retval = NULL;
new_thread->p_joining = NULL;
new_thread->p_cleanup = NULL;
new_thread->p_cancelstate = PTHREAD_CANCEL_ENABLE;
new_thread->p_canceltype = PTHREAD_CANCEL_DEFERRED;
new_thread->p_canceled = 0;
new_thread->p_errnop = &new_thread->p_errno;
new_thread->p_errno = 0;
new_thread->p_h_errnop = &new_thread->p_h_errno;
new_thread->p_h_errno = 0;
new_thread->p_guardaddr = guardaddr;
new_thread->p_guardsize = (guardaddr == NULL
? 0
: (attr == NULL
? __getpagesize () : attr->guardsize));
new_thread->p_userstack = attr != NULL && attr->stackaddr_set;
memset (new_thread->p_specific, '\0',
PTHREAD_KEY_1STLEVEL_SIZE * sizeof (new_thread->p_specific[0]));
/* Initialize the thread handle */
__pthread_handles[sseg].h_spinlock = 0; /* should already be 0 */
__pthread_handles[sseg].h_descr = new_thread;
/* Determine scheduling parameters for the thread */
new_thread->p_start_args.schedpolicy = -1;
if (attr != NULL) {
switch(attr->inheritsched) {
case PTHREAD_EXPLICIT_SCHED:
new_thread->p_start_args.schedpolicy = attr->schedpolicy;
new_thread->p_start_args.schedparam = attr->schedparam;
break;
case PTHREAD_INHERIT_SCHED:
/* schedpolicy doesn't need to be set, only get priority */
__sched_getparam(father_pid, &new_thread->p_start_args.schedparam);
break;
}
new_thread->p_priority =
new_thread->p_start_args.schedparam.sched_priority;
}
/* Finish setting up arguments to pthread_start_thread */
new_thread->p_start_args.start_routine = start_routine;
new_thread->p_start_args.arg = arg;
new_thread->p_start_args.mask = *mask;
/* Do the cloning */
pid = __clone(pthread_start_thread, (void **) new_thread,
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND |
PTHREAD_SIG_RESTART,
new_thread);
/* Check if cloning succeeded */
if (pid == -1) {
/* Free the stack if we allocated it */
if (attr == NULL || !attr->stackaddr_set)
{
munmap((caddr_t)((char *)(new_thread+1) - INITIAL_STACK_SIZE),
INITIAL_STACK_SIZE);
if (new_thread->p_guardsize != 0)
munmap(new_thread->p_guardaddr, new_thread->p_guardsize);
}
__pthread_handles[sseg].h_descr = NULL;
return errno;
}
/* Insert new thread in doubly linked list of active threads */
new_thread->p_prevlive = __pthread_main_thread;
new_thread->p_nextlive = __pthread_main_thread->p_nextlive;
__pthread_main_thread->p_nextlive->p_prevlive = new_thread;
__pthread_main_thread->p_nextlive = new_thread;
/* Set pid field of the new thread, in case we get there before the
child starts. */
new_thread->p_pid = pid;
/* We're all set */
*thread = new_thread_id;
return 0;
}
/* Try to free the resources of a thread when requested by pthread_join
or pthread_detach on a terminated thread. */
static void pthread_free(pthread_descr th)
{
pthread_descr t;
/* Check that the thread th is still there -- pthread_reap_children
might have deallocated it already */
t = __pthread_main_thread;
do {
if (t == th) break;
t = t->p_nextlive;
} while (t != __pthread_main_thread);
if (t != th) return;
pthread_handle handle;
ASSERT(th->p_exited);
/* Make the handle invalid */
handle = thread_handle(th->p_tid);
acquire(&handle->h_spinlock);
handle->h_descr = NULL;
release(&handle->h_spinlock);
/* If initial thread, nothing to free */
if (th == &__pthread_initial_thread) return;
if (!th->p_userstack)
{
/* Free the stack and thread descriptor area */
munmap((caddr_t) ((char *)(th+1) - STACK_SIZE), STACK_SIZE);
if (th->p_guardsize != 0)
munmap(th->p_guardaddr, th->p_guardsize);
}
}
/* Handle threads that have exited */
static void pthread_exited(pid_t pid)
{
pthread_descr th;
int detached;
/* Find thread with that pid */
for (th = __pthread_main_thread->p_nextlive;
th != __pthread_main_thread;
th = th->p_nextlive) {
if (th->p_pid == pid) {
/* Remove thread from list of active threads */
th->p_nextlive->p_prevlive = th->p_prevlive;
th->p_prevlive->p_nextlive = th->p_nextlive;
/* Mark thread as exited, and if detached, free its resources */
acquire(th->p_spinlock);
th->p_exited = 1;
detached = th->p_detached;
release(th->p_spinlock);
if (detached) pthread_free(th);
break;
}
}
/* If all threads have exited and the main thread is pending on a
pthread_exit, wake up the main thread and terminate ourselves. */
if (main_thread_exiting &&
__pthread_main_thread->p_nextlive == __pthread_main_thread) {
restart(__pthread_main_thread);
_exit(0);
}
}
static void pthread_reap_children(void)
{
pid_t pid;
int status;
while ((pid = __libc_waitpid(-1, &status, WNOHANG | __WCLONE)) > 0) {
pthread_exited(pid);
if (WIFSIGNALED(status)) {
/* If a thread died due to a signal, send the same signal to
all other threads, including the main thread. */
pthread_kill_all_threads(WTERMSIG(status), 1);
_exit(0);
}
}
}
/* Free the resources of a thread */
static void pthread_handle_free(pthread_descr th)
{
acquire(th->p_spinlock);
if (th->p_exited) {
release(th->p_spinlock);
pthread_free(th);
} else {
/* The Unix process of the thread is still running.
Mark the thread as detached so that the thread manager will
deallocate its resources when the Unix process exits. */
th->p_detached = 1;
release(th->p_spinlock);
}
}
/* Send a signal to all running threads */
static void pthread_kill_all_threads(int sig, int main_thread_also)
{
pthread_descr th;
for (th = __pthread_main_thread->p_nextlive;
th != __pthread_main_thread;
th = th->p_nextlive) {
kill(th->p_pid, sig);
}
if (main_thread_also) {
kill(__pthread_main_thread->p_pid, sig);
}
}
/* Process-wide exit() */
static void pthread_handle_exit(pthread_descr issuing_thread, int exitcode)
{
pthread_descr th;
__pthread_exit_requested = 1;
__pthread_exit_code = exitcode;
/* Send the CANCEL signal to all running threads, including the main
thread, but excluding the thread from which the exit request originated
(that thread must complete the exit, e.g. calling atexit functions
and flushing stdio buffers). */
for (th = issuing_thread->p_nextlive;
th != issuing_thread;
th = th->p_nextlive) {
kill(th->p_pid, PTHREAD_SIG_CANCEL);
}
/* Now, wait for all these threads, so that they don't become zombies
and their times are properly added to the thread manager's times. */
for (th = issuing_thread->p_nextlive;
th != issuing_thread;
th = th->p_nextlive) {
waitpid(th->p_pid, NULL, __WCLONE);
}
restart(issuing_thread);
_exit(0);
}
/* Handler for PTHREAD_SIG_RESTART in thread manager thread */
void __pthread_manager_sighandler(int sig)
{
terminated_children = 1;
}