glibc/elf/sprof.c

1277 lines
34 KiB
C

/* Read and display shared object profiling data.
Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <argp.h>
#include <dlfcn.h>
#include <elf.h>
#include <error.h>
#include <fcntl.h>
#include <inttypes.h>
#include <libintl.h>
#include <locale.h>
#include <obstack.h>
#include <search.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <ldsodefs.h>
#include <sys/gmon.h>
#include <sys/gmon_out.h>
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/stat.h>
/* Get libc version number. */
#include "../version.h"
#define PACKAGE _libc_intl_domainname
#include <endian.h>
#if BYTE_ORDER == BIG_ENDIAN
#define byteorder ELFDATA2MSB
#define byteorder_name "big-endian"
#elif BYTE_ORDER == LITTLE_ENDIAN
#define byteorder ELFDATA2LSB
#define byteorder_name "little-endian"
#else
#error "Unknown BYTE_ORDER " BYTE_ORDER
#define byteorder ELFDATANONE
#endif
extern int __profile_frequency (void);
/* Name and version of program. */
static void print_version (FILE *stream, struct argp_state *state);
void (*argp_program_version_hook) (FILE *, struct argp_state *) = print_version;
#define OPT_TEST 1
/* Definitions of arguments for argp functions. */
static const struct argp_option options[] =
{
{ NULL, 0, NULL, 0, N_("Output selection:") },
{ "call-pairs", 'c', NULL, 0,
N_("print list of count paths and their number of use") },
{ "flat-profile", 'p', NULL, 0,
N_("generate flat profile with counts and ticks") },
{ "graph", 'q', NULL, 0, N_("generate call graph") },
{ "test", OPT_TEST, NULL, OPTION_HIDDEN, NULL },
{ NULL, 0, NULL, 0, NULL }
};
/* Short description of program. */
static const char doc[] = N_("Read and display shared object profiling data");
/* Strings for arguments in help texts. */
static const char args_doc[] = N_("SHOBJ [PROFDATA]");
/* Prototype for option handler. */
static error_t parse_opt (int key, char *arg, struct argp_state *state);
/* Data structure to communicate with argp functions. */
static struct argp argp =
{
options, parse_opt, args_doc, doc, NULL, NULL
};
/* Operation modes. */
static enum
{
NONE = 0,
FLAT_MODE = 1 << 0,
CALL_GRAPH_MODE = 1 << 1,
CALL_PAIRS = 1 << 2,
DEFAULT_MODE = FLAT_MODE | CALL_GRAPH_MODE
} mode;
/* If nonzero the total number of invocations of a function is emitted. */
int count_total;
/* Nozero for testing. */
int do_test;
/* Strcuture describing calls. */
struct here_fromstruct
{
struct here_cg_arc_record volatile *here;
uint16_t link;
};
/* We define a special type to address the elements of the arc table.
This is basically the `gmon_cg_arc_record' format but it includes
the room for the tag and it uses real types. */
struct here_cg_arc_record
{
uintptr_t from_pc;
uintptr_t self_pc;
uint32_t count;
} __attribute__ ((packed));
struct known_symbol;
struct arc_list
{
size_t idx;
uintmax_t count;
struct arc_list *next;
};
static struct obstack ob_list;
struct known_symbol
{
const char *name;
uintptr_t addr;
size_t size;
uintmax_t ticks;
uintmax_t calls;
struct arc_list *froms;
struct arc_list *tos;
};
struct shobj
{
const char *name; /* User-provided name. */
struct link_map *map;
const char *dynstrtab; /* Dynamic string table of shared object. */
const char *soname; /* Soname of shared object. */
uintptr_t lowpc;
uintptr_t highpc;
unsigned long int kcountsize;
size_t expected_size; /* Expected size of profiling file. */
size_t tossize;
size_t fromssize;
size_t fromlimit;
unsigned int hashfraction;
int s_scale;
void *symbol_map;
size_t symbol_mapsize;
const ElfW(Sym) *symtab;
size_t symtab_size;
const char *strtab;
struct obstack ob_str;
struct obstack ob_sym;
};
struct profdata
{
void *addr;
off_t size;
char *hist;
struct gmon_hist_hdr *hist_hdr;
uint16_t *kcount;
uint32_t narcs; /* Number of arcs in toset. */
struct here_cg_arc_record *data;
uint16_t *tos;
struct here_fromstruct *froms;
};
/* Search tree for symbols. */
void *symroot;
static struct known_symbol **sortsym;
static size_t symidx;
static uintmax_t total_ticks;
/* Prototypes for local functions. */
static struct shobj *load_shobj (const char *name);
static void unload_shobj (struct shobj *shobj);
static struct profdata *load_profdata (const char *name, struct shobj *shobj);
static void unload_profdata (struct profdata *profdata);
static void count_total_ticks (struct shobj *shobj, struct profdata *profdata);
static void count_calls (struct shobj *shobj, struct profdata *profdata);
static void read_symbols (struct shobj *shobj);
static void add_arcs (struct profdata *profdata);
static void generate_flat_profile (struct profdata *profdata);
static void generate_call_graph (struct profdata *profdata);
