glibc/rt/aio_misc.c

582 lines
15 KiB
C

/* Handle general operations.
Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <aio.h>
#include <errno.h>
#include <limits.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include "aio_misc.h"
/* Pool of request list entries. */
static struct requestlist **pool;
/* Number of total and allocated pool entries. */
static size_t pool_tab_size;
static size_t pool_size;
/* We implement a two dimensional array but allocate each row separately.
The macro below determines how many entries should be used per row.
It should better be a power of two. */
#define ENTRIES_PER_ROW 16
/* The row table is incremented in units of this. */
#define ROW_STEP 8
/* List of available entries. */
static struct requestlist *freelist;
/* List of request waiting to be processed. */
static struct requestlist *runlist;
/* Structure list of all currently processed requests. */
static struct requestlist *requests;
/* Number of threads currently running. */
static int nthreads;
/* These are the values used to optimize the use of AIO. The user can
overwrite them by using the `aio_init' function. */
static struct aioinit optim =
{
20, /* int aio_threads; Maximal number of threads. */
256, /* int aio_num; Number of expected simultanious requests. */
0,
0,
0,
0,
{ 0, }
};
/* Since the list is global we need a mutex protecting it. */
pthread_mutex_t __aio_requests_mutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
/* Functions to handle request list pool. */
static struct requestlist *
get_elem (void)
{
struct requestlist *result;
if (freelist == NULL)
{
struct requestlist *new_row;
size_t new_size;
/* Compute new size. */
new_size = pool_size ? pool_size + ENTRIES_PER_ROW : optim.aio_num;
if ((new_size / ENTRIES_PER_ROW) >= pool_tab_size)
{
size_t new_tab_size = new_size / ENTRIES_PER_ROW;
struct requestlist **new_tab;
new_tab = (struct requestlist **)
realloc (pool, (new_tab_size * sizeof (struct requestlist *)));
if (new_tab == NULL)
return NULL;
pool_tab_size = new_tab_size;
pool = new_tab;
}
if (pool_size == 0)
{
size_t cnt;
new_row = (struct requestlist *)
calloc (new_size, sizeof (struct requestlist));
if (new_row == NULL)
return NULL;
for (cnt = 0; cnt < new_size / ENTRIES_PER_ROW; ++cnt)
pool[cnt] = &new_row[cnt * ENTRIES_PER_ROW];
}
else
{
/* Allocat one new row. */
new_row = (struct requestlist *)
calloc (ENTRIES_PER_ROW, sizeof (struct requestlist));
if (new_row == NULL)
return NULL;
pool[new_size / ENTRIES_PER_ROW] = new_row;
}
/* Put all the new entries in the freelist. */
do
{
new_row->next_prio = freelist;
freelist = new_row++;
}
while (++pool_size < new_size);
}
result = freelist;
freelist = freelist->next_prio;
return result;
}
void
internal_function
__aio_free_request (struct requestlist *elem)
{
elem->running = no;
elem->next_prio = freelist;
freelist = elem;
}
struct requestlist *
internal_function
__aio_find_req (aiocb_union *elem)
{
struct requestlist *runp = requests;
int fildes = elem->aiocb.aio_fildes;
while (runp != NULL && runp->aiocbp->aiocb.aio_fildes < fildes)
runp = runp->next_fd;
if (runp != NULL)
{
if (runp->aiocbp->aiocb.aio_fildes != fildes)
runp = NULL;
else
while (runp != NULL && runp->aiocbp != elem)
runp = runp->next_prio;
}
return runp;
}
struct requestlist *
internal_function
__aio_find_req_fd (int fildes)
{
struct requestlist *runp = requests;
while (runp != NULL && runp->aiocbp->aiocb.aio_fildes < fildes)
runp = runp->next_fd;
return (runp != NULL && runp->aiocbp->aiocb.aio_fildes == fildes
? runp : NULL);
}
/* The thread handler. */
static void *handle_fildes_io (void *arg);
/* User optimization. */
void
__aio_init (const struct aioinit *init)
{
/* Get the mutex. */
pthread_mutex_lock (&__aio_requests_mutex);
/* Only allow writing new values if the table is not yet allocated. */
if (pool == NULL)
{
optim.aio_threads = init->aio_threads < 1 ? 1 : init->aio_threads;
optim.aio_num = (init->aio_num < ENTRIES_PER_ROW
? ENTRIES_PER_ROW
: init->aio_num & ~ENTRIES_PER_ROW);
}
/* Release the mutex. */
pthread_mutex_unlock (&__aio_requests_mutex);
}
weak_alias (__aio_init, aio_init)
/* The main function of the async I/O handling. It enqueues requests
and if necessary starts and handles threads. */
struct requestlist *
internal_function
