glibc/sysdeps/ia64/fpu/e_sinh.S

1311 lines
38 KiB
ArmAsm

.file "sinh.s"
// Copyright (c) 2000, 2001, Intel Corporation
// All rights reserved.
//
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// WARRANTY DISCLAIMER
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://developer.intel.com/opensource.
//
// History
//==============================================================
// 2/02/00 Initial version
// 4/04/00 Unwind support added
// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 10/12/00 Update to set denormal operand and underflow flags
// 1/22/01 Fixed to set inexact flag for small args.
//
// API
//==============================================================
// double = sinh(double)
// input floating point f8
// output floating point f8
//
// Registers used
//==============================================================
// general registers:
// r32 -> r47
// predicate registers used:
// p6 p7 p8 p9
// floating-point registers used:
// f9 -> f15; f32 -> f45;
// f8 has input, then output
//
// Overview of operation
//==============================================================
// There are four paths
// 1. |x| < 0.25 SINH_BY_POLY
// 2. |x| < 32 SINH_BY_TBL
// 3. |x| < 2^14 SINH_BY_EXP
// 4. |x_ >= 2^14 SINH_HUGE
//
// For double extended we get infinity for x >= 400c b174 ddc0 31ae c0ea
// >= 1.0110001.... x 2^13
// >= 11357.2166
//
// But for double we get infinity for x >= 408633ce8fb9f87e
// >= 1.0110...x 2^9
// >= +7.10476e+002
//
// And for single we get infinity for x >= 42b3a496
// >= 1.0110... 2^6
// >= 89.8215
//
// SAFE: If there is danger of overflow set SAFE to 0
// NOT implemented: if there is danger of underflow, set SAFE to 0
// SAFE for all paths listed below
//
// 1. SINH_BY_POLY
// ===============
// If |x| is less than the tiny threshold, then clear SAFE
// For double, the tiny threshold is -1022 = -0x3fe => -3fe + ffff = fc01
// register-biased, this is fc01
// For single, the tiny threshold is -126 = -7e => -7e + ffff = ff81
// If |x| < tiny threshold, set SAFE = 0
//
// 2. SINH_BY_TBL
// =============
// SAFE: SAFE is always 1 for TBL;
//
// 3. SINH_BY_EXP
// ==============
// There is a danger of double-extended overflow if N-1 > 16382 = 0x3ffe
// r34 has N-1; 16382 is in register biased form, 0x13ffd
// There is danger of double overflow if N-1 > 0x3fe
// in register biased form, 0x103fd
// Analagously, there is danger of single overflow if N-1 > 0x7e
// in register biased form, 0x1007d
// SAFE: If there is danger of overflow set SAFE to 0
//
// 4. SINH_HUGE
// ============
// SAFE: SAFE is always 0 for HUGE
#include "libm_support.h"
//
// Assembly macros
//==============================================================
sinh_FR_X = f44
sinh_FR_X2 = f9
sinh_FR_X4 = f10
sinh_FR_SGNX = f40
sinh_FR_all_ones = f45
sinh_FR_tmp = f42
sinh_FR_Inv_log2by64 = f9
sinh_FR_log2by64_lo = f11
sinh_FR_log2by64_hi = f10
sinh_FR_A1 = f9
sinh_FR_A2 = f10
sinh_FR_A3 = f11
sinh_FR_Rcub = f12
sinh_FR_M_temp = f13
sinh_FR_R_temp = f13
sinh_FR_Rsq = f13
sinh_FR_R = f14
sinh_FR_M = f38
sinh_FR_B1 = f15
sinh_FR_B2 = f32
sinh_FR_B3 = f33
sinh_FR_peven_temp1 = f34
sinh_FR_peven_temp2 = f35
sinh_FR_peven = f36
sinh_FR_podd_temp1 = f34
sinh_FR_podd_temp2 = f35
sinh_FR_podd = f37
sinh_FR_poly_podd_temp1 = f11
sinh_FR_poly_podd_temp2 = f13
sinh_FR_poly_peven_temp1 = f11
sinh_FR_poly_peven_temp2 = f13
sinh_FR_J_temp = f9
sinh_FR_J = f10