static void generate_call_pair_list (struct profdata *profdata);
int
main (int argc, char *argv[])
{
const char *shobj;
const char *profdata;
struct shobj *shobj_handle;
struct profdata *profdata_handle;
int remaining;
setlocale (LC_ALL, "");
/* Initialize the message catalog. */
textdomain (_libc_intl_domainname);
/* Parse and process arguments. */
argp_parse (&argp, argc, argv, 0, &remaining, NULL);
if (argc - remaining == 0 || argc - remaining > 2)
{
/* We need exactly two non-option parameter. */
argp_help (&argp, stdout, ARGP_HELP_SEE | ARGP_HELP_EXIT_ERR,
program_invocation_short_name);
exit (1);
}
/* Get parameters. */
shobj = argv[remaining];
if (argc - remaining == 2)
profdata = argv[remaining + 1];
else
/* No filename for the profiling data given. We will determine it
from the soname of the shobj, later. */
profdata = NULL;
/* First see whether we can load the shared object. */
shobj_handle = load_shobj (shobj);
if (shobj_handle == NULL)
exit (1);
/* We can now determine the filename for the profiling data, if
nececessary. */
if (profdata == NULL)
{
char *newp;
if (shobj_handle->soname == NULL)
{
unload_shobj (shobj_handle);
error (EXIT_FAILURE, 0, _("\
no filename for profiling data given and shared object `%s' has no soname"),
shobj);
}
newp = (char *) alloca (strlen (shobj_handle->soname)
+ sizeof ".profile");
stpcpy (stpcpy (newp, shobj_handle->soname), ".profile");
profdata = newp;
}
/* Now see whether the profiling data file matches the given object. */
profdata_handle = load_profdata (profdata, shobj_handle);
if (profdata_handle == NULL)
{
unload_shobj (shobj_handle);
exit (1);
}
read_symbols (shobj_handle);
/* Count the ticks. */
count_total_ticks (shobj_handle, profdata_handle);
/* Count the calls. */
count_calls (shobj_handle, profdata_handle);
/* Add the arc information. */
add_arcs (profdata_handle);
/* If no mode is specified fall back to the default mode. */
if (mode == NONE)
mode = DEFAULT_MODE;
/* Do some work. */
if (mode & FLAT_MODE)
generate_flat_profile (profdata_handle);
if (mode & CALL_GRAPH_MODE)
generate_call_graph (profdata_handle);
if (mode & CALL_PAIRS)
generate_call_pair_list (profdata_handle);
/* Free the resources. */
unload_shobj (shobj_handle);
unload_profdata (profdata_handle);
return 0;
}
/* Handle program arguments. */
static error_t
parse_opt (int key, char *arg, struct argp_state *state)
{
switch (key)
{
case 'c':
mode |= CALL_PAIRS;
break;
case 'p':
mode |= FLAT_MODE;
break;
case 'q':
mode |= CALL_GRAPH_MODE;
break;
case OPT_TEST:
do_test = 1;
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
/* Print the version information. */
static void
print_version (FILE *stream, struct argp_state *state)
{
fprintf (stream, "sprof (GNU %s) %s\n", PACKAGE, VERSION);
fprintf (stream, gettext ("\
Copyright (C) %s Free Software Foundation, Inc.\n\
This is free software; see the source for copying conditions. There is NO\n\
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n\
"),
"1999");
fprintf (stream, gettext ("Written by %s.\n"), "Ulrich Drepper");
}
/* Note that we must not use `dlopen' etc. The shobj object must not
be loaded for use. */
static struct shobj *
load_shobj (const char *name)
{
struct link_map *map = NULL;
struct shobj *result;
ElfW(Addr) mapstart = ~((ElfW(Addr)) 0);
ElfW(Addr) mapend = 0;
const ElfW(Phdr) *ph;
size_t textsize;
unsigned int log_hashfraction;
ElfW(Ehdr) *ehdr;
int fd;
ElfW(Shdr) *shdr;
void *ptr;
size_t pagesize = getpagesize ();
const char *shstrtab;
int idx;
ElfW(Shdr) *symtab_entry;
/* Since we use dlopen() we must be prepared to work around the sometimes
strange lookup rules for the shared objects. If we have a file foo.so
in the current directory and the user specfies foo.so on the command
line (without specifying a directory) we should load the file in the
current directory even if a normal dlopen() call would read the other
file. We do this by adding a directory portion to the name. */
if (strchr (name, '/') == NULL)
{
char *load_name = (char *) alloca (strlen (name) + 3);
stpcpy (stpcpy (load_name, "./"), name);
map = (struct link_map *) dlopen (load_name, RTLD_LAZY);
}
if (map == NULL)
{
map = (struct link_map *) dlopen (name, RTLD_LAZY);
if (map == NULL)
{
error (0, errno, _("failed to load shared object `%s'"), name);
return NULL;
}
}
/* Prepare the result. */
result = (struct shobj *) calloc (1, sizeof (struct shobj));
if (result == NULL)
{
error (0, errno, _("cannot create internal descriptors"));
dlclose (map);
return NULL;
}
result->name = name;
result->map = map;
/* Compute the size of the sections which contain program code.