__aio_enqueue_request (aiocb_union *aiocbp, int operation)
{
int result = 0;
int policy, prio;
struct sched_param param;
struct requestlist *last, *runp, *newp;
int running = no;
if (aiocbp->aiocb.aio_reqprio < 0
|| aiocbp->aiocb.aio_reqprio > AIO_PRIO_DELTA_MAX)
{
/* Invalid priority value. */
__set_errno (EINVAL);
aiocbp->aiocb.__error_code = EINVAL;
aiocbp->aiocb.__return_value = -1;
return NULL;
}
/* Compute priority for this request. */
pthread_getschedparam (pthread_self (), &policy, &param);
prio = param.sched_priority - aiocbp->aiocb.aio_reqprio;
/* Get the mutex. */
pthread_mutex_lock (&__aio_requests_mutex);
last = NULL;
runp = requests;
/* First look whether the current file descriptor is currently
worked with. */
while (runp != NULL
&& runp->aiocbp->aiocb.aio_fildes < aiocbp->aiocb.aio_fildes)
{
last = runp;
runp = runp->next_fd;
}
/* Get a new element for the waiting list. */
newp = get_elem ();
if (newp == NULL)
{
pthread_mutex_unlock (&__aio_requests_mutex);
__set_errno (EAGAIN);
return NULL;
}
newp->aiocbp = aiocbp;
newp->caller_pid = (aiocbp->aiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL
? getpid () : 0);
newp->waiting = NULL;
aiocbp->aiocb.__abs_prio = prio;
aiocbp->aiocb.__policy = policy;
aiocbp->aiocb.aio_lio_opcode = operation;
aiocbp->aiocb.__error_code = EINPROGRESS;
aiocbp->aiocb.__return_value = 0;
if (runp != NULL
&& runp->aiocbp->aiocb.aio_fildes == aiocbp->aiocb.aio_fildes)
{
/* The current file descriptor is worked on. It makes no sense
to start another thread since this new thread would fight
with the running thread for the resources. But we also cannot
say that the thread processing this desriptor shall immediately
after finishing the current job process this request if there
are other threads in the running queue which have a higher
priority. */
/* Simply enqueue it after the running one according to the
priority. */
while (runp->next_prio != NULL
&& runp->next_prio->aiocbp->aiocb.__abs_prio >= prio)
runp = runp->next_prio;
newp->next_prio = runp->next_prio;
runp->next_prio = newp;
running = queued;
}
else
{
/* Enqueue this request for a new descriptor. */
if (last == NULL)
{
newp->last_fd = NULL;
newp->next_fd = requests;
if (requests != NULL)
requests->last_fd = newp;
requests = newp;
}
else
{
newp->next_fd = last->next_fd;
newp->last_fd = last;
last->next_fd = newp;
if (newp->next_fd != NULL)
newp->next_fd->last_fd = newp;
}
newp->next_prio = NULL;
}
if (running == no)
{
/* We try to create a new thread for this file descriptor. The
function which gets called will handle all available requests
for this descriptor and when all are processed it will
terminate.
If no new thread can be created or if the specified limit of
threads for AIO is reached we queue the request. */
/* See if we can create a thread. */
if (nthreads < optim.aio_threads)
{
pthread_t thid;
pthread_attr_t attr;
/* Make sure the thread is created detached. */
pthread_attr_init (&attr);
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
/* Now try to start a thread. */
if (pthread_create (&thid, &attr, handle_fildes_io, newp) == 0)
{
/* We managed to enqueue the request. All errors which can
happen now can be recognized by calls to `aio_return' and
`aio_error'. */
running = allocated;
++nthreads;
}
else if (nthreads == 0)
/* We cannot create a thread in the moment and there is
also no thread running. This is a problem. `errno' is
set to EAGAIN if this is only a temporary problem. */
result = -1;
}
}
/* Enqueue the request in the run queue if it is not yet running. */
if (running < yes && result == 0)
{
if (runlist == NULL || runlist->aiocbp->aiocb.__abs_prio < prio)
{
newp->next_run = runlist;
runlist = newp;
}
else
{
runp = runlist;
while (runp->next_run != NULL
&& runp->next_run->aiocbp->aiocb.__abs_prio >= prio)
runp = runp->next_run;
newp->next_run = runp->next_run;
runp->next_run = newp;
}
}
if (result == 0)
newp->running = running;
else
{
/* Something went wrong. */
__aio_free_request (newp);
newp = NULL;
}
/* Release the mutex. */
pthread_mutex_unlock (&__aio_requests_mutex);
return newp;
}
static void *
handle_fildes_io (void *arg)
{
pthread_t self = pthread_self ();
struct sched_param param;
struct requestlist *runp = (struct requestlist *) arg;
aiocb_union *aiocbp;
int policy;
int fildes;