sinh_FR_Mmj = f39
sinh_FR_N_temp1 = f11
sinh_FR_N_temp2 = f12
sinh_FR_N = f13
sinh_FR_spos = f14
sinh_FR_sneg = f15
sinh_FR_Tjhi = f32
sinh_FR_Tjlo = f33
sinh_FR_Tmjhi = f34
sinh_FR_Tmjlo = f35
sinh_GR_mJ = r35
sinh_GR_J = r36
sinh_AD_mJ = r38
sinh_AD_J = r39
sinh_GR_all_ones = r40
sinh_FR_S_hi = f9
sinh_FR_S_hi_temp = f10
sinh_FR_S_lo_temp1 = f11
sinh_FR_S_lo_temp2 = f12
sinh_FR_S_lo_temp3 = f13
sinh_FR_S_lo = f38
sinh_FR_C_hi = f39
sinh_FR_C_hi_temp1 = f10
sinh_FR_Y_hi = f11
sinh_FR_Y_lo_temp = f12
sinh_FR_Y_lo = f13
sinh_FR_SINH = f9
sinh_FR_P1 = f14
sinh_FR_P2 = f15
sinh_FR_P3 = f32
sinh_FR_P4 = f33
sinh_FR_P5 = f34
sinh_FR_P6 = f35
sinh_FR_TINY_THRESH = f9
sinh_FR_SINH_temp = f10
sinh_FR_SCALE = f11
sinh_FR_signed_hi_lo = f10
GR_SAVE_PFS = r41
GR_SAVE_B0 = r42
GR_SAVE_GP = r43
GR_Parameter_X = r44
GR_Parameter_Y = r45
GR_Parameter_RESULT = r46
// Data tables
//==============================================================
#ifdef _LIBC
.rodata
#else
.data
#endif
.align 16
double_sinh_arg_reduction:
ASM_TYPE_DIRECTIVE(double_sinh_arg_reduction,@object)
data8 0xB8AA3B295C17F0BC, 0x00004005
data8 0xB17217F7D1000000, 0x00003FF8
data8 0xCF79ABC9E3B39804, 0x00003FD0
ASM_SIZE_DIRECTIVE(double_sinh_arg_reduction)
double_sinh_p_table:
ASM_TYPE_DIRECTIVE(double_sinh_p_table,@object)
data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC
data8 0x8888888888888412, 0x00003FF8
data8 0xD00D00D00D4D39F2, 0x00003FF2
data8 0xB8EF1D28926D8891, 0x00003FEC
data8 0xD732377688025BE9, 0x00003FE5
data8 0xB08AF9AE78C1239F, 0x00003FDE
ASM_SIZE_DIRECTIVE(double_sinh_p_table)
double_sinh_ab_table:
ASM_TYPE_DIRECTIVE(double_sinh_ab_table,@object)
data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC
data8 0x88888888884ECDD5, 0x00003FF8
data8 0xD00D0C6DCC26A86B, 0x00003FF2
data8 0x8000000000000002, 0x00003FFE
data8 0xAAAAAAAAAA402C77, 0x00003FFA
data8 0xB60B6CC96BDB144D, 0x00003FF5
ASM_SIZE_DIRECTIVE(double_sinh_ab_table)
double_sinh_j_table:
ASM_TYPE_DIRECTIVE(double_sinh_j_table,@object)
data8 0xB504F333F9DE6484, 0x00003FFE, 0x1EB2FB13, 0x00000000
data8 0xB6FD91E328D17791, 0x00003FFE, 0x1CE2CBE2, 0x00000000
data8 0xB8FBAF4762FB9EE9, 0x00003FFE, 0x1DDC3CBC, 0x00000000
data8 0xBAFF5AB2133E45FB, 0x00003FFE, 0x1EE9AA34, 0x00000000
data8 0xBD08A39F580C36BF, 0x00003FFE, 0x9EAEFDC1, 0x00000000
data8 0xBF1799B67A731083, 0x00003FFE, 0x9DBF517B, 0x00000000
data8 0xC12C4CCA66709456, 0x00003FFE, 0x1EF88AFB, 0x00000000
data8 0xC346CCDA24976407, 0x00003FFE, 0x1E03B216, 0x00000000
data8 0xC5672A115506DADD, 0x00003FFE, 0x1E78AB43, 0x00000000
data8 0xC78D74C8ABB9B15D, 0x00003FFE, 0x9E7B1747, 0x00000000
data8 0xC9B9BD866E2F27A3, 0x00003FFE, 0x9EFE3C0E, 0x00000000
data8 0xCBEC14FEF2727C5D, 0x00003FFE, 0x9D36F837, 0x00000000
data8 0xCE248C151F8480E4, 0x00003FFE, 0x9DEE53E4, 0x00000000
data8 0xD06333DAEF2B2595, 0x00003FFE, 0x9E24AE8E, 0x00000000
data8 0xD2A81D91F12AE45A, 0x00003FFE, 0x1D912473, 0x00000000
data8 0xD4F35AABCFEDFA1F, 0x00003FFE, 0x1EB243BE, 0x00000000
data8 0xD744FCCAD69D6AF4, 0x00003FFE, 0x1E669A2F, 0x00000000
data8 0xD99D15C278AFD7B6, 0x00003FFE, 0x9BBC610A, 0x00000000
data8 0xDBFBB797DAF23755, 0x00003FFE, 0x1E761035, 0x00000000
data8 0xDE60F4825E0E9124, 0x00003FFE, 0x9E0BE175, 0x00000000
data8 0xE0CCDEEC2A94E111, 0x00003FFE, 0x1CCB12A1, 0x00000000
data8 0xE33F8972BE8A5A51, 0x00003FFE, 0x1D1BFE90, 0x00000000
data8 0xE5B906E77C8348A8, 0x00003FFE, 0x1DF2F47A, 0x00000000