This must match the code in dl-profile.c (_dl_start_profile). */
for (ph = map->l_phdr; ph < &map->l_phdr[map->l_phnum]; ++ph)
if (ph->p_type == PT_LOAD && (ph->p_flags & PF_X))
{
ElfW(Addr) start = (ph->p_vaddr & ~(pagesize - 1));
ElfW(Addr) end = ((ph->p_vaddr + ph->p_memsz + pagesize - 1)
& ~(pagesize - 1));
if (start < mapstart)
mapstart = start;
if (end > mapend)
mapend = end;
}
result->lowpc = ROUNDDOWN ((uintptr_t) (mapstart + map->l_addr),
HISTFRACTION * sizeof (HISTCOUNTER));
result->highpc = ROUNDUP ((uintptr_t) (mapend + map->l_addr),
HISTFRACTION * sizeof (HISTCOUNTER));
if (do_test)
printf ("load addr: %0#*" PRIxPTR "\n"
"lower bound PC: %0#*" PRIxPTR "\n"
"upper bound PC: %0#*" PRIxPTR "\n",
__ELF_NATIVE_CLASS == 32 ? 10 : 18, map->l_addr,
__ELF_NATIVE_CLASS == 32 ? 10 : 18, result->lowpc,
__ELF_NATIVE_CLASS == 32 ? 10 : 18, result->highpc);
textsize = result->highpc - result->lowpc;
result->kcountsize = textsize / HISTFRACTION;
result->hashfraction = HASHFRACTION;
if ((HASHFRACTION & (HASHFRACTION - 1)) == 0)
/* If HASHFRACTION is a power of two, mcount can use shifting
instead of integer division. Precompute shift amount. */
log_hashfraction = __builtin_ffs (result->hashfraction
* sizeof (struct here_fromstruct)) - 1;
else
log_hashfraction = -1;
if (do_test)
printf ("hashfraction = %d\ndivider = %Zu\n",
result->hashfraction,
result->hashfraction * sizeof (struct here_fromstruct));
result->tossize = textsize / HASHFRACTION;
result->fromlimit = textsize * ARCDENSITY / 100;
if (result->fromlimit < MINARCS)
result->fromlimit = MINARCS;
if (result->fromlimit > MAXARCS)
result->fromlimit = MAXARCS;
result->fromssize = result->fromlimit * sizeof (struct here_fromstruct);
result->expected_size = (sizeof (struct gmon_hdr)
+ 4 + sizeof (struct gmon_hist_hdr)
+ result->kcountsize
+ 4 + 4
+ (result->fromssize
* sizeof (struct here_cg_arc_record)));
if (do_test)
printf ("expected size: %Zd\n", result->expected_size);
#define SCALE_1_TO_1 0x10000L
if (result->kcountsize < result->highpc - result->lowpc)
{
size_t range = result->highpc - result->lowpc;
size_t quot = range / result->kcountsize;
if (quot >= SCALE_1_TO_1)
result->s_scale = 1;
else if (quot >= SCALE_1_TO_1 / 256)
result->s_scale = SCALE_1_TO_1 / quot;
else if (range > ULONG_MAX / 256)
result->s_scale = ((SCALE_1_TO_1 * 256)
/ (range / (result->kcountsize / 256)));
else
result->s_scale = ((SCALE_1_TO_1 * 256)
/ ((range * 256) / result->kcountsize));
}
else
result->s_scale = SCALE_1_TO_1;
if (do_test)
printf ("s_scale: %d\n", result->s_scale);
/* Determine the dynamic string table. */
if (map->l_info[DT_STRTAB] == NULL)
result->dynstrtab = NULL;
else
result->dynstrtab = (const char *) (map->l_addr
+ map->l_info[DT_STRTAB]->d_un.d_ptr);
if (do_test)
printf ("string table: %p\n", result->dynstrtab);
/* Determine the soname. */
if (map->l_info[DT_SONAME] == NULL)
result->soname = NULL;
else
result->soname = result->dynstrtab + map->l_info[DT_SONAME]->d_un.d_val;
if (do_test)
printf ("soname: %s\n", result->soname);
/* Now we have to load the symbol table.