pthread_getschedparam (self, &policy, &param);
do
{
/* Update our variables. */
aiocbp = runp->aiocbp;
fildes = aiocbp->aiocb.aio_fildes;
/* Change the priority to the requested value (if necessary). */
if (aiocbp->aiocb.__abs_prio != param.sched_priority
|| aiocbp->aiocb.__policy != policy)
{
param.sched_priority = aiocbp->aiocb.__abs_prio;
policy = aiocbp->aiocb.__policy;
pthread_setschedparam (self, policy, &param);
}
/* Process request pointed to by RUNP. We must not be disturbed
by signals. */
if ((aiocbp->aiocb.aio_lio_opcode & 127) == LIO_READ)
{
if (aiocbp->aiocb.aio_lio_opcode & 128)
aiocbp->aiocb.__return_value =
TEMP_FAILURE_RETRY (__pread64 (fildes,
(void *) aiocbp->aiocb64.aio_buf,
aiocbp->aiocb64.aio_nbytes,
aiocbp->aiocb64.aio_offset));
else
aiocbp->aiocb.__return_value =
TEMP_FAILURE_RETRY (pread (fildes,
(void *) aiocbp->aiocb.aio_buf,
aiocbp->aiocb.aio_nbytes,
aiocbp->aiocb.aio_offset));
if (aiocbp->aiocb.__return_value == -1 && errno == ESPIPE)
/* The Linux kernel is different from others. It returns
ESPIPE if using pread on a socket. Other platforms
simply ignore the offset parameter and behave like
read. */
aiocbp->aiocb.__return_value =
TEMP_FAILURE_RETRY (read (fildes,
(void *) aiocbp->aiocb64.aio_buf,
aiocbp->aiocb64.aio_nbytes));
}
else if ((aiocbp->aiocb.aio_lio_opcode & 127) == LIO_WRITE)
{
if (aiocbp->aiocb.aio_lio_opcode & 128)
aiocbp->aiocb.__return_value =
TEMP_FAILURE_RETRY (__pwrite64 (fildes,
(const void *) aiocbp->aiocb64.aio_buf,
aiocbp->aiocb64.aio_nbytes,
aiocbp->aiocb64.aio_offset));
else
aiocbp->aiocb.__return_value =
TEMP_FAILURE_RETRY (pwrite (fildes,
(const void *) aiocbp->aiocb.aio_buf,
aiocbp->aiocb.aio_nbytes,
aiocbp->aiocb.aio_offset));
if (aiocbp->aiocb.__return_value == -1 && errno == ESPIPE)
/* The Linux kernel is different from others. It returns
ESPIPE if using pwrite on a socket. Other platforms
simply ignore the offset parameter and behave like
write. */
aiocbp->aiocb.__return_value =
TEMP_FAILURE_RETRY (write (fildes,
(void *) aiocbp->aiocb64.aio_buf,
aiocbp->aiocb64.aio_nbytes));
}
else if (aiocbp->aiocb.aio_lio_opcode == LIO_DSYNC)
aiocbp->aiocb.__return_value = TEMP_FAILURE_RETRY (fdatasync (fildes));
else if (aiocbp->aiocb.aio_lio_opcode == LIO_SYNC)
aiocbp->aiocb.__return_value = TEMP_FAILURE_RETRY (fsync (fildes));
else
{
/* This is an invalid opcode. */
aiocbp->aiocb.__return_value = -1;
__set_errno (EINVAL);
}
/* Get the mutex. */
pthread_mutex_lock (&__aio_requests_mutex);
if (aiocbp->aiocb.__return_value == -1)
aiocbp->aiocb.__error_code = errno;
else
aiocbp->aiocb.__error_code = 0;
/* Send the signal to notify about finished processing of the
request. */
__aio_notify (runp);
/* Now dequeue the current request. */
if (runp->next_prio == NULL)
{
/* No outstanding request for this descriptor. Remove this
descriptor from the list. */
if (runp->next_fd != NULL)
runp->next_fd->last_fd = runp->last_fd;
if (runp->last_fd != NULL)
runp->last_fd->next_fd = runp->next_fd;
else
requests = runp->next_fd;
}
else
{
runp->next_prio->last_fd = runp->last_fd;
runp->next_prio->next_fd = runp->next_fd;
runp->next_prio->running = yes;
if (runp->next_fd != NULL)
runp->next_fd->last_fd = runp->next_prio;
if (runp->last_fd != NULL)
runp->last_fd->next_fd = runp->next_prio;
else
requests = runp->next_prio;
}
/* Free the old element. */
__aio_free_request (runp);
runp = runlist;
if (runp != NULL)
{
/* We must not run requests which are not marked `running'. */
if (runp->running == yes)
runlist = runp->next_run;
else
{
struct requestlist *old;
do
{
old = runp;
runp = runp->next_run;
}
while (runp != NULL && runp->running != yes);
if (runp != NULL)
old->next_run = runp->next_run;
}
}
/* If no request to work on we will stop the thread. */
if (runp == NULL)
--nthreads;
else
runp->running = allocated;
/* Release the mutex. */
pthread_mutex_unlock (&__aio_requests_mutex);
}
while (runp != NULL);
pthread_exit (NULL);
}
/* Free allocated resources. */
static void
__attribute__ ((unused))
free_res (void)
{
size_t row;
/* The first block of rows as specified in OPTIM is allocated in
one chunk. */
free (pool[0]);
for (row = optim.aio_num / ENTRIES_PER_ROW; row < pool_tab_size; ++row)
free (pool[row]);
free (pool);
}
text_set_element (__libc_subfreeres, free_res);