data8 0xE8396A503C4BDC68, 0x00003FFE, 0x1EF22F22, 0x00000000
data8 0xEAC0C6E7DD24392F, 0x00003FFE, 0x9E3F4A29, 0x00000000
data8 0xED4F301ED9942B84, 0x00003FFE, 0x1EC01A5B, 0x00000000
data8 0xEFE4B99BDCDAF5CB, 0x00003FFE, 0x1E8CAC3A, 0x00000000
data8 0xF281773C59FFB13A, 0x00003FFE, 0x9DBB3FAB, 0x00000000
data8 0xF5257D152486CC2C, 0x00003FFE, 0x1EF73A19, 0x00000000
data8 0xF7D0DF730AD13BB9, 0x00003FFE, 0x9BB795B5, 0x00000000
data8 0xFA83B2DB722A033A, 0x00003FFE, 0x1EF84B76, 0x00000000
data8 0xFD3E0C0CF486C175, 0x00003FFE, 0x9EF5818B, 0x00000000
data8 0x8000000000000000, 0x00003FFF, 0x00000000, 0x00000000
data8 0x8164D1F3BC030773, 0x00003FFF, 0x1F77CACA, 0x00000000
data8 0x82CD8698AC2BA1D7, 0x00003FFF, 0x1EF8A91D, 0x00000000
data8 0x843A28C3ACDE4046, 0x00003FFF, 0x1E57C976, 0x00000000
data8 0x85AAC367CC487B15, 0x00003FFF, 0x9EE8DA92, 0x00000000
data8 0x871F61969E8D1010, 0x00003FFF, 0x1EE85C9F, 0x00000000
data8 0x88980E8092DA8527, 0x00003FFF, 0x1F3BF1AF, 0x00000000
data8 0x8A14D575496EFD9A, 0x00003FFF, 0x1D80CA1E, 0x00000000
data8 0x8B95C1E3EA8BD6E7, 0x00003FFF, 0x9D0373AF, 0x00000000
data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF, 0x9F167097, 0x00000000
data8 0x8EA4398B45CD53C0, 0x00003FFF, 0x1EB70051, 0x00000000
data8 0x9031DC431466B1DC, 0x00003FFF, 0x1F6EB029, 0x00000000
data8 0x91C3D373AB11C336, 0x00003FFF, 0x1DFD6D8E, 0x00000000
data8 0x935A2B2F13E6E92C, 0x00003FFF, 0x9EB319B0, 0x00000000
data8 0x94F4EFA8FEF70961, 0x00003FFF, 0x1EBA2BEB, 0x00000000
data8 0x96942D3720185A00, 0x00003FFF, 0x1F11D537, 0x00000000
data8 0x9837F0518DB8A96F, 0x00003FFF, 0x1F0D5A46, 0x00000000
data8 0x99E0459320B7FA65, 0x00003FFF, 0x9E5E7BCA, 0x00000000
data8 0x9B8D39B9D54E5539, 0x00003FFF, 0x9F3AAFD1, 0x00000000
data8 0x9D3ED9A72CFFB751, 0x00003FFF, 0x9E86DACC, 0x00000000
data8 0x9EF5326091A111AE, 0x00003FFF, 0x9F3EDDC2, 0x00000000
data8 0xA0B0510FB9714FC2, 0x00003FFF, 0x1E496E3D, 0x00000000
data8 0xA27043030C496819, 0x00003FFF, 0x9F490BF6, 0x00000000
data8 0xA43515AE09E6809E, 0x00003FFF, 0x1DD1DB48, 0x00000000
data8 0xA5FED6A9B15138EA, 0x00003FFF, 0x1E65EBFB, 0x00000000
data8 0xA7CD93B4E965356A, 0x00003FFF, 0x9F427496, 0x00000000
data8 0xA9A15AB4EA7C0EF8, 0x00003FFF, 0x1F283C4A, 0x00000000
data8 0xAB7A39B5A93ED337, 0x00003FFF, 0x1F4B0047, 0x00000000
data8 0xAD583EEA42A14AC6, 0x00003FFF, 0x1F130152, 0x00000000
data8 0xAF3B78AD690A4375, 0x00003FFF, 0x9E8367C0, 0x00000000
data8 0xB123F581D2AC2590, 0x00003FFF, 0x9F705F90, 0x00000000
data8 0xB311C412A9112489, 0x00003FFF, 0x1EFB3C53, 0x00000000
data8 0xB504F333F9DE6484, 0x00003FFF, 0x1F32FB13, 0x00000000
ASM_SIZE_DIRECTIVE(double_sinh_j_table)
.align 32
.global sinh#
.section .text
.proc sinh#
.align 32
sinh:
#ifdef _LIBC
.global __ieee754_sinh
.type __ieee754_sinh,@function
__ieee754_sinh:
#endif
// X infinity or NAN?
// Take invalid fault if enabled
{ .mfi
alloc r32 = ar.pfs,0,12,4,0
(p0) fclass.m.unc p6,p0 = f8, 0xe3 //@qnan | @snan | @inf
mov sinh_GR_all_ones = -1
}
;;
{ .mfb
nop.m 999
(p6) fma.d.s0 f8 = f8,f1,f8
(p6) br.ret.spnt b0 ;;
}
// Put 0.25 in f9; p6 true if x < 0.25
// Make constant that will generate inexact when squared
{ .mlx
setf.sig sinh_FR_all_ones = sinh_GR_all_ones
(p0) movl r32 = 0x000000000000fffd ;;
}
{ .mfi
(p0) setf.exp f9 = r32
(p0) fclass.m.unc p7,p0 = f8, 0x07 //@zero
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p0) fmerge.s sinh_FR_X = f0,f8
(p7) br.ret.spnt b0 ;;
}
// Identify denormal operands.