First load the section header table. */
ehdr = (ElfW(Ehdr) *) map->l_addr;
/* Make sure we are on the right party. */
if (ehdr->e_shentsize != sizeof (ElfW(Shdr)))
abort ();
/* And we need the shared object file descriptor again. */
fd = open (map->l_name, O_RDONLY);
if (fd == -1)
/* Dooh, this really shouldn't happen. We know the file is available. */
error (EXIT_FAILURE, errno, _("Reopening shared object `%s' failed"),
map->l_name);
/* Now map the section header. */
ptr = mmap (NULL, (ehdr->e_shnum * sizeof (ElfW(Shdr))
+ (ehdr->e_shoff & (pagesize - 1))), PROT_READ,
MAP_SHARED|MAP_FILE, fd, ehdr->e_shoff & ~(pagesize - 1));
if (ptr == MAP_FAILED)
error (EXIT_FAILURE, errno, _("mapping of section headers failed"));
shdr = (ElfW(Shdr) *) ((char *) ptr + (ehdr->e_shoff & (pagesize - 1)));
/* Get the section header string table. */
ptr = mmap (NULL, (shdr[ehdr->e_shstrndx].sh_size
+ (shdr[ehdr->e_shstrndx].sh_offset & (pagesize - 1))),
PROT_READ, MAP_SHARED|MAP_FILE, fd,
shdr[ehdr->e_shstrndx].sh_offset & ~(pagesize - 1));
if (ptr == MAP_FAILED)
error (EXIT_FAILURE, errno,
_("mapping of section header string table failed"));
shstrtab = ((const char *) ptr
+ (shdr[ehdr->e_shstrndx].sh_offset & (pagesize - 1)));
/* Search for the ".symtab" section. */
symtab_entry = NULL;
for (idx = 0; idx < ehdr->e_shnum; ++idx)
if (shdr[idx].sh_type == SHT_SYMTAB
&& strcmp (shstrtab + shdr[idx].sh_name, ".symtab") == 0)
{
symtab_entry = &shdr[idx];
break;
}
/* We don't need the section header string table anymore. */
munmap (ptr, (shdr[ehdr->e_shstrndx].sh_size
+ (shdr[ehdr->e_shstrndx].sh_offset & (pagesize - 1))));
if (symtab_entry == NULL)
{
fprintf (stderr, _("\
*** The file `%s' is stripped: no detailed analysis possible\n"),
name);
result->symtab = NULL;
result->strtab = NULL;
}
else
{
ElfW(Off) min_offset, max_offset;
ElfW(Shdr) *strtab_entry;
strtab_entry = &shdr[symtab_entry->sh_link];
/* Find the minimum and maximum offsets that include both the symbol
table and the string table. */
if (symtab_entry->sh_offset < strtab_entry->sh_offset)
{
min_offset = symtab_entry->sh_offset & ~(pagesize - 1);
max_offset = strtab_entry->sh_offset + strtab_entry->sh_size;
}
else
{
min_offset = strtab_entry->sh_offset & ~(pagesize - 1);
max_offset = symtab_entry->sh_offset + symtab_entry->sh_size;
}
result->symbol_map = mmap (NULL, max_offset - min_offset,
PROT_READ, MAP_SHARED|MAP_FILE, fd,
min_offset);
if (result->symbol_map == NULL)
error (EXIT_FAILURE, errno, _("failed to load symbol data"));
result->symtab
= (const ElfW(Sym) *) ((const char *) result->symbol_map
+ (symtab_entry->sh_offset - min_offset));
result->symtab_size = symtab_entry->sh_size;
result->strtab = ((const char *) result->symbol_map
+ (strtab_entry->sh_offset - min_offset));
result->symbol_mapsize = max_offset - min_offset;
}
/* Now we also don't need the section header table anymore. */
munmap ((char *) shdr - (ehdr->e_shoff & (pagesize - 1)),
(ehdr->e_phnum * sizeof (ElfW(Shdr))
+ (ehdr->e_shoff & (pagesize - 1))));
/* Free the descriptor for the shared object. */
close (fd);
return result;
}
static void
unload_shobj (struct shobj *shobj)
{
munmap (shobj->symbol_map, shobj->symbol_mapsize);
dlclose (shobj->map);
}
static struct profdata *
load_profdata (const char *name, struct shobj *shobj)
{
struct profdata *result;
int fd;
struct stat st;
void *addr;
struct gmon_hdr gmon_hdr;
struct gmon_hist_hdr hist_hdr;
uint32_t *narcsp;
size_t fromlimit;
struct here_cg_arc_record *data;
struct here_fromstruct *froms;
uint16_t *tos;
size_t fromidx;
size_t idx;
fd = open (name, O_RDONLY);
if (fd == -1)
{
char *ext_name;
if (errno != ENOENT || strchr (name, '/') != NULL)
/* The file exists but we are not allowed to read it or the
file does not exist and the name includes a path
specification.. */
return NULL;
/* A file with the given name does not exist in the current
directory, try it in the default location where the profiling
files are created. */
ext_name = (char *) alloca (strlen (name) + sizeof "/var/tmp/");
stpcpy (stpcpy (ext_name, "/var/tmp/"), name);
name = ext_name;
fd = open (ext_name, O_RDONLY);
if (fd == -1)
{
/* Even this file does not exist. */
error (0, errno, _("cannot load profiling data"));
return NULL;
}
}
/* We have found the file, now make sure it is the right one for the
data file. */
if (fstat (fd, &st) < 0)
{
error (0, errno, _("while stat'ing profiling data file"));
close (fd);
return NULL;
}
if (st.st_size != shobj->expected_size)
{
error (0, 0,
_("profiling data file `%s' does not match shared object `%s'"),
name, shobj->name);
close (fd);
return NULL;
}
/* The data file is most probably the right one for our shared
object. Map it now. */
addr = mmap (NULL, st.st_size, PROT_READ, MAP_SHARED|MAP_FILE, fd, 0);
if (addr == MAP_FAILED)
{
error (0, errno, _("failed to mmap the profiling data file"));
close (fd);
return NULL;
}
/* We don't need the file desriptor anymore. */
if (close (fd) < 0)
{
error (0, errno, _("error while closing the profiling data file"));
munmap (addr, st.st_size);
return NULL;
}
/* Prepare the result. */
result = (struct profdata *) calloc (1, sizeof (struct profdata));
if (result == NULL)
{
error (0, errno, _("cannot create internal descriptor"));
munmap (addr, st.st_size);
return NULL;
}
/* Store the address and size so that we can later free the resources. */
result->addr = addr;
result->size = st.st_size;
/* Pointer to data after the header. */
result->hist = (char *) ((struct gmon_hdr *) addr + 1);
result->hist_hdr = (struct gmon_hist_hdr *) ((char *) result->hist
+ sizeof (uint32_t));
result->kcount = (uint16_t *) ((char *) result->hist + sizeof (uint32_t)
+ sizeof (struct gmon_hist_hdr));
/* Compute pointer to array of the arc information. */
narcsp = (uint32_t *) ((char *) result->kcount + shobj->kcountsize
+ sizeof (uint32_t));
result->narcs = *narcsp;
result->data = (struct here_cg_arc_record *) ((char *) narcsp
+ sizeof (uint32_t));
/* Create the gmon_hdr we expect or write. */
memset (&gmon_hdr, '\0', sizeof (struct gmon_hdr));
memcpy (&gmon_hdr.cookie[0], GMON_MAGIC, sizeof (gmon_hdr.cookie));
*(int32_t *) gmon_hdr.version = GMON_SHOBJ_VERSION;
/* Create the hist_hdr we expect or write. */
*(char **) hist_hdr.low_pc = (char *) shobj->lowpc - shobj->map->l_addr;
*(char **) hist_hdr.high_pc = (char *) shobj->highpc - shobj->map->l_addr;
if (do_test)
printf ("low_pc = %p\nhigh_pc = %p\n",
*(char **) hist_hdr.low_pc, *(char **) hist_hdr.high_pc);
*(int32_t *) hist_hdr.hist_size = shobj->kcountsize / sizeof (HISTCOUNTER);
*(int32_t *) hist_hdr.prof_rate = __profile_frequency ();
strncpy (hist_hdr.dimen, "seconds", sizeof (hist_hdr.dimen));
hist_hdr.dimen_abbrev = 's';
/* Test whether the header of the profiling data is ok. */
if (memcmp (addr, &gmon_hdr, sizeof (struct gmon_hdr)) != 0
|| *(uint32_t *) result->hist != GMON_TAG_TIME_HIST
|| memcmp (result->hist_hdr, &hist_hdr,
sizeof (struct gmon_hist_hdr)) != 0
|| narcsp[-1] != GMON_TAG_CG_ARC)
{
free (result);
error (0, 0, _("`%s' is no correct profile data file for `%s'"),
name, shobj->name);
munmap (addr, st.st_size);
return NULL;
}
/* We are pretty sure now that this is a correct input file. Set up
the remaining information in the result structure and return. */
result->tos = (uint16_t *) calloc (shobj->tossize + shobj->fromssize, 1);