{ .mfi
nop.m 999
fclass.m.unc p10,p0 = f8, 0x09 // + denorm
nop.i 999
};;
{ .mfi
nop.m 999
fclass.m.unc p11,p0 = f8, 0x0a // - denorm
nop.i 999
}
{ .mfi
nop.m 999
(p0) fmerge.s sinh_FR_SGNX = f8,f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fcmp.lt.unc.s1 p0,p7 = sinh_FR_X,f9
nop.i 999 ;;
}
{ .mib
nop.m 999
nop.i 999
(p7) br.cond.sptk L(SINH_BY_TBL) ;;
}
L(SINH_BY_POLY):
// POLY cannot overflow so there is no need to call __libm_error_support
// Set tiny_SAFE (p7) to 1(0) if answer is not tiny
// Currently we do not use tiny_SAFE. So the setting of tiny_SAFE is
// commented out.
//(p0) movl r32 = 0x000000000000fc01
//(p0) setf.exp f10 = r32
//(p0) fcmp.lt.unc.s1 p6,p7 = f8,f10
// Here is essentially the algorithm for SINH_BY_POLY. Care is take for the order
// of multiplication; and P_1 is not exactly 1/3!, P_2 is not exactly 1/5!, etc.
// Note that ax = |x|
// sinh(x) = sign * (series(e^x) - series(e^-x))/2
// = sign * (ax + ax^3/3! + ax^5/5! + ax^7/7! + ax^9/9! + ax^11/11! + ax^13/13!)
// = sign * (ax + ax * ( ax^2 * (1/3! + ax^4 * (1/7! + ax^4*1/11!)) )
// + ax * ( ax^4 * (1/5! + ax^4 * (1/9! + ax^4*1/13!)) ) )
// = sign * (ax + ax*p_odd + (ax*p_even))
// = sign * (ax + Y_lo)
// sinh(x) = sign * (Y_hi + Y_lo)
// Get the values of P_x from the table
{ .mfb
(p0) addl r34 = @ltoff(double_sinh_p_table), gp
(p10) fma.d.s0 f8 = f8,f8,f8
(p10) br.ret.spnt b0
}
;;
{ .mfb
ld8 r34 = [r34]
(p11) fnma.d.s0 f8 = f8,f8,f8
(p11) br.ret.spnt b0
}
;;
// Calculate sinh_FR_X2 = ax*ax and sinh_FR_X4 = ax*ax*ax*ax
{ .mmf
nop.m 999
(p0) ldfe sinh_FR_P1 = [r34],16
(p0) fma.s1 sinh_FR_X2 = sinh_FR_X, sinh_FR_X, f0 ;;
}
{ .mmi
(p0) ldfe sinh_FR_P2 = [r34],16 ;;
(p0) ldfe sinh_FR_P3 = [r34],16
nop.i 999 ;;
}
{ .mmi
(p0) ldfe sinh_FR_P4 = [r34],16 ;;
(p0) ldfe sinh_FR_P5 = [r34],16
nop.i 999 ;;
}
{ .mfi
(p0) ldfe sinh_FR_P6 = [r34],16
(p0) fma.s1 sinh_FR_X4 = sinh_FR_X2, sinh_FR_X2, f0
nop.i 999 ;;
}
// Calculate sinh_FR_podd = p_odd and sinh_FR_peven = p_even
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_poly_podd_temp1 = sinh_FR_X4, sinh_FR_P5, sinh_FR_P3
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_poly_podd_temp2 = sinh_FR_X4, sinh_FR_poly_podd_temp1, sinh_FR_P1
nop.i 999
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_poly_peven_temp1 = sinh_FR_X4, sinh_FR_P6, sinh_FR_P4
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_podd = sinh_FR_X2, sinh_FR_poly_podd_temp2, f0
nop.i 999
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_poly_peven_temp2 = sinh_FR_X4, sinh_FR_poly_peven_temp1, sinh_FR_P2
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_peven = sinh_FR_X4, sinh_FR_poly_peven_temp2, f0
nop.i 999 ;;
}
// Calculate sinh_FR_Y_lo = ax*p_odd + (ax*p_even)
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_X, sinh_FR_peven, f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_X, sinh_FR_podd, sinh_FR_Y_lo_temp
nop.i 999 ;;
}
// Calculate sinh_FR_SINH = Y_hi + Y_lo. Note that ax = Y_hi
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_SINH = sinh_FR_X, f1, sinh_FR_Y_lo
nop.i 999 ;;
}
// Dummy multiply to generate inexact
{ .mfi
nop.m 999
(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
nop.i 999
}
// Calculate f8 = sign * (Y_hi + Y_lo)
// Go to return
{ .mfb
nop.m 999
(p0) fma.d.s0 f8 = sinh_FR_SGNX,sinh_FR_SINH,f0
(p0) br.ret.sptk b0 ;;
}
L(SINH_BY_TBL):
// Now that we are at TBL; so far all we know is that |x| >= 0.25.
// The first two steps are the same for TBL and EXP, but if we are HUGE
// we want to leave now.
// Double-extended:
// Go to HUGE if |x| >= 2^14, 1000d (register-biased) is e = 14 (true)
// Double
// Go to HUGE if |x| >= 2^10, 10009 (register-biased) is e = 10 (true)
// Single
// Go to HUGE if |x| >= 2^7, 10006 (register-biased) is e = 7 (true)
{ .mlx
nop.m 999
(p0) movl r32 = 0x0000000000010009 ;;
}
{ .mfi
(p0) setf.exp f9 = r32
nop.f 999
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fcmp.ge.unc.s1 p6,p7 = sinh_FR_X,f9
nop.i 999 ;;
}
{ .mib
nop.m 999
nop.i 999
(p6) br.cond.spnt L(SINH_HUGE) ;;
}
// r32 = 1
// r34 = N-1
// r35 = N
// r36 = j
// r37 = N+1
// TBL can never overflow
// sinh(x) = sinh(B+R)
// = sinh(B)cosh(R) + cosh(B)sinh(R)
//
// ax = |x| = M*log2/64 + R
// B = M*log2/64
// M = 64*N + j
// We will calcualte M and get N as (M-j)/64
// The division is a shift.
// exp(B) = exp(N*log2 + j*log2/64)
// = 2^N * 2^(j*log2/64)
// sinh(B) = 1/2(e^B -e^-B)
// = 1/2(2^N * 2^(j*log2/64) - 2^-N * 2^(-j*log2/64))
// sinh(B) = (2^(N-1) * 2^(j*log2/64) - 2^(-N-1) * 2^(-j*log2/64))
// cosh(B) = (2^(N-1) * 2^(j*log2/64) + 2^(-N-1) * 2^(-j*log2/64))
// 2^(j*log2/64) is stored as Tjhi + Tjlo , j= -32,....,32
// Tjhi is double-extended (80-bit) and Tjlo is single(32-bit)
// R = ax - M*log2/64
// R = ax - M*log2_by_64_hi - M*log2_by_64_lo
// exp(R) = 1 + R +R^2(1/2! + R(1/3! + R(1/4! + ... + R(1/n!)...)
// = 1 + p_odd + p_even
// where the p_even uses the A coefficients and the p_even uses the B coefficients
// So sinh(R) = 1 + p_odd + p_even -(1 -p_odd -p_even)/2 = p_odd
// cosh(R) = 1 + p_even
// sinh(B) = S_hi + S_lo
// cosh(B) = C_hi
// sinh(x) = sinh(B)cosh(R) + cosh(B)sinh(R)
// ******************************************************
// STEP 1 (TBL and EXP)
// ******************************************************
// Get the following constants.
// f9 = Inv_log2by64
// f10 = log2by64_hi
// f11 = log2by64_lo
{ .mmi
(p0) adds r32 = 0x1,r0
(p0) addl r34 = @ltoff(double_sinh_arg_reduction), gp
nop.i 999
}
;;
{ .mmi
ld8 r34 = [r34]
nop.m 999
nop.i 999
}
;;
// We want 2^(N-1) and 2^(-N-1). So bias N-1 and -N-1 and
// put them in an exponent.
// sinh_FR_spos = 2^(N-1) and sinh_FR_sneg = 2^(-N-1)
// r39 = 0xffff + (N-1) = 0xffff +N -1
// r40 = 0xffff - (N +1) = 0xffff -N -1
{ .mlx
nop.m 999
(p0) movl r38 = 0x000000000000fffe ;;
}
{ .mmi
(p0) ldfe sinh_FR_Inv_log2by64 = [r34],16 ;;
(p0) ldfe sinh_FR_log2by64_hi = [r34],16
nop.i 999 ;;
}
{ .mbb
(p0) ldfe sinh_FR_log2by64_lo = [r34],16
nop.b 999
nop.b 999 ;;
}
// Get the A coefficients
// f9 = A_1
// f10 = A_2
// f11 = A_3
{ .mmi
nop.m 999
(p0) addl r34 = @ltoff(double_sinh_ab_table), gp
nop.i 999
}
;;
{ .mmi
ld8 r34 = [r34]
nop.m 999
nop.i 999
}
;;
// Calculate M and keep it as integer and floating point.
// f38 = M = round-to-integer(x*Inv_log2by64)
// sinh_FR_M = M = truncate(ax/(log2/64))
// Put the significand of M in r35
// and the floating point representation of M in sinh_FR_M
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_M = sinh_FR_X, sinh_FR_Inv_log2by64, f0
nop.i 999
}
{ .mfi
(p0) ldfe sinh_FR_A1 = [r34],16
nop.f 999
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fcvt.fx.s1 sinh_FR_M_temp = sinh_FR_M
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fnorm.s1 sinh_FR_M = sinh_FR_M_temp
nop.i 999 ;;
}
{ .mfi
(p0) getf.sig r35 = sinh_FR_M_temp
nop.f 999
nop.i 999 ;;
}
// M is still in r35. Calculate j. j is the signed extension of the six lsb of M. It
// has a range of -32 thru 31.