if (result->tos == NULL)
{
error (0, errno, _("cannot create internal descriptor"));
munmap (addr, st.st_size);
free (result);
return NULL;
}
result->froms = (struct here_fromstruct *) ((char *) result->tos
+ shobj->tossize);
fromidx = 0;
/* Now we have to process all the arc count entries. */
fromlimit = shobj->fromlimit;
data = result->data;
froms = result->froms;
tos = result->tos;
for (idx = 0; idx < MIN (*narcsp, fromlimit); ++idx)
{
size_t to_index;
size_t newfromidx;
to_index = (data[idx].self_pc / (shobj->hashfraction * sizeof (*tos)));
newfromidx = fromidx++;
froms[newfromidx].here = &data[idx];
froms[newfromidx].link = tos[to_index];
tos[to_index] = newfromidx;
}
return result;
}
static void
unload_profdata (struct profdata *profdata)
{
free (profdata->tos);
munmap (profdata->addr, profdata->size);
free (profdata);
}
static void
count_total_ticks (struct shobj *shobj, struct profdata *profdata)
{
volatile uint16_t *kcount = profdata->kcount;
size_t maxkidx = shobj->kcountsize;
size_t factor = 2 * (65536 / shobj->s_scale);
size_t kidx = 0;
size_t sidx = 0;
while (sidx < symidx)
{
uintptr_t start = sortsym[sidx]->addr;
uintptr_t end = start + sortsym[sidx]->size;
while (kidx < maxkidx && factor * kidx < start)
++kidx;
if (kidx == maxkidx)
break;
while (kidx < maxkidx && factor * kidx < end)
sortsym[sidx]->ticks += kcount[kidx++];
if (kidx == maxkidx)
break;
total_ticks += sortsym[sidx++]->ticks;
}
}
static size_t
find_symbol (uintptr_t addr)
{
size_t sidx = 0;
while (sidx < symidx)
{
uintptr_t start = sortsym[sidx]->addr;
uintptr_t end = start + sortsym[sidx]->size;
if (addr >= start && addr < end)
return sidx;
if (addr < start)
break;
++sidx;
}
return (size_t) -1l;
}
static void
count_calls (struct shobj *shobj, struct profdata *profdata)
{
struct here_cg_arc_record *data = profdata->data;
uint32_t narcs = profdata->narcs;
uint32_t cnt;
for (cnt = 0; cnt < narcs; ++cnt)
{
uintptr_t here = data[cnt].self_pc;
size_t symbol_idx;
/* Find the symbol for this address. */
symbol_idx = find_symbol (here);
if (symbol_idx != (size_t) -1l)
sortsym[symbol_idx]->calls += data[cnt].count;
}
}
static int
symorder (const void *o1, const void *o2)
{
const struct known_symbol *p1 = (const struct known_symbol *) o1;
const struct known_symbol *p2 = (const struct known_symbol *) o2;
return p1->addr - p2->addr;
}
static void
printsym (const void *node, VISIT value, int level)
{
if (value == leaf || value == postorder)
sortsym[symidx++] = *(struct known_symbol **) node;
}
static void
read_symbols (struct shobj *shobj)
{
void *load_addr = (void *) shobj->map->l_addr;
int n = 0;
/* Initialize the obstacks. */
#define obstack_chunk_alloc malloc
#define obstack_chunk_free free
obstack_init (&shobj->ob_str);
obstack_init (&shobj->ob_sym);
obstack_init (&ob_list);
/* Process the symbols. */
if (shobj->symtab)
{
const ElfW(Sym) *sym = shobj->symtab;
const ElfW(Sym) *sym_end
= (const ElfW(Sym) *) ((const char *) sym + shobj->symtab_size);
for (; sym < sym_end; sym++)
if ((ELFW(ST_TYPE) (sym->st_info) == STT_FUNC
|| ELFW(ST_TYPE) (sym->st_info) == STT_NOTYPE)
&& sym->st_size != 0)
{
struct known_symbol **existp;
struct known_symbol *newsym
= (struct known_symbol *) obstack_alloc (&shobj->ob_sym,
sizeof (*newsym));
if (newsym == NULL)
error (EXIT_FAILURE, errno, _("cannot allocate symbol data"));
newsym->name = &shobj->strtab[sym->st_name];
newsym->addr = sym->st_value;
newsym->size = sym->st_size;
newsym->ticks = 0;
newsym->calls = 0;
existp = tfind (newsym, &symroot, symorder);
if (existp == NULL)
{
/* New function. */
tsearch (newsym, &symroot, symorder);
++n;
}
else
{
/* The function is already defined. See whether we have