// r35 = M
// r36 = j
{ .mii
nop.m 999
nop.i 999 ;;
(p0) and r36 = 0x3f, r35 ;;
}
// Calculate R
// f13 = f44 - f12*f10 = ax - M*log2by64_hi
// f14 = f13 - f8*f11 = R = (ax - M*log2by64_hi) - M*log2by64_lo
{ .mfi
nop.m 999
(p0) fnma.s1 sinh_FR_R_temp = sinh_FR_M, sinh_FR_log2by64_hi, sinh_FR_X
nop.i 999
}
{ .mfi
(p0) ldfe sinh_FR_A2 = [r34],16
nop.f 999
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fnma.s1 sinh_FR_R = sinh_FR_M, sinh_FR_log2by64_lo, sinh_FR_R_temp
nop.i 999
}
// Get the B coefficients
// f15 = B_1
// f32 = B_2
// f33 = B_3
{ .mmi
(p0) ldfe sinh_FR_A3 = [r34],16 ;;
(p0) ldfe sinh_FR_B1 = [r34],16
nop.i 999 ;;
}
{ .mmi
(p0) ldfe sinh_FR_B2 = [r34],16 ;;
(p0) ldfe sinh_FR_B3 = [r34],16
nop.i 999 ;;
}
{ .mii
nop.m 999
(p0) shl r34 = r36, 0x2 ;;
(p0) sxt1 r37 = r34 ;;
}
// ******************************************************
// STEP 2 (TBL and EXP)
// ******************************************************
// Calculate Rsquared and Rcubed in preparation for p_even and p_odd
// f12 = R*R*R
// f13 = R*R
// f14 = R <== from above
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_Rsq = sinh_FR_R, sinh_FR_R, f0
(p0) shr r36 = r37, 0x2 ;;
}
// r34 = M-j = r35 - r36
// r35 = N = (M-j)/64
{ .mii
(p0) sub r34 = r35, r36
nop.i 999 ;;
(p0) shr r35 = r34, 0x6 ;;
}
{ .mii
(p0) sub r40 = r38, r35
(p0) adds r37 = 0x1, r35
(p0) add r39 = r38, r35 ;;
}
// Get the address of the J table, add the offset,
// addresses are sinh_AD_mJ and sinh_AD_J, get the T value
// f32 = T(j)_hi
// f33 = T(j)_lo
// f34 = T(-j)_hi
// f35 = T(-j)_lo
{ .mmi
(p0) sub r34 = r35, r32
(p0) addl r37 = @ltoff(double_sinh_j_table), gp
nop.i 999
}
;;
{ .mmi
ld8 r37 = [r37]
nop.m 999
nop.i 999
}
;;
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_Rcub = sinh_FR_Rsq, sinh_FR_R, f0
nop.i 999
}
// ******************************************************
// STEP 3 Now decide if we need to branch to EXP
// ******************************************************
// Put 32 in f9; p6 true if x < 32
// Go to EXP if |x| >= 32
{ .mlx
nop.m 999
(p0) movl r32 = 0x0000000000010004 ;;
}
// Calculate p_even
// f34 = B_2 + Rsq *B_3
// f35 = B_1 + Rsq*f34 = B_1 + Rsq * (B_2 + Rsq *B_3)
// f36 = p_even = Rsq * f35 = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_peven_temp1 = sinh_FR_Rsq, sinh_FR_B3, sinh_FR_B2
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_peven_temp2 = sinh_FR_Rsq, sinh_FR_peven_temp1, sinh_FR_B1
nop.i 999
}
// Calculate p_odd
// f34 = A_2 + Rsq *A_3
// f35 = A_1 + Rsq * (A_2 + Rsq *A_3)
// f37 = podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_podd_temp1 = sinh_FR_Rsq, sinh_FR_A3, sinh_FR_A2
nop.i 999 ;;
}
{ .mfi
(p0) setf.exp sinh_FR_N_temp1 = r39
nop.f 999
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_peven = sinh_FR_Rsq, sinh_FR_peven_temp2, f0
nop.i 999
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_podd_temp2 = sinh_FR_Rsq, sinh_FR_podd_temp1, sinh_FR_A1
nop.i 999 ;;
}
{ .mfi
(p0) setf.exp f9 = r32
nop.f 999
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_podd = sinh_FR_podd_temp2, sinh_FR_Rcub, sinh_FR_R
nop.i 999
}
// sinh_GR_mj contains the table offset for -j
// sinh_GR_j contains the table offset for +j
// p6 is true when j <= 0
{ .mlx
(p0) setf.exp sinh_FR_N_temp2 = r40
(p0) movl r40 = 0x0000000000000020 ;;
}
{ .mfi
(p0) sub sinh_GR_mJ = r40, r36
(p0) fmerge.se sinh_FR_spos = sinh_FR_N_temp1, f1
(p0) adds sinh_GR_J = 0x20, r36 ;;
}
{ .mii
nop.m 999
(p0) shl sinh_GR_mJ = sinh_GR_mJ, 5 ;;
(p0) add sinh_AD_mJ = r37, sinh_GR_mJ ;;
}
{ .mmi
nop.m 999
(p0) ldfe sinh_FR_Tmjhi = [sinh_AD_mJ],16
(p0) shl sinh_GR_J = sinh_GR_J, 5 ;;
}
{ .mfi
(p0) ldfs sinh_FR_Tmjlo = [sinh_AD_mJ],16
(p0) fcmp.lt.unc.s1 p0,p7 = sinh_FR_X,f9
(p0) add sinh_AD_J = r37, sinh_GR_J ;;
}
{ .mmi
(p0) ldfe sinh_FR_Tjhi = [sinh_AD_J],16 ;;
(p0) ldfs sinh_FR_Tjlo = [sinh_AD_J],16
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p0) fmerge.se sinh_FR_sneg = sinh_FR_N_temp2, f1
(p7) br.cond.spnt L(SINH_BY_EXP) ;;
}
{ .mfi
nop.m 999
nop.f 999
nop.i 999 ;;
}
// ******************************************************
// If NOT branch to EXP
// ******************************************************
// Calculate S_hi and S_lo
// sinh_FR_S_hi_temp = sinh_FR_sneg * sinh_FR_Tmjhi
// sinh_FR_S_hi = sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi_temp
// sinh_FR_S_hi = sinh_FR_spos * sinh_FR_Tjhi - (sinh_FR_sneg * sinh_FR_Tmjlo)
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_S_hi_temp = sinh_FR_sneg, sinh_FR_Tmjhi, f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fms.s1 sinh_FR_S_hi = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_S_hi_temp
nop.i 999
}
// Calculate C_hi
// sinh_FR_C_hi_temp1 = sinh_FR_sneg * sinh_FR_Tmjhi
// sinh_FR_C_hi = sinh_FR_spos * sinh_FR_Tjhi + sinh_FR_C_hi_temp1
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_C_hi_temp1 = sinh_FR_sneg, sinh_FR_Tmjhi, f0
nop.i 999 ;;
}
// sinh_FR_S_lo_temp1 = sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi
// sinh_FR_S_lo_temp2 = -sinh_FR_sneg * sinh_FR_Tmjlo + (sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi)
// sinh_FR_S_lo_temp2 = -sinh_FR_sneg * sinh_FR_Tmjlo + (sinh_FR_S_lo_temp1 )
{ .mfi
nop.m 999
(p0) fms.s1 sinh_FR_S_lo_temp1 = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_S_hi
nop.i 999
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_C_hi = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_C_hi_temp1
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fnma.s1 sinh_FR_S_lo_temp2 = sinh_FR_sneg, sinh_FR_Tmjhi, sinh_FR_S_lo_temp1
nop.i 999
}
// sinh_FR_S_lo_temp1 = sinh_FR_sneg * sinh_FR_Tmjlo
// sinh_FR_S_lo_temp3 = sinh_FR_spos * sinh_FR_Tjlo - sinh_FR_S_lo_temp1
// sinh_FR_S_lo_temp3 = sinh_FR_spos * sinh_FR_Tjlo -(sinh_FR_sneg * sinh_FR_Tmjlo)
// sinh_FR_S_lo = sinh_FR_S_lo_temp3 + sinh_FR_S_lo_temp2
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_S_lo_temp1 = sinh_FR_sneg, sinh_FR_Tmjlo, f0
nop.i 999 ;;
}
/////////// BUG FIX fma to fms -TK
{ .mfi
nop.m 999
(p0) fms.s1 sinh_FR_S_lo_temp3 = sinh_FR_spos, sinh_FR_Tjlo, sinh_FR_S_lo_temp1
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_S_lo = sinh_FR_S_lo_temp3, f1, sinh_FR_S_lo_temp2
nop.i 999 ;;
}
// Y_hi = S_hi
// Y_lo = C_hi*p_odd + (S_hi*p_even + S_lo)
// sinh_FR_Y_lo_temp = sinh_FR_S_hi * sinh_FR_peven + sinh_FR_S_lo
// sinh_FR_Y_lo = sinh_FR_C_hi * sinh_FR_podd + sinh_FR_Y_lo_temp
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_S_hi, sinh_FR_peven, sinh_FR_S_lo
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_C_hi, sinh_FR_podd, sinh_FR_Y_lo_temp
nop.i 999 ;;
}
// sinh_FR_SINH = Y_hi + Y_lo
// f8 = answer = sinh_FR_SGNX * sinh_FR_SINH
// Dummy multiply to generate inexact
{ .mfi
nop.m 999
(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
nop.i 999
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_SINH = sinh_FR_S_hi, f1, sinh_FR_Y_lo
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p0) fma.d.s0 f8 = sinh_FR_SGNX, sinh_FR_SINH,f0
(p0) br.ret.sptk b0 ;;
}
L(SINH_BY_EXP):
// When p7 is true, we know that an overflow is not going to happen
// When p7 is false, we must check for possible overflow
// p7 is the over_SAFE flag
// Y_hi = Tjhi
// Y_lo = Tjhi * (p_odd + p_even) +Tjlo
// Scale = sign * 2^(N-1)
// sinh_FR_Y_lo = sinh_FR_Tjhi * (sinh_FR_peven + sinh_FR_podd)
// sinh_FR_Y_lo = sinh_FR_Tjhi * (sinh_FR_Y_lo_temp )
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_Y_lo_temp = sinh_FR_peven, f1, sinh_FR_podd
nop.i 999
}
// Now we are in EXP. This is the only path where an overflow is possible
// but not for certain. So this is the only path where over_SAFE has any use.