a better name here. */
if ((*existp)->name[0] == '_' && newsym->name[0] != '_')
*existp = newsym;
else
/* We don't need the allocated memory. */
obstack_free (&shobj->ob_sym, newsym);
}
}
}
else
{
/* Blarg, the binary is stripped. We have to rely on the
information contained in the dynamic section of the object. */
const ElfW(Sym) *symtab = (load_addr
+ shobj->map->l_info[DT_SYMTAB]->d_un.d_ptr);
const char *strtab = (load_addr
+ shobj->map->l_info[DT_STRTAB]->d_un.d_ptr);
/* We assume that the string table follows the symbol table,
because there is no way in ELF to know the size of the
dynamic symbol table!! */
while ((void *) symtab < (void *) strtab)
{
if ((ELFW(ST_TYPE)(symtab->st_info) == STT_FUNC
|| ELFW(ST_TYPE)(symtab->st_info) == STT_NOTYPE)
&& symtab->st_size != 0)
{
struct known_symbol *newsym;
struct known_symbol **existp;
newsym =
(struct known_symbol *) obstack_alloc (&shobj->ob_sym,
sizeof (*newsym));
if (newsym == NULL)
error (EXIT_FAILURE, errno, _("cannot allocate symbol data"));
newsym->name = &strtab[symtab->st_name];
newsym->addr = symtab->st_value;
newsym->size = symtab->st_size;
newsym->ticks = 0;
newsym->froms = NULL;
newsym->tos = NULL;
existp = tfind (newsym, &symroot, symorder);
if (existp == NULL)
{
/* New function. */
tsearch (newsym, &symroot, symorder);
++n;
}
else
{
/* The function is already defined. See whether we have
a better name here. */
if ((*existp)->name[0] == '_' && newsym->name[0] != '_')
*existp = newsym;
else
/* We don't need the allocated memory. */
obstack_free (&shobj->ob_sym, newsym);
}
}
}
++symtab;
}
sortsym = malloc (n * sizeof (struct known_symbol *));
if (sortsym == NULL)
abort ();
twalk (symroot, printsym);
}
static void
add_arcs (struct profdata *profdata)
{
uint32_t narcs = profdata->narcs;
struct here_cg_arc_record *data = profdata->data;
uint32_t cnt;
for (cnt = 0; cnt < narcs; ++cnt)
{
/* First add the incoming arc. */
size_t sym_idx = find_symbol (data[cnt].self_pc);
if (sym_idx != (size_t) -1l)
{
struct known_symbol *sym = sortsym[sym_idx];
struct arc_list *runp = sym->froms;
while (runp != NULL
&& ((data[cnt].from_pc == 0 && runp->idx != (size_t) -1l)
|| (data[cnt].from_pc != 0
&& (runp->idx == (size_t) -1l
|| data[cnt].from_pc < sortsym[runp->idx]->addr
|| (data[cnt].from_pc
>= (sortsym[runp->idx]->addr
+ sortsym[runp->idx]->size))))))
runp = runp->next;
if (runp == NULL)
{
/* We need a new entry. */
struct arc_list *newp = (struct arc_list *)
obstack_alloc (&ob_list, sizeof (struct arc_list));
if (data[cnt].from_pc == 0)
newp->idx = (size_t) -1l;
else
newp->idx = find_symbol (data[cnt].from_pc);
newp->count = data[cnt].count;
newp->next = sym->froms;
sym->froms = newp;
}
else
/* Increment the counter for the found entry. */
runp->count += data[cnt].count;
}
/* Now add it to the appropriate outgoing list. */
sym_idx = find_symbol (data[cnt].from_pc);
if (sym_idx != (size_t) -1l)
{
struct known_symbol *sym = sortsym[sym_idx];
struct arc_list *runp = sym->tos;
while (runp != NULL
&& (runp->idx == (size_t) -1l
|| data[cnt].self_pc < sortsym[runp->idx]->addr
|| data[cnt].self_pc >= (sortsym[runp->idx]->addr
+ sortsym[runp->idx]->size)))
runp = runp->next;
if (runp == NULL)
{
/* We need a new entry. */
struct arc_list *newp = (struct arc_list *)
obstack_alloc (&ob_list, sizeof (struct arc_list));
newp->idx = find_symbol (data[cnt].self_pc);
newp->count = data[cnt].count;
newp->next = sym->tos;
sym->tos = newp;
}
else
/* Increment the counter for the found entry. */
runp->count += data[cnt].count;
}
}
}
static int
countorder (const void *p1, const void *p2)
{
struct known_symbol *s1 = (struct known_symbol *) p1;
struct known_symbol *s2 = (struct known_symbol *) p2;
if (s1->ticks != s2->ticks)
return (int) (s2->ticks - s1->ticks);
if (s1->calls != s2->calls)
return (int) (s2->calls - s1->calls);
return strcmp (s1->name, s2->name);
}
static double tick_unit;
static uintmax_t cumu_ticks;
static void
printflat (const void *node, VISIT value, int level)
{
if (value == leaf || value == postorder)
{
struct known_symbol *s = *(struct known_symbol **) node;
cumu_ticks += s->ticks;
printf ("%6.2f%10.2f%9.2f%9" PRIdMAX "%9.2f %s\n",
total_ticks ? (100.0 * s->ticks) / total_ticks : 0.0,
tick_unit * cumu_ticks,
tick_unit * s->ticks,
s->calls,
s->calls ? (s->ticks * 1000000) * tick_unit / s->calls : 0,
/* FIXME: don't know about called functions. */
s->name);
}
}
/* ARGUSED */
static void
freenoop (void *p)
{
}
static void
generate_flat_profile (struct profdata *profdata)
{
size_t n;
void *data = NULL;
tick_unit = 1.0 / *(uint32_t *) profdata->hist_hdr->prof_rate;
printf ("Flat profile:\n\n"
"Each sample counts as %g %s.\n",
tick_unit, profdata->hist_hdr->dimen);
fputs (" % cumulative self self total\n"
" time seconds seconds calls us/call us/call name\n",
stdout);
for (n = 0; n < symidx; ++n)
if (sortsym[n]->calls != 0 || sortsym[n]->ticks != 0)
tsearch (sortsym[n], &data, countorder);
twalk (data, printflat);
tdestroy (data, freenoop);
}
static void
generate_call_graph (struct profdata *profdata)
{
size_t cnt;
puts ("\nindex % time self children called name\n");
for (cnt = 0; cnt < symidx; ++cnt)
if (sortsym[cnt]->froms != NULL || sortsym[cnt]->tos != NULL)
{
struct arc_list *runp;
size_t n;
/* First print the from-information. */
runp = sortsym[cnt]->froms;
while (runp != NULL)
{
printf (" %8.2f%8.2f%9" PRIdMAX "/%-9" PRIdMAX " %s",
(runp->idx != (size_t) -1l
? sortsym[runp->idx]->ticks * tick_unit : 0.0),
0.0, /* FIXME: what's time for the children, recursive */
runp->count, sortsym[cnt]->calls,
(runp->idx != (size_t) -1l ?
sortsym[runp->idx]->name : "<UNKNOWN>"));
if (runp->idx != (size_t) -1l)
printf (" [%Zd]", runp->idx);
putchar_unlocked ('\n');
runp = runp->next;
}
/* Info abount the function itself. */
n = printf ("[%Zu]", cnt);
printf ("%*s%5.1f%8.2f%8.2f%9" PRIdMAX " %s [%Zd]\n",
(int) (7 - n), " ",
total_ticks ? (100.0 * sortsym[cnt]->ticks) / total_ticks : 0,
sortsym[cnt]->ticks * tick_unit,
0.0, /* FIXME: what's time for the children, recursive */
sortsym[cnt]->calls,
sortsym[cnt]->name, cnt);
/* Info about the functions this function calls. */
runp = sortsym[cnt]->tos;
while (runp != NULL)
{
printf (" %8.2f%8.2f%9" PRIdMAX "/",
(runp->idx != (size_t) -1l
? sortsym[runp->idx]->ticks * tick_unit : 0.0),
0.0, /* FIXME: what's time for the children, recursive */
runp->count);
if (runp->idx != (size_t) -1l)
printf ("%-9" PRIdMAX " %s [%Zd]\n",
sortsym[runp->idx]->calls,
sortsym[runp->idx]->name,
runp->idx);
else
fputs ("??? <UNKNOWN>\n\n", stdout);
runp = runp->next;
}
fputs ("-----------------------------------------------\n", stdout);
}
}
static void
generate_call_pair_list (struct profdata *profdata)
{
size_t cnt;
for (cnt = 0; cnt < symidx; ++cnt)
if (sortsym[cnt]->froms != NULL || sortsym[cnt]->tos != NULL)
{
struct arc_list *runp;
/* First print the incoming arcs. */
runp = sortsym[cnt]->froms;
while (runp != NULL)
{
if (runp->idx == (size_t) -1l)
printf ("\
<UNKNOWN> %-34s %9" PRIdMAX "\n",
sortsym[cnt]->name, runp->count);
runp = runp->next;
}
/* Next the outgoing arcs. */
runp = sortsym[cnt]->tos;
while (runp != NULL)
{
printf ("%-34s %-34s %9" PRIdMAX "\n",
sortsym[cnt]->name,
(runp->idx != (size_t) -1l
? sortsym[runp->idx]->name : "<UNKNOWN>"),
runp->count);
runp = runp->next;
}
}
}