// r34 still has N-1
// There is a danger of double-extended overflow if N-1 > 16382 = 0x3ffe
// There is a danger of double overflow if N-1 > 0x3fe = 1022
{ .mlx
nop.m 999
(p0) movl r32 = 0x00000000000003fe ;;
}
{ .mfi
(p0) cmp.gt.unc p0,p7 = r34, r32
(p0) fmerge.s sinh_FR_SCALE = sinh_FR_SGNX, sinh_FR_spos
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_Y_lo = sinh_FR_Tjhi, sinh_FR_Y_lo_temp, sinh_FR_Tjlo
nop.i 999 ;;
}
// f8 = answer = scale * (Y_hi + Y_lo)
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_SINH_temp = sinh_FR_Y_lo, f1, sinh_FR_Tjhi
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.d.s0 f44 = sinh_FR_SCALE, sinh_FR_SINH_temp, f0
nop.i 999 ;;
}
// Dummy multiply to generate inexact
{ .mfi
nop.m 999
(p7) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
nop.i 999 ;;
}
// If over_SAFE is set, return
{ .mfb
nop.m 999
(p7) fmerge.s f8 = f44,f44
(p7) br.ret.sptk b0 ;;
}
// Else see if we overflowed
// S0 user supplied status
// S2 user supplied status + WRE + TD (Overflows)
// If WRE is set then an overflow will not occur in EXP.
// The input value that would cause a register (WRE) value to overflow is about 2^15
// and this input would go into the HUGE path.
// Answer with WRE is in f43.
{ .mfi
nop.m 999
(p0) fsetc.s2 0x7F,0x42
nop.i 999;;
}
{ .mfi
nop.m 999
(p0) fma.d.s2 f43 = sinh_FR_SCALE, sinh_FR_SINH_temp, f0
nop.i 999 ;;
}
// 103FF => 103FF -FFFF = 400(true)
// 400 + 3FF = 7FF, which is 1 more that the exponent of the largest
// double (7FE). So 0 103FF 8000000000000000 is one ulp more than
// largest double in register bias
// Now set p8 if the answer with WRE is greater than or equal this value
// Also set p9 if the answer with WRE is less than or equal to negative this value
{ .mlx
nop.m 999
(p0) movl r32 = 0x000000000103FF ;;
}
{ .mmf
nop.m 999
(p0) setf.exp f41 = r32
(p0) fsetc.s2 0x7F,0x40 ;;
}
{ .mfi
nop.m 999
(p0) fcmp.ge.unc.s1 p8, p0 = f43, f41
nop.i 999
}
{ .mfi
nop.m 999
(p0) fmerge.ns f42 = f41, f41
nop.i 999 ;;
}
// The error tag for overflow is 127
{ .mii
nop.m 999
nop.i 999 ;;
(p8) mov r47 = 127 ;;
}
{ .mfb
nop.m 999
(p0) fcmp.le.unc.s1 p9, p0 = f43, f42
(p8) br.cond.spnt L(SINH_ERROR_SUPPORT) ;;
}
{ .mii
nop.m 999
nop.i 999 ;;
(p9) mov r47 = 127
}
{ .mib
nop.m 999
nop.i 999
(p9) br.cond.spnt L(SINH_ERROR_SUPPORT) ;;
}
// Dummy multiply to generate inexact
{ .mfi
nop.m 999
(p0) fmpy.s0 sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p0) fmerge.s f8 = f44,f44
(p0) br.ret.sptk b0 ;;
}
L(SINH_HUGE):
// for SINH_HUGE, put 24000 in exponent; take sign from input; add 1
// SAFE: SAFE is always 0 for HUGE
{ .mlx
nop.m 999
(p0) movl r32 = 0x0000000000015dbf ;;
}
{ .mfi
(p0) setf.exp f9 = r32
nop.f 999
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 sinh_FR_signed_hi_lo = sinh_FR_SGNX, f9, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.d.s0 f44 = sinh_FR_signed_hi_lo, f9, f0
(p0) mov r47 = 127
}
.endp sinh
ASM_SIZE_DIRECTIVE(sinh)
#ifdef _LIBC
ASM_SIZE_DIRECTIVE(__ieee754_sinh)
#endif
// Stack operations when calling error support.
// (1) (2) (3) (call) (4)
// sp -> + psp -> + psp -> + sp -> +
// | | | |
// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
// | | | |
// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
// | | | |
// | | <- GR_X X1 ->| |
// | | | |
// sp-64 -> + sp -> + sp -> + +
// save ar.pfs save b0 restore gp
// save gp restore ar.pfs
.proc __libm_error_region
__libm_error_region:
L(SINH_ERROR_SUPPORT):
.prologue
// (1)
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
// (2)
{ .mmi
stfd [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
// (3)
{ .mib
stfd [GR_Parameter_X] = f8 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = f44 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
// (4)
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
.endp __libm_error_region
ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#